You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

598 lines
17 KiB

#include <Arduino.h>
#include <SPI.h>
#include "CircularBuffer.h"
#include <RF24.h>
#include <RF24_config.h>
#include "hm_crc.h"
#include "hm_packets.h"
#include "Settings.h" // Header für Einstellungen
#include "Debug.h"
#ifdef ESP8266
#define DISABLE_EINT noInterrupts()
#define ENABLE_EINT interrupts()
#else // für AVR z.B. ProMini oder Nano
#define DISABLE_EINT EIMSK = 0x00
#define ENABLE_EINT EIMSK = 0x01
#endif
#define RF_MAX_ADDR_WIDTH (5)
#define MAX_RF_PAYLOAD_SIZE (32)
#ifdef ESP8266
#define PACKET_BUFFER_SIZE (30)
#else
#define PACKET_BUFFER_SIZE (20)
#endif
// Startup defaults until user reconfigures it
#define DEFAULT_RECV_CHANNEL (3) // 3 = Default channel for Hoymiles
//#define DEFAULT_SEND_CHANNEL (75) // 40 = Default channel for Hoymiles, 61
#define DEFAULT_RF_DATARATE (RF24_250KBPS) // Datarate
#include "NRF24_sniff_types.h"
static HM_Packets hmPackets;
static uint32_t tickMillis;
// Set up nRF24L01 radio on SPI bus plus CE/CS pins
// If more than one RF24 unit is used the another CS pin than 10 must be used
// This pin is used hard coded in SPI library
static RF24 radio1 (RF1_CE_PIN, RF1_CS_PIN);
static NRF24_packet_t bufferData[PACKET_BUFFER_SIZE];
static CircularBuffer<NRF24_packet_t> packetBuffer(bufferData, sizeof(bufferData) / sizeof(bufferData[0]));
static Serial_header_t SerialHdr;
#define CHECKCRC 1
static uint16_t lastCRC;
static uint16_t crc;
uint8_t channels[] = {/*3,*/ 23, 40, 61, 75}; //{1, 3, 6, 9, 11, 23, 40, 61, 75}
uint8_t channelIdx = 1; // fange mit 40 an
uint8_t DEFAULT_SEND_CHANNEL = channels[channelIdx]; // = 40
static unsigned long timeLastPacket = millis();
// Function forward declaration
static void SendPacket(uint64_t dest, uint8_t *buf, uint8_t len);
char * getChannelName (uint8_t i);
static const int ANZAHL_VALUES = 16;
static float VALUES[ANZAHL_VALUES] = {};
static const char *CHANNEL_NAMES[ANZAHL_VALUES]
= {"P1.Udc", "P1.Idc", "P1.Pdc", "P2.Udc", "P2.Idc", "P2.Pdc",
"E-Woche", "E-Total", "E1-Tag", "E2-Tag", "Uac", "Freq.ac", "Pac", "E-heute", "Ipv", "WR-Temp"};
static const uint8_t DIVISOR[ANZAHL_VALUES] = {10,100,10,10,100,10,1,1,1,1,10,100,10,0,0,10};
static const char BLANK = ' ';
static boolean istTag = true;
char CHANNELNAME_BUFFER[15];
#ifdef ESP8266
#include "wifi.h"
#include "ModWebserver.h"
#include "Sonne.h"
#endif
char * getChannelName (uint8_t i) {
//-------------------------------
memset (CHANNELNAME_BUFFER, 0, sizeof(CHANNELNAME_BUFFER));
strcpy (CHANNELNAME_BUFFER, CHANNEL_NAMES[i]);
//itoa (i, CHANNELNAME_BUFFER, 10);
return CHANNELNAME_BUFFER;
}
inline static void dumpData(uint8_t *p, int len) {
//-----------------------------------------------
while (len--){
if (*p < 16)
DEBUG_OUT.print(F("0"));
DEBUG_OUT.print(*p++, HEX);
}
DEBUG_OUT.print(BLANK);
}
float extractValue2 (uint8_t *p, int divisor) {
//-------------------------------------------
uint16_t b1 = *p++;
return ((float) (b1 << 8) + *p) / (float) divisor;
}
float extractValue4 (uint8_t *p, int divisor) {
