You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

863 lines
36 KiB

//-----------------------------------------------------------------------------
// 2022 Ahoy, https://www.mikrocontroller.net/topic/525778
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
#if defined(ESP32) && defined(F)
#undef F
#define F(sl) (sl)
#endif
#include "app.h"
#include <ArduinoJson.h>
//-----------------------------------------------------------------------------
app::app() {
Serial.begin(115200);
DPRINTLN(DBG_VERBOSE, F("app::app"));
mEep = new eep();
mWifi = new ahoywifi(this, &mSysConfig, &mConfig);
resetSystem();
loadDefaultConfig();
mSys = new HmSystemType();
mShouldReboot = false;
}
//-----------------------------------------------------------------------------
void app::setup(uint32_t timeout) {
DPRINTLN(DBG_VERBOSE, F("app::setup"));
mWifiSettingsValid = checkEEpCrc(ADDR_START, ADDR_WIFI_CRC, ADDR_WIFI_CRC);
mSettingsValid = checkEEpCrc(ADDR_START_SETTINGS, ((ADDR_NEXT)-(ADDR_START_SETTINGS)), ADDR_SETTINGS_CRC);
loadEEpconfig();
mWifi->setup(timeout, mWifiSettingsValid);
#ifndef AP_ONLY
setupMqtt();
#endif
mSys->setup(&mConfig);
mWebInst = new web(this, &mSysConfig, &mConfig, mVersion);
mWebInst->setup();
}
//-----------------------------------------------------------------------------
void app::loop(void) {
DPRINTLN(DBG_VERBOSE, F("app::loop"));
bool apActive = mWifi->loop();
mWebInst->loop();
if(checkTicker(&mUptimeTicker, mUptimeInterval)) {
mUptimeSecs++;
if(0 != mTimestamp)
mTimestamp++;
else {
if(!apActive) {
mTimestamp = mWifi->getNtpTime();
DPRINTLN(DBG_INFO, "[NTP]: " + getDateTimeStr(mTimestamp));
}
}
3 years ago
}
if(mShouldReboot) {
DPRINTLN(DBG_INFO, F("Rebooting..."));
ESP.restart();
}
mSys->Radio.loop();
yield();
if(checkTicker(&mRxTicker, 5)) {
bool rxRdy = mSys->Radio.switchRxCh();
if(!mSys->BufCtrl.empty()) {
uint8_t len;
packet_t *p = mSys->BufCtrl.getBack();
if(mSys->Radio.checkPaketCrc(p->packet, &len, p->rxCh)) {
// process buffer only on first occurrence
if(mConfig.serialDebug) {
DPRINT(DBG_INFO, "RX " + String(len) + "B Ch" + String(p->rxCh) + " | ");
mSys->Radio.dumpBuf(NULL, p->packet, len);
}
mFrameCnt++;
if(0 != len) {
Inverter<> *iv = mSys->findInverter(&p->packet[1]);
if(NULL != iv && p->packet[0] == (TX_REQ_INFO + 0x80)) { // response from get information command
DPRINTLN(DBG_DEBUG, F("Response from info request received"));
uint8_t *pid = &p->packet[9];
if (*pid == 0x00)
{
DPRINT(DBG_DEBUG, "fragment number zero received and ignored");
}
else
{
if ((*pid & 0x7F) < 5)
{
memcpy(mPayload[iv->id].data[(*pid & 0x7F) - 1], &p->packet[10], len - 11);
mPayload[iv->id].len[(*pid & 0x7F) - 1] = len - 11;
}
if ((*pid & 0x80) == 0x80)
{ // Last packet
if ((*pid & 0x7f) > mPayload[iv->id].maxPackId)
{
mPayload[iv->id].maxPackId = (*pid & 0x7f);
if (*pid > 0x81)
mLastPacketId = *pid;
}
}
}
}
if(NULL != iv && p->packet[0] == (TX_REQ_DEVCONTROL + 0x80)) { // response from dev control command
DPRINTLN(DBG_DEBUG, F("Response from devcontrol request received"));
iv->devControlRequest = false;
switch (p->packet[12]) {
case ActivePowerContr:
