Browse Source

MI - optimize serial output and resending logic

pull/778/head
rejoe2 2 years ago
committed by GitHub
parent
commit
3317265783
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 335
      hmRadio.h
  2. 757
      miPayload.h

335
hmRadio.h

@ -0,0 +1,335 @@
//-----------------------------------------------------------------------------
// 2023 Ahoy, https://github.com/lumpapu/ahoy
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
#ifndef __RADIO_H__
#define __RADIO_H__
#include "../utils/dbg.h"
#include <RF24.h>
#include "../utils/crc.h"
#include "../config/config.h"
#define SPI_SPEED 1000000
#define RF_CHANNELS 5
#define TX_REQ_INFO 0x15
#define TX_REQ_DEVCONTROL 0x51
#define ALL_FRAMES 0x80
#define SINGLE_FRAME 0x81
const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"};
//-----------------------------------------------------------------------------
// MACROS
//-----------------------------------------------------------------------------
#define CP_U32_LittleEndian(buf, v) ({ \
uint8_t *b = buf; \
b[0] = ((v >> 24) & 0xff); \
b[1] = ((v >> 16) & 0xff); \
b[2] = ((v >> 8) & 0xff); \
b[3] = ((v ) & 0xff); \
})
#define CP_U32_BigEndian(buf, v) ({ \
uint8_t *b = buf; \
b[3] = ((v >> 24) & 0xff); \
b[2] = ((v >> 16) & 0xff); \
b[1] = ((v >> 8) & 0xff); \
b[0] = ((v ) & 0xff); \
})
#define BIT_CNT(x) ((x)<<3)
//-----------------------------------------------------------------------------
// HM Radio class
//-----------------------------------------------------------------------------
template <uint8_t IRQ_PIN = DEF_IRQ_PIN, uint8_t CE_PIN = DEF_CE_PIN, uint8_t CS_PIN = DEF_CS_PIN, uint8_t AMP_PWR = RF24_PA_LOW>
class HmRadio {
public:
HmRadio() : mNrf24(CE_PIN, CS_PIN, SPI_SPEED) {
DPRINT(DBG_VERBOSE, F("hmRadio.h : HmRadio():mNrf24(CE_PIN: "));
DPRINT(DBG_VERBOSE, String(CE_PIN));
DPRINT(DBG_VERBOSE, F(", CS_PIN: "));
DPRINT(DBG_VERBOSE, String(CS_PIN));
DPRINT(DBG_VERBOSE, F(", SPI_SPEED: "));
DPRINTLN(DBG_VERBOSE, String(SPI_SPEED) + ")");
// Depending on the program, the module can work on 2403, 2423, 2440, 2461 or 2475MHz.
// Channel List 2403, 2423, 2440, 2461, 2475MHz
mRfChLst[0] = 03;
mRfChLst[1] = 23;
mRfChLst[2] = 40;
mRfChLst[3] = 61;
mRfChLst[4] = 75;
// default channels
mTxChIdx = 2; // Start TX with 40
mRxChIdx = 0; // Start RX with 03
mSendCnt = 0;
mRetransmits = 0;
mSerialDebug = false;
mIrqRcvd = false;
}
~HmRadio() {}
void setup(uint8_t ampPwr = RF24_PA_LOW, uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN) {
DPRINTLN(DBG_VERBOSE, F("hmRadio.h:setup"));
pinMode(irq, INPUT_PULLUP);
uint32_t dtuSn = 0x87654321;
uint32_t chipID = 0; // will be filled with last 3 bytes of MAC
#ifdef ESP32
uint64_t MAC = ESP.getEfuseMac();
chipID = ((MAC >> 8) & 0xFF0000) | ((MAC >> 24) & 0xFF00) | ((MAC >> 40) & 0xFF);
#else
chipID = ESP.getChipId();
#endif
if(chipID) {
dtuSn = 0x80000000; // the first digit is an 8 for DTU production year 2022, the rest is filled with the ESP chipID in decimal
for(int i = 0; i < 7; i++) {
dtuSn |= (chipID % 10) << (i * 4);
chipID /= 10;
}
}