//-------------------------------------------
uint32_t ret = *p++;
for (uint8_t i = 1; i <= 3; i++)
ret = (ret << 8) + *p++;
return (ret / divisor);
}
void outChannel (uint8_t i) {
//-------------------------
DEBUG_OUT.print(getChannelName(i)); DEBUG_OUT.print(F("\t:")); DEBUG_OUT.print(VALUES[i]); DEBUG_OUT.println(BLANK);
}
void analyse01 (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
//DEBUG_OUT.print (F("analyse 01: "));
p += 3;
// PV1.U PV1.I PV1.P PV2.U PV2.I PV2.P
// [0.1V] [0.01A] [.1W] [0.1V] [0.01A] [.1W]
for (int i = 0; i < 6; i++) {
VALUES[i] = extractValue2 (p,DIVISOR[i]); p += 2;
outChannel(i);
}
/*
DEBUG_OUT.print(F("PV1.U:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" PV1.I:")); DEBUG_OUT.print(extractValue2(p,100));
p += 2;
DEBUG_OUT.print(F(" PV1.Pac:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" PV2.U:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" PV2.I:")); DEBUG_OUT.print(extractValue2(p,100));
p += 2;
DEBUG_OUT.print(F(" PV2.Pac:")); DEBUG_OUT.print(extractValue2(p,10));
*/
DEBUG_OUT.println();
}
void analyse02 (uint8_t *p) { // p zeigt auf 02 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
//DEBUG_OUT.print (F("analyse 02: "));
// +11 = Spannung, +13 = Frequenz, +15 = Leistung
//p += 11;
p++;
for (int i = 6; i < 13; i++) {
if (i == 7) {
VALUES[i] = extractValue4 (p,DIVISOR[i]);
p += 4;
}
else {
VALUES[i] = extractValue2 (p,DIVISOR[i]);
p += 2;
}
outChannel(i);
}
VALUES[13] = VALUES[8] + VALUES[9]; // E-heute = P1+P2
if (VALUES[10] > 0)
VALUES[14] = VALUES[12] / VALUES[10]; // Ipv = Pac / Spannung
/*
DEBUG_OUT.print(F("P Woche:")); DEBUG_OUT.print(extractValue2(p,1));
p += 2;
DEBUG_OUT.print(F(" P Total:")); DEBUG_OUT.print(extractValue4(p,1));
p += 4;
DEBUG_OUT.print(F(" P1 Tag:")); DEBUG_OUT.print(extractValue2(p,1));
p += 2;
DEBUG_OUT.print(F(" P2 Tag:")); DEBUG_OUT.print(extractValue2(p,1));
p += 2;
DEBUG_OUT.print(F(" Spannung:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" Freq.:")); DEBUG_OUT.print(extractValue2(p,100));
p += 2;
DEBUG_OUT.print(F(" Leist.:")); DEBUG_OUT.print(extractValue2(p,10));
*/
DEBUG_OUT.println();
}
void analyse83 (uint8_t *p) { // p zeigt auf 83 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
//DEBUG_OUT.print (F("++++++analyse 83:"));
p += 7;
VALUES[15] = extractValue2 (p,DIVISOR[15]);
outChannel(15);
DEBUG_OUT.println();
}
void analyseWords (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
DEBUG_OUT.print (F("analyse words:"));
p++;
for (int i = 0; i <12;i++) {
DEBUG_OUT.print(extractValue2(p,1));
DEBUG_OUT.print(BLANK);
p++;
}
DEBUG_OUT.println();
}
void analyseLongs (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
DEBUG_OUT.print (F("analyse words:"));
p++;
for (int i = 0; i <12;i++) {
DEBUG_OUT.print(extractValue4(p,1));
DEBUG_OUT.print(BLANK);
p++;
}
DEBUG_OUT.println();
}
#ifdef ESP8266
IRAM_ATTR
#endif
void handleNrf1Irq() {
//-------------------------
static uint8_t lostPacketCount = 0;
uint8_t pipe;
DISABLE_EINT;
// Loop until RX buffer(s) contain no more packets.