if (iv->devControlCmd >= ActivePowerContr && iv->devControlCmd <= PFSet) { // ok inverter accepted the set point copy it to dtu eeprom
if ((iv->powerLimit[1] & 0xff00) > 0) { // User want to have it persistent
mEep->write(ADDR_INV_PWR_LIM + iv->id * 2, iv->powerLimit[0]);
mEep->write(ADDR_INV_PWR_LIM_CON + iv->id * 2, iv->powerLimit[1]);
updateCrc();
mEep->commit();
DPRINTLN(DBG_INFO, F("Inverter ") + String(iv->id) + F(" has accepted power limit set point ") + String(iv->powerLimit[0]) + F(" with PowerLimitControl ") + String(iv->powerLimit[1]) + F(", written to dtu eeprom"));
} else
DPRINTLN(DBG_INFO, F("Inverter ") + String(iv->id) + F(" has accepted power limit set point ") + String(iv->powerLimit[0]) + F(" with PowerLimitControl ") + String(iv->powerLimit[1]));
iv->devControlCmd = Init;
}
break;
default:
if (iv->devControlCmd == ActivePowerContr) {
//case inverter did not accept the sent limit; set back to last stored limit
mEep->read(ADDR_INV_PWR_LIM + iv->id * 2, (uint16_t *)&(iv->powerLimit[0]));
mEep->read(ADDR_INV_PWR_LIM_CON + iv->id * 2, (uint16_t *)&(iv->powerLimit[1]));
DPRINTLN(DBG_INFO, F("Inverter has not accepted power limit set point"));
}
iv->devControlCmd = Init;
break;
}
}
}
}
mSys->BufCtrl.popBack();
}
yield();
if(rxRdy) {
processPayload(true);
}
}
if(mMqttActive)
mMqtt.loop();
if(checkTicker(&mTicker, 1000)) {
if((++mMqttTicker >= mMqttInterval) && (mMqttInterval != 0xffff) && mMqttActive) {
mMqttTicker = 0;
mMqtt.isConnected(true); // really needed? See comment from HorstG-57 #176
char val[10];
3 years ago
snprintf(val, 10, "%ld", millis()/1000);
#ifndef __MQTT_NO_DISCOVERCONFIG__
// MQTTDiscoveryConfig nur wenn nicht abgeschaltet.
sendMqttDiscoveryConfig();
#endif
mMqtt.sendMsg("uptime", val);
#ifdef __MQTT_TEST__
// für einfacheren Test mit MQTT, den MQTT abschnitt in 10 Sekunden wieder ausführen
mMqttTicker = mMqttInterval -10;
#endif
}
if(mConfig.serialShowIv) {
if(++mSerialTicker >= mConfig.serialInterval) {
mSerialTicker = 0;
char topic[30], val[10];
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
if(iv->isAvailable(mTimestamp)) {
DPRINTLN(DBG_INFO, "Inverter: " + String(id));
for(uint8_t i = 0; i < iv->listLen; i++) {
if(0.0f != iv->getValue(i)) {
snprintf(topic, 30, "%s/ch%d/%s", iv->name, iv->assign[i].ch, iv->getFieldName(i));
snprintf(val, 10, "%.3f %s", iv->getValue(i), iv->getUnit(i));
DPRINTLN(DBG_INFO, String(topic) + ": " + String(val));
}
yield();
}
DPRINTLN(DBG_INFO, "");
}
}
}
}
}
if(++mSendTicker >= mConfig.sendInterval) {
mSendTicker = 0;
if(0 != mTimestamp) {
if(mConfig.serialDebug)
DPRINTLN(DBG_DEBUG, F("Free heap: 0x") + String(ESP.getFreeHeap(), HEX));
if(!mSys->BufCtrl.empty()) {
if(mConfig.serialDebug)
DPRINTLN(DBG_DEBUG, F("recbuf not empty! #") + String(mSys->BufCtrl.getFill()));
}
int8_t maxLoop = MAX_NUM_INVERTERS;
Inverter<> *iv = mSys->getInverterByPos(mSendLastIvId);
do {
if(NULL != iv)
mPayload[iv->id].requested = false;
mSendLastIvId = ((MAX_NUM_INVERTERS-1) == mSendLastIvId) ? 0 : mSendLastIvId + 1;
iv = mSys->getInverterByPos(mSendLastIvId);
} while((NULL == iv) && ((maxLoop--) > 0));
if(NULL != iv) {
if(!mPayload[iv->id].complete)
processPayload(false);
if(!mPayload[iv->id].complete) {
mRxFailed++;
