That is the value you have to fill in case you want to operate the inverter without a active power limit.
If the value is 65535 or -1 after another reboot the value will be set automatically to "100" and in the drop-down menu "relative in percent persistent" will be set. Of course you can do this also by your self.
The user has to ensure correct settings. Remember that for the inverters of 3rd generation the relative active power limit is in the range of 2% up to 100%.
The ahoy-dtu subscribes on the topic `<CHOOSEN_TOPIC_FROM_SETUP>/devcontrol/#` if the mqtt broker is set-up correctly. The default topic is `inverter/devcontrol/#`.
To set the active power limit (controled value is the AC Power of the inverter) you have four options. (Only single phase inverters are actually in focus).
The MQTT payload will be set on first to bytes and `<DATA2>`, which is taken from the topic path will be set on the second two bytes if the corresponding DevControlCmdType supports 4 byte data.
In the same approach as for MQTT any other SubCmd and also MainCmd can be applied and the response payload can be observed in the serial logs. Eg. request the Alarm-Data from the Alarm-Index 5 from inverter 0 will look like this:
* You can use the mqtt topic `<CHOOSEN_TOPIC_FROM_SETUP>/devcontrol/<INVERTER_ID>/11` with a number as payload (eg. 300 -> 300 Watt) to set the power limit to the published number in Watt. (In regular cases the inverter will use the new set point within one intervall period; to verify this see next bullet)
* You can check the inverter set point for the power limit control on the topic `<CHOOSEN_TOPIC_FROM_SETUP>/<INVERTER_NAME_FROM_SETUP>/ch0/PowerLimit` 👆 This value is ALWAYS in percent of the maximum power limit of the inverter. In regular cases this value will be updated within approx. 15 seconds. (depends on request intervall)
* You can monitor the actual AC power by subscribing to the topic `<CHOOSEN_TOPIC_FROM_SETUP>/<INVERTER_NAME_FROM_SETUP>/ch0/P_AC` 👆 This value is ALWAYS in Watt
Turn on the serial debugging in the setup. Try to have find out if the behavior is deterministic. That means can you reproduce the behavior. Be patient and wait on inverter reactions at least some minutes and beware that the DC-Power is sufficient.
1. Get active power limit in percent (`SystemConfigPara = 5 // 0x05`)
2. Get firmware version (`InverterDevInform_All = 1 // 0x01`)
3. Get data (`RealTimeRunData_Debug = 11 // 0x0b`)
With the command get data (`RealTimeRunData_Debug = 11 // 0x0b`) the alarm message counter will be updated. In the initial case then aonther command is queued to get the alarm code (`AlarmData = 17 // 0x11`).
This command (`AlarmData = 17 // 0x11`) will enqued in any operation phase if alarm message counter is raised by one or greater compared to the last request with command get data (`RealTimeRunData_Debug = 11 // 0x0b`)
In case all commands are processed (`_commandQueue.empty() == true`) then as a default command the get data (`RealTimeRunData_Debug = 11 // 0x0b`) will be enqueued.
In case of a accepted change in power limit the command get active power limit in percent (`SystemConfigPara = 5 // 0x05`) will be enqueued. The acceptance is checked by the reponse packets on the devive control commands (tx id 0x51 --> rx id 0xD1) if in byte 12 the requested sub-command (eg. power limit) is present.