while (radio1.available(&pipe)) {
if (!packetBuffer.full()) {
NRF24_packet_t *p = packetBuffer.getFront();
p->timestamp = micros(); // Micros does not increase in interrupt, but it can be used.
p->packetsLost = lostPacketCount;
uint8_t packetLen = radio1.getPayloadSize();
if (packetLen > MAX_RF_PAYLOAD_SIZE)
packetLen = MAX_RF_PAYLOAD_SIZE;
radio1.read(p->packet, packetLen);
packetBuffer.pushFront(p);
lostPacketCount = 0;
}
else {
// Buffer full. Increase lost packet counter.
bool tx_ok, tx_fail, rx_ready;
if (lostPacketCount < 255)
lostPacketCount++;
// Call 'whatHappened' to reset interrupt status.
radio1.whatHappened(tx_ok, tx_fail, rx_ready);
// Flush buffer to drop the packet.
radio1.flush_rx();
}
}
ENABLE_EINT;
}
static void activateConf(void) {
//-----------------------------
radio1.setChannel(DEFAULT_RECV_CHANNEL);
radio1.setDataRate(DEFAULT_RF_DATARATE);
radio1.disableCRC();
radio1.setAutoAck(0x00);
radio1.setPayloadSize(MAX_RF_PAYLOAD_SIZE);
radio1.setAddressWidth(5);
radio1.openReadingPipe(1, DTU_RADIO_ID);
// We want only RX irqs
radio1.maskIRQ(true, true, false);
// Use lo PA level, as a higher level will disturb CH340 DEBUG_OUT usb adapter
radio1.setPALevel(RF24_PA_MAX);
radio1.startListening();
// Attach interrupt handler to NRF IRQ output. Overwrites any earlier handler.
attachInterrupt(digitalPinToInterrupt(RF1_IRQ_PIN), handleNrf1Irq, FALLING); // NRF24 Irq pin is active low.
// Initialize SerialHdr header's address member to promiscuous address.
uint64_t addr = DTU_RADIO_ID;
for (int8_t i = sizeof(SerialHdr.address) - 1; i >= 0; --i) {
SerialHdr.address[i] = addr;
addr >>= 8;
}
#ifndef ESP8266
DEBUG_OUT.println(F("\nRadio Config:"));
radio1.printPrettyDetails();
DEBUG_OUT.println();
#endif
tickMillis = millis() + 200;
}
void setup(void) {
//--------------
//Serial.begin(SER_BAUDRATE);
DEBUG_OUT.begin(SER_BAUDRATE);
DEBUG_OUT.flush();
DEBUG_OUT.println(F("-- Hoymiles DTU Simulation --"));
radio1.begin();
// Disable shockburst for receiving and decode payload manually
radio1.setAutoAck(false);
radio1.setRetries(0, 0);
// Configure nRF IRQ input
pinMode(RF1_IRQ_PIN, INPUT);
activateConf();
#ifdef ESP8266
setupWifi();
setupClock();
setupWebServer();
setupUpdateByOTA();
calcSunUpDown (getNow());
istTag = isDayTime();
DEBUG_OUT.print ("Es ist "); DEBUG_OUT.println (istTag?"Tag":"Nacht");
hmPackets.SetUnixTimeStamp (getNow());
#else
hmPackets.SetUnixTimeStamp(0x62456430);
#endif
}
uint8_t sendBuf[MAX_RF_PAYLOAD_SIZE];
void isTime2Send () {
//-----------------
// Second timer
if (millis() >= tickMillis) {
static uint8_t tel = 0;
tickMillis += 1000; //200;
//tickSec++;
hmPackets.UnixTimeStampTick();
/* if (++tickSec >= 5) { // 5
hmPackets.UnixTimeStampTick();
tickSec = 0;
} */
int32_t size = 0;
uint64_t dest = WR1_RADIO_ID;
if (tel > 5)
tel = 0;
if (tel == 0) {
#ifdef ESP8266
hmPackets.SetUnixTimeStamp (getNow());
#endif
size = hmPackets.GetTimePacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8);
}
else if (tel == 1)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x81);
else if (tel == 2)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x80);
else if (tel == 3) {
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x83);
//tel = 0;
}