iv->setQueuedCmdFinished(); // command failed
if(mConfig.serialDebug) {
DPRINTLN(DBG_INFO, F("enqueued cmd failed/timeout"));
}
if(mConfig.serialDebug) {
DPRINT(DBG_INFO, F("Inverter #") + String(iv->id) + " ");
DPRINTLN(DBG_INFO, F("no Payload received! (retransmits: ") + String(mPayload[iv->id].retransmits) + ")");
}
}
resetPayload(iv);
yield();
if(mConfig.serialDebug)
DPRINTLN(DBG_DEBUG, F("app:loop WiFi WiFi.status ") + String(WiFi.status()));
DPRINTLN(DBG_INFO, F("Requesting Inverter SN ") + String(iv->serial.u64, HEX));
if(iv->devControlRequest && (iv->powerLimit[0] > 0) && (NoPowerLimit != iv->powerLimit[1])) { // prevent to "switch off"
if(mConfig.serialDebug)
DPRINTLN(DBG_INFO, F("Devcontrol request ") + String(iv->devControlCmd) + F(" power limit ") + String(iv->powerLimit[0]));
mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd ,iv->powerLimit);
iv->enqueCommand<InfoCommand>(SystemConfigPara);
} else {
mSys->Radio.sendTimePacket(iv->radioId.u64,iv->getQueuedCmd(), mPayload[iv->id].ts,iv->alarmMesIndex);
mRxTicker = 0;
}
}
}
else if(mConfig.serialDebug)
DPRINTLN(DBG_WARN, F("time not set, can't request inverter!"));
yield();
}
3 years ago
}
}
//-----------------------------------------------------------------------------
void app::handleIntr(void) {
DPRINTLN(DBG_VERBOSE, F("app::handleIntr"));
mSys->Radio.handleIntr();
}
//-----------------------------------------------------------------------------
bool app::buildPayload(uint8_t id) {
DPRINTLN(DBG_VERBOSE, F("app::buildPayload"));
uint16_t crc = 0xffff, crcRcv = 0x0000;
if(mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES)
mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES;
for(uint8_t i = 0; i < mPayload[id].maxPackId; i ++) {
if(mPayload[id].len[i] > 0) {
if(i == (mPayload[id].maxPackId-1)) {
crc = Hoymiles::crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc);
crcRcv = (mPayload[id].data[i][mPayload[id].len[i] - 2] << 8)
| (mPayload[id].data[i][mPayload[id].len[i] - 1]);
}
else
crc = Hoymiles::crc16(mPayload[id].data[i], mPayload[id].len[i], crc);
}
yield();
}
if(crc == crcRcv)
return true;
return false;
}
//-----------------------------------------------------------------------------
void app::processPayload(bool retransmit) {
#ifdef __MQTT_AFTER_RX__
boolean doMQTT = false;
#endif
DPRINTLN(DBG_VERBOSE, F("app::processPayload"));
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
if(!mPayload[iv->id].complete) {
if(!buildPayload(iv->id)) {
if(mPayload[iv->id].requested) {
if(retransmit) {
if(mPayload[iv->id].retransmits < mConfig.maxRetransPerPyld) {
mPayload[iv->id].retransmits++;
if(mPayload[iv->id].maxPackId != 0) {
for(uint8_t i = 0; i < (mPayload[iv->id].maxPackId-1); i ++) {
if(mPayload[iv->id].len[i] == 0) {
if(mConfig.serialDebug)
DPRINTLN(DBG_ERROR, F("while retrieving data: Frame ") + String(i+1) + F(" missing: Request Retransmit"));
mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, (SINGLE_FRAME+i), true);
break; // only retransmit one frame per loop
}
yield();
}
}
else {
if(mConfig.serialDebug)
DPRINTLN(DBG_ERROR, F("while retrieving data: last frame missing: Request Retransmit"));
if(0x00 != mLastPacketId)
mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, mLastPacketId, true);
else
mSys->Radio.sendTimePacket(iv->radioId.u64, iv->getQueuedCmd(), mPayload[iv->id].ts,iv->alarmMesIndex);
}
mSys->Radio.switchRxCh(100);
}
}
}
}
else {
mPayload[iv->id].complete = true;
iv->ts = mPayload[iv->id].ts;
uint8_t payload[128];
uint8_t offs = 0;
memset(payload, 0, 128);
for(uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i ++) {
memcpy(&payload[offs], mPayload[iv->id].data[i], (mPayload[iv->id].len[i]));
offs += (mPayload[iv->id].len[i]);
yield();
}
offs-=2;
if(mConfig.serialDebug) {
DPRINT(DBG_INFO, F("Payload (") + String(offs) + "): ");
mSys->Radio.dumpBuf(NULL, payload, offs);
}
mRxSuccess++;
iv->getAssignment(); // choose the parser
for(uint8_t i = 0; i < iv->listLen; i++) {
iv->addValue(i, payload); // cmd value decides which parser is used to decode payload
yield();
}
iv->doCalculations(); // cmd value decides which parser is used to decode payload
iv->setQueuedCmdFinished();
// MQTT send out
if(mMqttActive) {
char topic[30], val[10];
for (uint8_t id = 0; id < mSys->getNumInverters(); id++)
{
Inverter<> *iv = mSys->getInverterByPos(id);
if (NULL != iv)
{
if (iv->isAvailable(mTimestamp))
{
for (uint8_t i = 0; i < iv->listLen; i++)
{
snprintf(topic, 30, "%s/ch%d/%s", iv->name, iv->assign[i].ch, fields[iv->assign[i].fieldId]);
snprintf(val, 10, "%.3f", iv->getValue(i));
mMqtt.sendMsg(topic, val);
yield();
}
}
}
}
}
#ifdef __MQTT_AFTER_RX__
doMQTT = true;
#endif
}
}
yield();
}
}
#ifdef __MQTT_AFTER_RX__
// ist MQTT aktiviert und es wurden Daten vom einem oder mehreren WR aufbereitet ( doMQTT = true)
// dann die den mMqttTicker auf mMqttIntervall -2 setzen, also
// MQTT aussenden in 2 sek aktivieren
// dies sollte noch über einen Schalter im Setup aktivier / deaktivierbar gemacht werden
if( (mMqttInterval != 0xffff) && doMQTT ) {
++mMqttTicker = mMqttInterval -2;
DPRINT(DBG_DEBUG, F("MQTTticker auf Intervall -2 sec ")) ;
}
#endif
}
//-----------------------------------------------------------------------------
void app::cbMqtt(char* topic, byte* payload, unsigned int length) {
// callback handling on subscribed devcontrol topic
DPRINTLN(DBG_INFO, F("app::cbMqtt"));
// subcribed topics are mTopic + "/devcontrol/#" where # is <inverter_id>/<subcmd in dec>
// eg. mypvsolar/devcontrol/1/11 with payload "400" --> inverter 1 active power limit 400 Watt
const char *token = strtok(topic, "/");
while (token != NULL)
{
if (strcmp(token,"devcontrol")==0){
token = strtok(NULL, "/");
uint8_t iv_id = std::stoi(token);
if (iv_id >= 0 && iv_id <= MAX_NUM_INVERTERS){
Inverter<> *iv = this->mSys->getInverterByPos(iv_id);
if(NULL != iv) {
if (!iv->devControlRequest) { // still pending
token = strtok(NULL, "/");
switch ( std::stoi(token) ){
case ActivePowerContr: // Active Power Control
token = strtok(NULL, "/"); // get ControlMode aka "PowerPF.Desc" in DTU-Pro Code from topic string
if (token == NULL) // default via mqtt ommit the LimitControlMode
iv->powerLimit[1] = AbsolutNonPersistent;
else
iv->powerLimit[1] = std::stoi(token);
if (length<=5){ // if (std::stoi((char*)payload) > 0) more error handling powerlimit needed?
