You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

206 lines
5.9 KiB

"""
First attempt at providing basic 'master' ('DTU') functionality
for Hoymiles micro inverters.
Based in particular on demostrated first contact by 'of22'.
"""
import sys
import argparse
import time
import struct
import crcmod
from datetime import datetime
from RF24 import RF24, RF24_PA_LOW, RF24_PA_MAX, RF24_250KBPS
radio = RF24(22, 0, 1000000)
# Master Address ('DTU')
dtu_ser = 99978563412 # identical to fc22's
# inverter serial numbers
#inv_ser = 444473104619 # identical to fc22's #99972220200
inv_ser = 114174608145 # my inverter
# all inverters
#...
f_crc_m = crcmod.predefined.mkPredefinedCrcFun('modbus')
f_crc8 = crcmod.mkCrcFun(0x101, initCrc=0, xorOut=0)
def ser_to_hm_addr(s):
"""
Calculate the 4 bytes that the HM devices use in their internal messages to
address each other.
"""
bcd = int(str(s)[-8:], base=16)
return struct.pack('>L', bcd)
def ser_to_esb_addr(s):
"""
Convert a Hoymiles inverter/DTU serial number into its
corresponding NRF24 'enhanced shockburst' address byte sequence (5 bytes).
The NRF library expects these in LSB to MSB order, even though the transceiver
itself will then output them in MSB-to-LSB order over the air.
The inverters use a BCD representation of the last 8
digits of their serial number, in reverse byte order,
followed by \x01.
"""
air_order = ser_to_hm_addr(s)[::-1] + b'\x01'
return air_order[::-1]
def compose_0x80_msg(dst_ser_no=72220200, src_ser_no=72220200, ts=None):
"""
Create a valid 0x80 request with the given parameters, and containing the
current system time.
"""
if not ts:
ts = 0x623C8ECF # identical to fc22's for testing # doc: 1644758171
# "framing"
p = b''
p = p + b'\x15'
p = p + ser_to_hm_addr(dst_ser_no)
p = p + ser_to_hm_addr(src_ser_no)
p = p + b'\x80'
# encapsulated payload
pp = b'\x0b\x00'
pp = pp + struct.pack('>L', ts) # big-endian: msb at low address
#pp = pp + b'\x00' * 8 # of22 adds a \x05 at position 19
pp = pp + b'\x00\x00\x00\x05\x00\x00\x00\x00'
# CRC_M
crc_m = f_crc_m(pp)
p = p + pp
p = p + struct.pack('>H', crc_m)
crc8 = f_crc8(p)
p = p + struct.pack('B', crc8)
return p
def print_addr(a):
print(f"ser# {a} ", end='')
print(f" -> HM {' '.join([f'{x:02x}' for x in ser_to_hm_addr(a)])}", end='')
print(f" -> ESB {' '.join([f'{x:02x}' for x in ser_to_esb_addr(a)])}")
def on_receive(p):
"""
Callback: get's invoked whenever a packet has been received.
:param p: Payload of the received packet.
"""
d = {}
ts = datetime.utcnow()
ts_unixtime = ts.timestamp()
print(ts.isoformat(), end='Z ')
# interpret content
if p[0] == 0x95:
src, dst, cmd = struct.unpack('>LLB', p[1:10])
src_s = f'{src:08x}'
dst_s = f'{dst:08x}'
print(f'MSG src={src_s}, dst={dst_s}, cmd={cmd}, ', end=' ')
if cmd==1:
unknown1, u1, i1, p1, u2, i2, p2, unknown2 = struct.unpack(
'>HHHHHHHH', p[10:26])
print(f'u1={u1/10}V, i1={i1/100}A, p1={p1/10}W, ', end='')
print(f'u2={u2/10}V, i2={i2/100}A, p2={p2/10}W, ', end='')
print(f'unknown1={unknown1}, unknown2={unknown2}')
elif cmd==2:
uk1, uk2, uk3, uk4, uk5, u, f, p = struct.unpack(
'>HHHHHHHH', p[10:26])
print(f'u={u/10:.1f}V, f={f/100:.2f}Hz, p={p/10:.1f}W, ', end='')
print(f'uk1={uk1}, ', end='')
print(f'uk2={uk2}, ', end='')
print(f'uk3={uk3}, ', end='')
print(f'uk4={uk4}, ', end='')
print(f'uk5={uk5}')
else:
print(f'unknown cmd {cmd}')
else:
print(f'unknown frame id {p[0]}')
def main_loop():
"""
Keep receiving on channel 3. Every once in a while, transmit a request
to one of our inverters on channel 40.
"""
print_addr(inv_ser)
print_addr(dtu_ser)
ctr = 1
while True:
radio.setChannel(3)
radio.enableDynamicPayloads()
radio.setAutoAck(False)
radio.setPALevel(RF24_PA_MAX)
radio.setDataRate(RF24_250KBPS)
radio.openWritingPipe(ser_to_esb_addr(inv_ser))
radio.flush_rx()
radio.flush_tx()
radio.openReadingPipe(1,ser_to_esb_addr(dtu_ser))
#radio.openReadingPipe(1,ser_to_esb_addr(inv_ser))
radio.startListening()
if ctr<3:
pass
# radio.printPrettyDetails()
t_end = time.monotonic_ns()+1e9
while time.monotonic_ns() < t_end:
has_payload, pipe_number = radio.available_pipe()
if has_payload:
size = radio.getDynamicPayloadSize()
payload = radio.read(size)
print(f"Received {size} bytes on pipe {pipe_number}: " +
" ".join([f"{b:02x}" for b in payload]))
on_receive(payload)
radio.stopListening() # put radio in TX mode
radio.setChannel(40)
radio.openWritingPipe(ser_to_esb_addr(inv_ser))
if ctr<3:
pass
# radio.printPrettyDetails()
ts = int(time.time())
payload = compose_0x80_msg(src_ser_no=dtu_ser, dst_ser_no=inv_ser, ts=ts)
print(f"{ctr:5d}: len={len(payload)} | " + " ".join([f"{b:02x}" for b in payload]),
flush=True)
radio.write(payload) # will always yield 'True' because auto-ack is disabled
ctr = ctr + 1
if __name__ == "__main__":
if not radio.begin():
raise RuntimeError("radio hardware is not responding")
radio.setPALevel(RF24_PA_LOW) # RF24_PA_MAX is default
# radio.printDetails(); # (smaller) function that prints raw register values
# radio.printPrettyDetails(); # (larger) function that prints human readable data
try:
main_loop()
except KeyboardInterrupt:
print(" Keyboard Interrupt detected. Exiting...")
radio.powerDown()
sys.exit()