else if (tel == 4)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x82);
else if (tel == 5)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x84);
SendPacket(dest, (uint8_t *)&sendBuf, size);
tel++;
/* for (uint8_t warte = 0; warte < 2; warte++) {
delay(1000);
hmPackets.UnixTimeStampTick();
}*/
}
}
void outputPacket(NRF24_packet_t *p, uint8_t payloadLen) {
//-----------------------------------------------------
// Write timestamp, packets lost, address and payload length
//printf(" %09lu ", SerialHdr.timestamp);
dumpData((uint8_t *)&SerialHdr.packetsLost, sizeof(SerialHdr.packetsLost));
dumpData((uint8_t *)&SerialHdr.address, sizeof(SerialHdr.address));
// Trailing bit?!?
dumpData(&p->packet[0], 2);
// Payload length from PCF
dumpData(&payloadLen, sizeof(payloadLen));
// Packet control field - PID Packet identification
uint8_t val = (p->packet[1] >> 1) & 0x03;
DEBUG_OUT.print(val);
DEBUG_OUT.print(F(" "));
if (payloadLen > 9) {
dumpData(&p->packet[2], 1);
dumpData(&p->packet[3], 4);
dumpData(&p->packet[7], 4);
uint16_t remain = payloadLen - 2 - 1 - 4 - 4 + 4;
if (remain < 32) {
dumpData(&p->packet[11], remain);
printf_P(PSTR("%04X "), crc);
if (((crc >> 8) != p->packet[payloadLen + 2]) || ((crc & 0xFF) != p->packet[payloadLen + 3]))
DEBUG_OUT.print(0);
else
DEBUG_OUT.print(1);
}
else {
DEBUG_OUT.print(F("Ill remain "));
DEBUG_OUT.print(remain);
}
}
else {
dumpData(&p->packet[2], payloadLen + 2);
printf_P(PSTR("%04X "), crc);
}
DEBUG_OUT.println();
}
void loop(void) {
//=============
while (!packetBuffer.empty()) {
timeLastPacket = millis();
// One or more records present
NRF24_packet_t *p = packetBuffer.getBack();
// Shift payload data due to 9-bit packet control field
for (int16_t j = sizeof(p->packet) - 1; j >= 0; j--) {
if (j > 0)
p->packet[j] = (byte)(p->packet[j] >> 7) | (byte)(p->packet[j - 1] << 1);
else
p->packet[j] = (byte)(p->packet[j] >> 7);
}
SerialHdr.timestamp = p->timestamp;
SerialHdr.packetsLost = p->packetsLost;
// Check CRC
crc = 0xFFFF;
crc = crc16((uint8_t *)&SerialHdr.address, sizeof(SerialHdr.address), crc, 0, BYTES_TO_BITS(sizeof(SerialHdr.address)));
// Payload length
uint8_t payloadLen = ((p->packet[0] & 0x01) << 5) | (p->packet[1] >> 3);
// Add one byte and one bit for 9-bit packet control field
crc = crc16((uint8_t *)&p->packet[0], sizeof(p->packet), crc, 7, BYTES_TO_BITS(payloadLen + 1) + 1);
if (CHECKCRC) {
// If CRC is invalid only show lost packets
if (((crc >> 8) != p->packet[payloadLen + 2]) || ((crc & 0xFF) != p->packet[payloadLen + 3])) {
if (p->packetsLost > 0) {
DEBUG_OUT.print(F(" Lost: "));
DEBUG_OUT.println(p->packetsLost);
}
packetBuffer.popBack();
continue;
}
// Dump a decoded packet only once
if (lastCRC == crc) {
packetBuffer.popBack();
continue;
}
lastCRC = crc;
}
// Don't dump mysterious ack packages
if (payloadLen == 0) {
packetBuffer.popBack();
continue;
}
#ifdef DEBUG
outputPacket (p, payloadLen);
#endif
uint8_t cmd = p->packet[11];
if (cmd == 0x02)
analyse02 (&p->packet[11]);
else if (cmd == 0x01)
analyse01 (&p->packet[11]);
//if (p->packet[11] == 0x83 || p->packet[11] == 0x82) analyse83 (&p->packet[11], payloadLen);
else if (cmd == 0x03) {
analyseWords (&p->packet[11]);
analyseLongs (&p->packet[11]);
}
else if (cmd == 0x81) // ???