if (iv->powerLimit[1] >= AbsolutNonPersistent && iv->powerLimit[1] <= RelativPersistent){
iv->devControlCmd = ActivePowerContr;
iv->powerLimit[0] = std::stoi(std::string((char*)payload, (unsigned int)length)); // THX to @silversurfer
if (iv->powerLimit[1] & 0x0001)
DPRINTLN(DBG_INFO, F("Power limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("%") );
else
DPRINTLN(DBG_INFO, F("Power limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("W") );
}
iv->devControlRequest = true;
} else {
2 years ago
DPRINTLN(DBG_INFO, F("Invalid mqtt payload recevied: ") + String((char*)payload));
}
break;
case TurnOn: // Turn On
iv->devControlCmd = TurnOn;
DPRINTLN(DBG_INFO, F("Turn on inverter ") + String(iv->id) );
iv->devControlRequest = true;
break;
case TurnOff: // Turn Off
iv->devControlCmd = TurnOff;
DPRINTLN(DBG_INFO, F("Turn off inverter ") + String(iv->id) );
iv->devControlRequest = true;
break;
case Restart: // Restart
iv->devControlCmd = Restart;
DPRINTLN(DBG_INFO, F("Restart inverter ") + String(iv->id) );
iv->devControlRequest = true;
break;
case ReactivePowerContr: // Reactive Power Control
iv->devControlCmd = ReactivePowerContr;
if (true){ // if (std::stoi((char*)payload) > 0) error handling powerlimit needed?
iv->devControlCmd = ReactivePowerContr;
iv->powerLimit[0] = std::stoi(std::string((char*)payload, (unsigned int)length));
iv->powerLimit[1] = 0x0000; // if reactivepower limit is set via external interface --> set it temporay
DPRINTLN(DBG_DEBUG, F("Reactivepower limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("W") );
iv->devControlRequest = true;
}
break;
case PFSet: // Set Power Factor
// iv->devControlCmd = PFSet;
// uint16_t power_factor = std::stoi(strtok(NULL, "/"));
DPRINTLN(DBG_INFO, F("Set Power Factor not implemented for inverter ") + String(iv->id) );
break;
default:
DPRINTLN(DBG_INFO, "Not implemented");
break;
}
}
}
}
break;
}
token = strtok(NULL, "/");
}
DPRINTLN(DBG_INFO, F("app::cbMqtt finished"));
}
//-----------------------------------------------------------------------------
String app::getStatistics(void) {
String content = F("Receive success: ") + String(mRxSuccess) + "\n";
content += F("Receive fail: ") + String(mRxFailed) + "\n";
content += F("Frames received: ") + String(mFrameCnt) + "\n";
content += F("Send Cnt: ") + String(mSys->Radio.mSendCnt) + String("\n\n");
Inverter<> *iv;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) {
iv = mSys->getInverterByPos(i);
content += F("Inverter #") + String(i) + F(": ");
if(NULL != iv) {
bool avail = true;
content += String(iv->name) + F(" (v") + String(iv->fwVersion) +F(")") + F(" is ");
if(!iv->isAvailable(mTimestamp)) {
content += F("not ");
avail = false;
}
content += F("available and is ");
if(!iv->isProducing(mTimestamp))
content += F("not ");
content += F("producing\n");
if(!avail) {
if(iv->getLastTs() > 0)
content += F("-> last successful transmission: ") + getDateTimeStr(iv->getLastTs()) + "\n";
}
}
else
content += F("n/a\n");
}
if(!mSys->Radio.isChipConnected())
content += F("WARNING! your NRF24 module can't be reached, check the wiring and pinout (<a href=\"/setup\">setup</a>)\n");
if(mShowRebootRequest)
content += F("INFO: reboot your ESP to apply all your configuration changes!\n");