// change the byte order of the DTU serial number and append the required 0x01 at the end
DTU_RADIO_ID = ((uint64_t)(((dtuSn >> 24) & 0xFF) | ((dtuSn >> 8) & 0xFF00) | ((dtuSn << 8) & 0xFF0000) | ((dtuSn << 24) & 0xFF000000)) << 8) | 0x01;
mNrf24.begin(ce, cs);
mNrf24.setRetries(3, 15); // 3*250us + 250us and 15 loops -> 15ms
mNrf24.setChannel(mRfChLst[mRxChIdx]);
mNrf24.startListening();
mNrf24.setDataRate(RF24_250KBPS);
mNrf24.setAutoAck(true);
mNrf24.enableDynamicPayloads();
mNrf24.setCRCLength(RF24_CRC_16);
mNrf24.setAddressWidth(5);
mNrf24.openReadingPipe(1, DTU_RADIO_ID);
// enable all receiving interrupts
mNrf24.maskIRQ(false, false, false);
DPRINT(DBG_INFO, F("RF24 Amp Pwr: RF24_PA_"));
DPRINTLN(DBG_INFO, String(rf24AmpPowerNames[ampPwr]));
mNrf24.setPALevel(ampPwr & 0x03);
if(mNrf24.isChipConnected()) {
DPRINTLN(DBG_INFO, F("Radio Config:"));
mNrf24.printPrettyDetails();
}
else
DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
}
bool loop(void) {
if (!mIrqRcvd)
return false; // nothing to do
mIrqRcvd = false;
bool tx_ok, tx_fail, rx_ready;
mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
mNrf24.flush_tx(); // empty TX FIFO
//DBGPRINTLN("TX whatHappened Ch" + String(mRfChLst[mTxChIdx]) + " " + String(tx_ok) + String(tx_fail) + String(rx_ready));
// start listening on the default RX channel
mRxChIdx = 0;
mNrf24.setChannel(mRfChLst[mRxChIdx]);
mNrf24.startListening();
//uint32_t debug_ms = millis();
uint16_t cnt = 300; // that is 60 times 5 channels
while (0 < cnt--) {
uint32_t startMillis = millis();
while (millis()-startMillis < 4) { // listen 4ms to each channel
if (mIrqRcvd) {
mIrqRcvd = false;
if (getReceived()) { // everything received
//DBGPRINTLN("RX finished Cnt: " + String(300-cnt) + " time used: " + String(millis()-debug_ms)+ " ms");
return true;
}
}
yield();
}
switchRxCh(); // switch to next RX channel
yield();
}
// not finished but time is over
//DBGPRINTLN("RX not finished: 300 time used: " + String(millis()-debug_ms)+ " ms");
return true;
}
void handleIntr(void) {
mIrqRcvd = true;
}
bool isChipConnected(void) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:isChipConnected"));
return mNrf24.isChipConnected();
}
void enableDebug() {
mSerialDebug = true;
}
void sendControlPacket(uint64_t invId, uint8_t cmd, uint16_t *data, bool isRetransmit) {
DPRINT(DBG_INFO, F("sendControlPacket cmd: 0x"));
DBGPRINTLN(String(cmd, HEX));
initPacket(invId, TX_REQ_DEVCONTROL, SINGLE_FRAME);
uint8_t cnt = 10;
mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor
mTxBuf[cnt++] = 0x00;
if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet
mTxBuf[cnt++] = ((data[0] * 10) >> 8) & 0xff; // power limit
mTxBuf[cnt++] = ((data[0] * 10) ) & 0xff; // power limit
mTxBuf[cnt++] = ((data[1] ) >> 8) & 0xff; // setting for persistens handlings
mTxBuf[cnt++] = ((data[1] ) ) & 0xff; // setting for persistens handling
}
sendPacket(invId, cnt, isRetransmit, true);
}
void prepareDevInformCmd(uint64_t invId, uint8_t cmd, uint32_t ts, uint16_t alarmMesId, bool isRetransmit, uint8_t reqfld=TX_REQ_INFO) { // might not be necessary to add additional arg.