;
else if (cmd == 0x83)
analyse83 (&p->packet[11]);
else {
DEBUG_OUT.print (F("---- neues cmd=")); DEBUG_OUT.println(cmd, HEX);
analyseWords (&p->packet[11]);
analyseLongs (&p->packet[11]);
}
if (p->packetsLost > 0) {
DEBUG_OUT.print(F(" Lost: "));
DEBUG_OUT.print(p->packetsLost);
}
DEBUG_OUT.println();
#ifndef ESP8266
for (uint8_t i = 0; i < ANZAHL_VALUES; i++) {
//outChannel(i);
Serial.print(getChannelName(i)); Serial.print(':'); Serial.print(VALUES[i]); Serial.println(BLANK); // Schnittstelle bei Arduino
}
DEBUG_OUT.println();
#endif
// Remove record as we're done with it.
packetBuffer.popBack();
}
if (istTag)
isTime2Send();
#ifdef ESP8266
checkWifi();
webserverHandle();
checkUpdateByOTA();
if (hour() == 0 && minute() == 0) {
calcSunUpDown(getNow());
}
if (minute() % 15 == 0 && second () == 0) { // alle 15 Minuten neu berechnen ob noch hell
istTag = isDayTime();
DEBUG_OUT.print ("Es ist "); DEBUG_OUT.println (istTag?"Tag":"Nacht");
}
#endif
/*
if (millis() > timeLastPacket + 60UL*SECOND) { // 60 Sekunden
channelIdx++;
if (channelIdx >= sizeof(channels)) channelIdx = 0;
DEFAULT_SEND_CHANNEL = channels[channelIdx];
DEBUG_OUT.print (F("\nneuer DEFAULT_SEND_CHANNEL: ")); DEBUG_OUT.println(DEFAULT_SEND_CHANNEL);
timeLastPacket = millis();
}
*/
}
static void SendPacket(uint64_t dest, uint8_t *buf, uint8_t len) {
//--------------------------------------------------------------
DISABLE_EINT;
radio1.stopListening();
#ifdef CHANNEL_HOP
static uint8_t hop = 0;
#if DEBUG_SEND
DEBUG_OUT.print(F("Send... CH"));
DEBUG_OUT.println(channels[hop]);
#endif
radio1.setChannel(channels[hop++]);
if (hop >= sizeof(channels) / sizeof(channels[0]))
hop = 0;
#else
radio1.setChannel(DEFAULT_SEND_CHANNEL);
#endif
radio1.openWritingPipe(dest);
radio1.setCRCLength(RF24_CRC_16);
radio1.enableDynamicPayloads();
radio1.setAutoAck(true);
radio1.setRetries(3, 15);
radio1.write(buf, len);
// Try to avoid zero payload acks (has no effect)
radio1.openWritingPipe(DUMMY_RADIO_ID);
radio1.setAutoAck(false);
radio1.setRetries(0, 0);
radio1.disableDynamicPayloads();
radio1.setCRCLength(RF24_CRC_DISABLED);
radio1.setChannel(DEFAULT_RECV_CHANNEL);
radio1.startListening();
ENABLE_EINT;
}