if(!mSettingsValid)
content += F("INFO: your settings are invalid, please switch to <a href=\"/setup\">Setup</a> to correct this.\n");
content += F("MQTT: ");
if(!mMqtt.isConnected())
content += F("not ");
content += F("connected\n");
return content;
}
//-----------------------------------------------------------------------------
String app::getJson(void) {
DPRINTLN(DBG_VERBOSE, F("app::showJson"));
String modJson;
modJson = F("{\n");
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
char topic[40], val[25];
snprintf(topic, 30, "\"%s\": {\n", iv->name);
modJson += String(topic);
for(uint8_t i = 0; i < iv->listLen; i++) {
snprintf(topic, 40, "\t\"ch%d/%s\"", iv->assign[i].ch, iv->getFieldName(i));
snprintf(val, 25, "[%.3f, \"%s\"]", iv->getValue(i), iv->getUnit(i));
modJson += String(topic) + ": " + String(val) + F(",\n");
}
modJson += F("\t\"last_msg\": \"") + getDateTimeStr(iv->ts) + F("\"\n\t},\n");
}
}
modJson += F("\"json_ts\": \"") + String(getDateTimeStr(mTimestamp)) + F("\"\n}\n");
return modJson;
}
//-----------------------------------------------------------------------------
bool app::getWifiApActive(void) {
return mWifi->getApActive();
}
//-----------------------------------------------------------------------------
void app::sendMqttDiscoveryConfig(void) {
DPRINTLN(DBG_VERBOSE, F("app::sendMqttDiscoveryConfig"));
char stateTopic[64], discoveryTopic[64], buffer[512], name[32], uniq_id[32];
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
if(iv->isAvailable(mTimestamp) && mMqttConfigSendState[id] != true) {
DynamicJsonDocument deviceDoc(128);
deviceDoc["name"] = iv->name;
deviceDoc["ids"] = String(iv->serial.u64, HEX);
deviceDoc["cu"] = F("http://") + String(WiFi.localIP().toString());
deviceDoc["mf"] = "Hoymiles";
deviceDoc["mdl"] = iv->name;
JsonObject deviceObj = deviceDoc.as<JsonObject>();
DynamicJsonDocument doc(384);
for(uint8_t i = 0; i < iv->listLen; i++) {
if (iv->assign[i].ch == CH0) {
snprintf(name, 32, "%s %s", iv->name, iv->getFieldName(i));
} else {
snprintf(name, 32, "%s CH%d %s", iv->name, iv->assign[i].ch, iv->getFieldName(i));
}
snprintf(stateTopic, 64, "%s/%s/ch%d/%s", mConfig.mqtt.topic, iv->name, iv->assign[i].ch, iv->getFieldName(i));
snprintf(discoveryTopic, 64, "%s/sensor/%s/ch%d_%s/config", MQTT_DISCOVERY_PREFIX, iv->name, iv->assign[i].ch, iv->getFieldName(i));
snprintf(uniq_id, 32, "ch%d_%s", iv->assign[i].ch, iv->getFieldName(i));
const char* devCls = getFieldDeviceClass(iv->assign[i].fieldId);
const char* stateCls = getFieldStateClass(iv->assign[i].fieldId);
doc["name"] = name;
doc["stat_t"] = stateTopic;
doc["unit_of_meas"] = iv->getUnit(i);
doc["uniq_id"] = String(iv->serial.u64, HEX) + "_" + uniq_id;
doc["dev"] = deviceObj;
doc["exp_aft"] = mMqttInterval + 5; // add 5 sec if connection is bad or ESP too slow
if (devCls != NULL) {
doc["dev_cla"] = devCls;
}
if (stateCls != NULL) {
doc["stat_cla"] = stateCls;
}
serializeJson(doc, buffer);
mMqtt.sendMsg2(discoveryTopic, buffer, true);
doc.clear();
yield();
}
mMqttConfigSendState[id] = true;
}
}
}
}
//-----------------------------------------------------------------------------
const char* app::getFieldDeviceClass(uint8_t fieldId) {
uint8_t pos = 0;
for(; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) {