DPRINTLN(DBG_DEBUG, F("prepareDevInformCmd 0x") + String(cmd, HEX));
initPacket(invId, reqfld, ALL_FRAMES);
mTxBuf[10] = cmd; // cid
mTxBuf[11] = 0x00;
CP_U32_LittleEndian(&mTxBuf[12], ts);
if (cmd == RealTimeRunData_Debug || cmd == AlarmData ) {
mTxBuf[18] = (alarmMesId >> 8) & 0xff;
mTxBuf[19] = (alarmMesId ) & 0xff;
}
sendPacket(invId, 24, isRetransmit, true);
}
void sendCmdPacket(uint64_t invId, uint8_t mid, uint8_t pid, bool isRetransmit) {
initPacket(invId, mid, pid);
sendPacket(invId, 10, isRetransmit, false);
}
void dumpBuf(uint8_t buf[], uint8_t len) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:dumpBuf"));
for(uint8_t i = 0; i < len; i++) {
DHEX(buf[i]);
DBGPRINT(" ");
}
DBGPRINTLN("");
}
uint8_t getDataRate(void) {
if(!mNrf24.isChipConnected())
return 3; // unkown
return mNrf24.getDataRate();
}
bool isPVariant(void) {
return mNrf24.isPVariant();
}
std::queue<packet_t> mBufCtrl;
uint32_t mSendCnt;
uint32_t mRetransmits;
bool mSerialDebug;
private:
bool getReceived(void) {
bool tx_ok, tx_fail, rx_ready;
mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
//DBGPRINTLN("RX whatHappened Ch" + String(mRfChLst[mRxChIdx]) + " " + String(tx_ok) + String(tx_fail) + String(rx_ready));
bool isLastPackage = false;
while(mNrf24.available()) {
uint8_t len;
len = mNrf24.getDynamicPayloadSize(); // if payload size > 32, corrupt payload has been flushed
if (len > 0) {
packet_t p;
p.ch = mRfChLst[mRxChIdx];
p.len = len;
mNrf24.read(p.packet, len);
mBufCtrl.push(p);
if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES)) // response from get information command
isLastPackage = (p.packet[9] > 0x81); // > 0x81 indicates last packet received
else if (p.packet[0] == ( 0x0f + ALL_FRAMES) ) // response from MI get information command
isLastPackage = (p.packet[9] > 0x11); // > 0x11 indicates last packet received
else if (p.packet[0] != 0x00 && p.packet[0] != 0x88 && p.packet[0] != 0x92)
// ignore fragment number zero and MI status messages
isLastPackage = true; // response from dev control command
yield();
}
}
return isLastPackage;
}
void switchRxCh() {
mNrf24.stopListening();
// get next channel index
if(++mRxChIdx >= RF_CHANNELS)
mRxChIdx = 0;
mNrf24.setChannel(mRfChLst[mRxChIdx]);
mNrf24.startListening();
}
void initPacket(uint64_t invId, uint8_t mid, uint8_t pid) {
DPRINTLN(DBG_VERBOSE, F("initPacket, mid: ") + String(mid, HEX) + F(" pid: ") + String(pid, HEX));
memset(mTxBuf, 0, MAX_RF_PAYLOAD_SIZE);
mTxBuf[0] = mid; // message id
CP_U32_BigEndian(&mTxBuf[1], (invId >> 8));
CP_U32_BigEndian(&mTxBuf[5], (DTU_RADIO_ID >> 8));
mTxBuf[9] = pid;
}
void sendPacket(uint64_t invId, uint8_t len, bool isRetransmit, bool clear=false) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:sendPacket"));
//DPRINTLN(DBG_VERBOSE, "sent packet: #" + String(mSendCnt));
// append crc's
if (len > 10) {
// crc control data
uint16_t crc = ah::crc16(&mTxBuf[10], len - 10);
mTxBuf[len++] = (crc >> 8) & 0xff;
mTxBuf[len++] = (crc ) & 0xff;
}
// crc over all
mTxBuf[len] = ah::crc8(mTxBuf, len);
len++;
if(mSerialDebug) {
DPRINT(DBG_INFO, F("TX "));
DBGPRINT(String(len));
DBGPRINT("B Ch");
DBGPRINT(String(mRfChLst[mTxChIdx]));
DBGPRINT(F(" | "));
dumpBuf(mTxBuf, len);
}
mNrf24.stopListening();
mNrf24.setChannel(mRfChLst[mTxChIdx]);
mNrf24.openWritingPipe(reinterpret_cast<uint8_t*>(&invId));
mNrf24.startWrite(mTxBuf, len, false); // false = request ACK response
// switch TX channel for next packet
if(++mTxChIdx >= RF_CHANNELS)
mTxChIdx = 0;
if(isRetransmit)
mRetransmits++;
else
mSendCnt++;
}
volatile bool mIrqRcvd;
uint64_t DTU_RADIO_ID;
uint8_t mRfChLst[RF_CHANNELS];
uint8_t mTxChIdx;
uint8_t mRxChIdx;
RF24 mNrf24;
uint8_t mTxBuf[MAX_RF_PAYLOAD_SIZE];
};
#endif /*__RADIO_H__*/

757
miPayload.h

@ -0,0 +1,757 @@
//-----------------------------------------------------------------------------
// 2023 Ahoy, https://ahoydtu.de
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
#ifndef __MI_PAYLOAD_H__
#define __MI_PAYLOAD_H__
//#include "hmInverter.h"
#include "../utils/dbg.h"
#include "../utils/crc.h"
#include "../config/config.h"
#include <Arduino.h>
typedef struct {
uint32_t ts;
bool requested;
uint8_t txCmd;
uint8_t len[MAX_PAYLOAD_ENTRIES];
bool complete;
bool dataAB[3];
bool stsAB[3];
uint8_t sts[5];
uint8_t txId;
uint8_t invId;
uint8_t retransmits;
uint8_t skipfirstrepeat;
bool gotFragment;
/*
uint8_t data[MAX_PAYLOAD_ENTRIES][MAX_RF_PAYLOAD_SIZE];
uint8_t maxPackId;
bool lastFound;*/
} miPayload_t;
typedef std::function<void(uint8_t)> miPayloadListenerType;
template<class HMSYSTEM>
class MiPayload {
public:
MiPayload() {}
void setup(IApp *app, HMSYSTEM *sys, statistics_t *stat, uint8_t maxRetransmits, uint32_t *timestamp) {
mApp = app;
mSys = sys;
mStat = stat;
mMaxRetrans = maxRetransmits;
mTimestamp = timestamp;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) {
reset(i);
}
mSerialDebug = false;
mHighPrioIv = NULL;
mCbMiPayload = NULL;
}
void enableSerialDebug(bool enable) {
mSerialDebug = enable;
}
void addPayloadListener(miPayloadListenerType cb) {
mCbMiPayload = cb;
}
void addAlarmListener(alarmListenerType cb) {
mCbMiAlarm = cb;
}
void loop() {
if(NULL != mHighPrioIv) {
ivSend(mHighPrioIv, true); // for devcontrol commands?
mHighPrioIv = NULL;
}
}
void ivSendHighPrio(Inverter<> *iv) {
mHighPrioIv = iv;
}
void ivSend(Inverter<> *iv, bool highPrio = false) {
if(!highPrio) {
if (mPayload[iv->id].requested) {
if (!mPayload[iv->id].complete)
process(false); // no retransmit
if (!mPayload[iv->id].complete) {
if (!mPayload[iv->id].gotFragment)
mStat->rxFailNoAnser++; // got nothing
else
mStat->rxFail++; // got fragments but not complete response
iv->setQueuedCmdFinished(); // command failed
if (mSerialDebug)
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINTLN(F("enqueued cmd failed/timeout"));
if (mSerialDebug) {
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINT(F("no Payload received! (retransmits: "));
DBGPRINT(String(mPayload[iv->id].retransmits));
DBGPRINTLN(F(")"));
}
}
}
}
reset(iv->id);
mPayload[iv->id].requested = true;
yield();
if (mSerialDebug){
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINT(F("Requesting Inv SN "));
DBGPRINTLN(String(iv->config->serial.u64, HEX));
}
if (iv->getDevControlRequest()) {
if (mSerialDebug) {
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINT(F("Devcontrol request 0x"));
DBGPRINT(String(iv->devControlCmd, HEX));
DBGPRINT(F(" power limit "));
DBGPRINTLN(String(iv->powerLimit[0]));
}
mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit, false);
mPayload[iv->id].txCmd = iv->devControlCmd;
//iv->clearCmdQueue();
//iv->enqueCommand<InfoCommand>(SystemConfigPara); // read back power limit
} else {
uint8_t cmd = iv->getQueuedCmd();
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINT(F("prepareDevInformCmd 0x"));
DBGPRINTLN(String(cmd, HEX));