if(deviceFieldAssignment[pos].fieldId == fieldId)
break;
}
return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : deviceClasses[deviceFieldAssignment[pos].deviceClsId];
}
//-----------------------------------------------------------------------------
const char* app::getFieldStateClass(uint8_t fieldId) {
uint8_t pos = 0;
for(; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) {
if(deviceFieldAssignment[pos].fieldId == fieldId)
break;
}
return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : stateClasses[deviceFieldAssignment[pos].stateClsId];
}
//-----------------------------------------------------------------------------
void app::resetSystem(void) {
mUptimeSecs = 0;
mUptimeTicker = 0xffffffff;
mUptimeInterval = 1000;
#ifdef AP_ONLY
mTimestamp = 1;
#else
mTimestamp = 0;
#endif
mHeapStatCnt = 0;
mSendTicker = 0xffff;
mMqttTicker = 0xffff;
mMqttInterval = MQTT_INTERVAL;
mSerialTicker = 0xffff;
mMqttActive = false;
mTicker = 0;
mRxTicker = 0;
mSendLastIvId = 0;
mShowRebootRequest = false;
memset(mPayload, 0, (MAX_NUM_INVERTERS * sizeof(invPayload_t)));
mRxFailed = 0;
mRxSuccess = 0;
mFrameCnt = 0;
mLastPacketId = 0x00;
}
//-----------------------------------------------------------------------------
void app::loadDefaultConfig(void) {
memset(&mSysConfig, 0, sizeof(sysConfig_t));
memset(&mConfig, 0, sizeof(config_t));
snprintf(mVersion, 12, "%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH);
snprintf(mSysConfig.deviceName, DEVNAME_LEN, "%s", DEF_DEVICE_NAME);
// wifi
snprintf(mSysConfig.stationSsid, SSID_LEN, "%s", FB_WIFI_SSID);
snprintf(mSysConfig.stationPwd, PWD_LEN, "%s", FB_WIFI_PWD);
// nrf24
mConfig.sendInterval = SEND_INTERVAL;
mConfig.maxRetransPerPyld = DEF_MAX_RETRANS_PER_PYLD;
mConfig.pinCs = DEF_RF24_CS_PIN;
mConfig.pinCe = DEF_RF24_CE_PIN;
mConfig.pinIrq = DEF_RF24_IRQ_PIN;
mConfig.amplifierPower = DEF_AMPLIFIERPOWER & 0x03;
// ntp
snprintf(mConfig.ntpAddr, NTP_ADDR_LEN, "%s", DEF_NTP_SERVER_NAME);
mConfig.ntpPort = DEF_NTP_PORT;
// mqtt
snprintf(mConfig.mqtt.broker, MQTT_ADDR_LEN, "%s", DEF_MQTT_BROKER);
mConfig.mqtt.port = DEF_MQTT_PORT;
snprintf(mConfig.mqtt.user, MQTT_USER_LEN, "%s", DEF_MQTT_USER);
snprintf(mConfig.mqtt.pwd, MQTT_PWD_LEN, "%s", DEF_MQTT_PWD);
snprintf(mConfig.mqtt.topic, MQTT_TOPIC_LEN, "%s", DEF_MQTT_TOPIC);
// serial
mConfig.serialInterval = SERIAL_INTERVAL;
mConfig.serialShowIv = false;
mConfig.serialDebug = false;
}
//-----------------------------------------------------------------------------
void app::loadEEpconfig(void) {
DPRINTLN(DBG_VERBOSE, F("app::loadEEpconfig"));
if(mWifiSettingsValid)
mEep->read(ADDR_CFG_SYS, (uint8_t*) &mSysConfig, CFG_SYS_LEN);
if(mSettingsValid) {
mEep->read(ADDR_CFG, (uint8_t*) &mConfig, CFG_LEN);
mSendTicker = mConfig.sendInterval;
mSerialTicker = 0;
// inverter
uint64_t invSerial;
char name[MAX_NAME_LENGTH + 1] = {0};
uint16_t modPwr[4];
Inverter<> *iv;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) {
mEep->read(ADDR_INV_ADDR + (i * 8), &invSerial);
mEep->read(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), name, MAX_NAME_LENGTH);
mEep->read(ADDR_INV_CH_PWR + (i * 2 * 4), modPwr, 4);
if(0ULL != invSerial) {
iv = mSys->addInverter(name, invSerial, modPwr);
if(NULL != iv) { // will run once on every dtu boot
mEep->read(ADDR_INV_PWR_LIM + (i * 2),(uint16_t *)&(iv->powerLimit[0]));
mEep->read(ADDR_INV_PWR_LIM_CON + (i * 2),(uint16_t *)&(iv->powerLimit[1]));
// only set it, if it is changed by user. Default value in the html setup page is -1 = 0xffff
// it is "doppelt-gemoppelt" because the inverter shall remember the setting if the dtu makes a power cycle / reboot
if (iv->powerLimit[0] != 0xffff) {
iv->devControlCmd = ActivePowerContr; // set active power limit
DPRINT(DBG_INFO, F("add inverter: ") + String(name) + ", SN: " + String(invSerial, HEX));
if(iv->powerLimit[1] != NoPowerLimit) {
DBGPRINT(F(", Power Limit: ") + String(iv->powerLimit[0]));
if ((iv->powerLimit[1] & 0x0001) == 0x0001)
DBGPRINTLN(F(" in %"));
else
DBGPRINTLN(F(" in Watt"));
}
else
DBGPRINTLN(F(" "));
}
for(uint8_t j = 0; j < 4; j++) {
mEep->read(ADDR_INV_CH_NAME + (i * 4 * MAX_NAME_LENGTH) + j * MAX_NAME_LENGTH, iv->chName[j], MAX_NAME_LENGTH);
}
}
// TODO: the original mqttinterval value is not needed any more
mMqttInterval += mConfig.sendInterval;
}
}
}
}
//-----------------------------------------------------------------------------
void app::saveValues(void) {
DPRINTLN(DBG_VERBOSE, F("app::saveValues"));
mEep->write(ADDR_CFG_SYS, (uint8_t*)&mSysConfig, CFG_SYS_LEN);
mEep->write(ADDR_CFG, (uint8_t*)&mConfig, CFG_LEN);
Inverter<> *iv;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) {
iv = mSys->getInverterByPos(i, false);
mEep->write(ADDR_INV_ADDR + (i * 8), iv->serial.u64);
mEep->write(ADDR_INV_PWR_LIM + i * 2, iv->powerLimit[0]);
mEep->write(ADDR_INV_PWR_LIM_CON + i * 2, iv->powerLimit[1]);
mEep->write(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), iv->name, MAX_NAME_LENGTH);
// max channel power / name
for(uint8_t j = 0; j < 4; j++) {
mEep->write(ADDR_INV_CH_PWR + (i * 2 * 4) + (j*2), iv->chMaxPwr[j]);
mEep->write(ADDR_INV_CH_NAME + (i * 4 * MAX_NAME_LENGTH) + j * MAX_NAME_LENGTH, iv->chName[j], MAX_NAME_LENGTH);
}
}
updateCrc();
mEep->commit();
}
//-----------------------------------------------------------------------------
void app::setupMqtt(void) {
if(mSettingsValid) {
if(mConfig.mqtt.broker[0] > 0) {
mMqttActive = true;
if(mMqttInterval < MIN_MQTT_INTERVAL)
mMqttInterval = MIN_MQTT_INTERVAL;
}
else
mMqttInterval = 0xffff;
mMqttTicker = 0;
mMqtt.setup(&mConfig.mqtt, mSysConfig.deviceName);
mMqtt.setCallback(std::bind(&app::cbMqtt, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3));
if(mMqttActive) {
mMqtt.sendMsg("version", mVersion);
if(mMqtt.isConnected())
mMqtt.sendMsg("device", mSysConfig.deviceName);
/*char topic[30];
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) {
iv = mSys->getInverterByPos(i);
if(NULL != iv) {
for(uint8_t i = 0; i < 4; i++) {
if(0 != iv->chName[i][0]) {
snprintf(topic, 30, "%s/ch%d/%s", iv->name, i+1, "name");
mMqtt.sendMsg(topic, iv->chName[i]);
yield();
}
}
}
}*/
}
}
}
//-----------------------------------------------------------------------------
void app::resetPayload(Inverter<>* iv)
{
// reset payload data
memset(mPayload[iv->id].len, 0, MAX_PAYLOAD_ENTRIES);
mPayload[iv->id].retransmits = 0;
mPayload[iv->id].maxPackId = 0;
mPayload[iv->id].complete = false;
mPayload[iv->id].requested = true;
mPayload[iv->id].ts = mTimestamp;
}