uint8_t cmd2 = cmd;
if (cmd == 0x1 ) { //0x1
cmd = 0x0f;
cmd2 = 0x00;
mSys->Radio.sendCmdPacket(iv->radioId.u64, cmd, cmd2, false);
} else {
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd2, mPayload[iv->id].ts, iv->alarmMesIndex, false, cmd);
};
mPayload[iv->id].txCmd = cmd;
if (iv->type == INV_TYPE_1CH || iv->type == INV_TYPE_2CH) {
mPayload[iv->id].dataAB[CH1] = false;
mPayload[iv->id].stsAB[CH1] = false;
mPayload[iv->id].dataAB[CH0] = false;
mPayload[iv->id].stsAB[CH0] = false;
}
if (iv->type == INV_TYPE_2CH) {
mPayload[iv->id].dataAB[CH2] = false;
mPayload[iv->id].stsAB[CH2] = false;
}
}
}
void add(Inverter<> *iv, packet_t *p) {
//DPRINTLN(DBG_INFO, F("MI got data [0]=") + String(p->packet[0], HEX));
if (p->packet[0] == (0x08 + ALL_FRAMES)) { // 0x88; MI status response to 0x09
miStsDecode(iv, p);
}
else if (p->packet[0] == (0x11 + SINGLE_FRAME)) { // 0x92; MI status response to 0x11
miStsDecode(iv, p, CH2);
}
else if ( p->packet[0] == 0x09 + ALL_FRAMES ||
p->packet[0] == 0x11 + ALL_FRAMES ||
( p->packet[0] >= (0x36 + ALL_FRAMES) && p->packet[0] < (0x39 + SINGLE_FRAME) ) ) { // small MI or MI 1500 data responses to 0x09, 0x11, 0x36, 0x37, 0x38 and 0x39
mPayload[iv->id].txId = p->packet[0];
miDataDecode(iv,p);
}
else if (p->packet[0] == ( 0x0f + ALL_FRAMES)) {
// MI response from get hardware information request
record_t<> *rec = iv->getRecordStruct(InverterDevInform_All); // choose the record structure
rec->ts = mPayload[iv->id].ts;
mPayload[iv->id].gotFragment = true;
/*
Polling the device software and hardware version number command
start byte Command word routing address target address User data check end byte
byte[0] byte[1] byte[2] byte[3] byte[4] byte[5] byte[6] byte[7] byte[8] byte[9] byte[10] byte[11] byte[12]
0x7e 0x0f xx xx xx xx YY YY YY YY 0x00 CRC 0x7f
Command Receipt - First Frame
start byte Command word target address routing address Multi-frame marking User data User data User data User data User data User data User data User data User data User data User data User data User data User data User data User data check end byte
byte[0] byte[1] byte[2] byte[3] byte[4] byte[5] byte[6] byte[7] byte[8] byte[9] byte[10] byte[11] byte[12] byte[13] byte[14] byte[15] byte[16] byte[17] byte[18] byte[19] byte[20] byte[21] byte[22] byte[23] byte[24] byte[25] byte[26] byte[27] byte[28]
0x7e 0x8f YY YY YY YY xx xx xx xx 0x00 USFWBuild_VER APPFWBuild_VER APPFWBuild_YYYY APPFWBuild_MMDD APPFWBuild_HHMM APPFW_PN HW_VER CRC 0x7f
Command Receipt - Second Frame
start byte Command word target address routing address Multi-frame marking User data User data User data User data User data User data User data User data User data User data User data User data User data User data User data User data check end byte
byte[0] byte[1] byte[2] byte[3] byte[4] byte[5] byte[6] byte[7] byte[8] byte[9] byte[10] byte[11] byte[12] byte[13] byte[14] byte[15] byte[16] byte[17] byte[18] byte[19] byte[20] byte[21] byte[22] byte[23] byte[24] byte[25] byte[26] byte[27] byte[28]
0x7e 0x8f YY YY YY YY xx xx xx xx 0x01 HW_PN HW_FB_TLmValue HW_FB_ReSPRT HW_GridSamp_ResValule HW_ECapValue Matching_APPFW_PN CRC 0x7f
Command receipt - third frame
start byte Command word target address routing address Multi-frame marking User data User data User data User data User data User data User data User data check end byte
byte[0] byte[1] byte[2] byte[3] byte[4] byte[5] byte[6] byte[7] byte[8] byte[9] byte[10] byte[11] byte[12] byte[13] byte[14] byte[15] byte[16] byte[15] byte[16] byte[17] byte[18]
0x7e 0x8f YY YY YY YY xx xx xx xx 0x12 APPFW_MINVER HWInfoAddr PNInfoCRC_gusv PNInfoCRC_gusv CRC 0x7f
*/
/*
case InverterDevInform_All:
rec->length = (uint8_t)(HMINFO_LIST_LEN);
rec->assign = (byteAssign_t *)InfoAssignment;
rec->pyldLen = HMINFO_PAYLOAD_LEN;
break;
const byteAssign_t InfoAssignment[] = {
{ FLD_FW_VERSION, UNIT_NONE, CH0, 0, 2, 1 },
{ FLD_FW_BUILD_YEAR, UNIT_NONE, CH0, 2, 2, 1 },
{ FLD_FW_BUILD_MONTH_DAY, UNIT_NONE, CH0, 4, 2, 1 },
{ FLD_FW_BUILD_HOUR_MINUTE, UNIT_NONE, CH0, 6, 2, 1 },
{ FLD_HW_ID, UNIT_NONE, CH0, 8, 2, 1 }
};
*/
if ( p->packet[9] == 0x00 ) {//first frame
//FLD_FW_VERSION
for (uint8_t i = 0; i < 5; i++) {
iv->setValue(i, rec, (float) ((p->packet[(12+2*i)] << 8) + p->packet[(13+2*i)])/1);
}
/*iv->setQueuedCmdFinished();
mStat->rxSuccess++;
mSys->Radio.sendCmdPacket(iv->radioId.u64, 0x0f, 0x01, false);*/
} else if ( p->packet[9] == 0x01 ) {//second frame
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINTLN(F("got 2nd frame (hw info)"));
//mSys->Radio.sendCmdPacket(iv->radioId.u64, 0x0f, 0x12, false);
} else if ( p->packet[9] == 0x12 ) {//3rd frame
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINTLN(F("got 3rd frame (hw info)"));
iv->setQueuedCmdFinished();
mStat->rxSuccess++;
}
} else if (p->packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command
// atm, we just do nothing else than print out what we got...
// for decoding see xls- Data collection instructions - #147ff
mPayload[iv->id].txId = p->packet[0];
DPRINTLN(DBG_DEBUG, F("Response from info request received"));
uint8_t *pid = &p->packet[9];
if (*pid == 0x00) {
DPRINT(DBG_DEBUG, F("fragment number zero received"));
iv->setQueuedCmdFinished();
} //else {
DPRINTLN(DBG_DEBUG, "PID: 0x" + String(*pid, HEX));
/*
if ((*pid & 0x7F) < MAX_PAYLOAD_ENTRIES) {
memcpy(mPayload[iv->id].data[(*pid & 0x7F) - 1], &p->packet[10], p->len - 11);
mPayload[iv->id].len[(*pid & 0x7F) - 1] = p->len - 11;
mPayload[iv->id].gotFragment = true;
}
if ((*pid & ALL_FRAMES) == ALL_FRAMES) {
// Last packet
if (((*pid & 0x7f) > mPayload[iv->id].maxPackId) || (MAX_PAYLOAD_ENTRIES == mPayload[iv->id].maxPackId)) {
mPayload[iv->id].maxPackId = (*pid & 0x7f);
if (*pid > 0x81)
mPayload[iv->id].lastFound = true;
}
}
}
} */
} else if (p->packet[0] == (TX_REQ_DEVCONTROL + ALL_FRAMES)) { // response from dev control command
miDPRINTHead(DBG_DEBUG, iv->id);
DBGPRINTLN(F("Response from devcontrol request received"));
mPayload[iv->id].txId = p->packet[0];
iv->clearDevControlRequest();
if ((p->packet[12] == ActivePowerContr) && (p->packet[13] == 0x00)) {
String msg = "";
if((p->packet[10] == 0x00) && (p->packet[11] == 0x00))
mApp->setMqttPowerLimitAck(iv);
else
msg = "NOT ";
//DPRINTLN(DBG_INFO, F("Inverter ") + String(iv->id) + F(" has ") + msg + F("accepted power limit set point ") + String(iv->powerLimit[0]) + F(" with PowerLimitControl ") + String(iv->powerLimit[1]));
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINTLN(F("has ") + msg + F("accepted power limit set point ") + String(iv->powerLimit[0]) + F(" with PowerLimitControl ") + String(iv->powerLimit[1]));
iv->clearCmdQueue();
iv->enqueCommand<InfoCommand>(SystemConfigPara); // read back power limit
}
iv->devControlCmd = Init;
} else { // some other response; copied from hmPayload:process; might not be correct to do that here!!!
DPRINTLN(DBG_INFO, F("procPyld: cmd: 0x") + String(mPayload[iv->id].txCmd, HEX));
DPRINTLN(DBG_INFO, F("procPyld: txid: 0x") + String(mPayload[iv->id].txId, HEX));
//DPRINTLN(DBG_DEBUG, F("procPyld: max: ") + String(mPayload[iv->id].maxPackId));
record_t<> *rec = iv->getRecordStruct(mPayload[iv->id].txCmd); // choose the parser
mPayload[iv->id].complete = true;
uint8_t payload[128];
uint8_t payloadLen = 0;
memset(payload, 0, 128);
/*for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i++) {
memcpy(&payload[payloadLen], mPayload[iv->id].data[i], (mPayload[iv->id].len[i]));
payloadLen += (mPayload[iv->id].len[i]);
yield();
}*/
payloadLen -= 2;
if (mSerialDebug) {
DPRINT(DBG_INFO, F("Payload (") + String(payloadLen) + "): ");
mSys->Radio.dumpBuf(payload, payloadLen);
}
if (NULL == rec) {
DPRINTLN(DBG_ERROR, F("record is NULL!"));
} else if ((rec->pyldLen == payloadLen) || (0 == rec->pyldLen)) {
if (mPayload[iv->id].txId == (TX_REQ_INFO + ALL_FRAMES))
mStat->rxSuccess++;
rec->ts = mPayload[iv->id].ts;
for (uint8_t i = 0; i < rec->length; i++) {
iv->addValue(i, payload, rec);
yield();
}
iv->doCalculations();
notify(mPayload[iv->id].txCmd);
if(AlarmData == mPayload[iv->id].txCmd) {
uint8_t i = 0;
uint16_t code;
uint32_t start, end;
while(1) {
code = iv->parseAlarmLog(i++, payload, payloadLen, &start, &end);
if(0 == code)
break;
if (NULL != mCbMiAlarm)
(mCbMiAlarm)(code, start, end);
yield();
}
}
} else {
DPRINTLN(DBG_ERROR, F("plausibility check failed, expected ") + String(rec->pyldLen) + F(" bytes"));
mStat->rxFail++;
}
iv->setQueuedCmdFinished();
}
}
void process(bool retransmit) {
for (uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
if (IV_HM == iv->ivGen) // only process MI inverters
continue; // skip to next inverter
if ( !mPayload[iv->id].complete &&
(mPayload[iv->id].txId != (TX_REQ_INFO + ALL_FRAMES)) &&
(mPayload[iv->id].txId < (0x36 + ALL_FRAMES)) &&
(mPayload[iv->id].txId > (0x39 + ALL_FRAMES)) &&
(mPayload[iv->id].txId != (0x09 + ALL_FRAMES)) &&
(mPayload[iv->id].txId != (0x11 + ALL_FRAMES)) &&
(mPayload[iv->id].txId != (0x88)) &&
(mPayload[iv->id].txId != (0x92)) &&
(mPayload[iv->id].txId != 0 )) {
// no processing needed if txId is not one of 0x95, 0x88, 0x89, 0x91, 0x92 or resonse to 0x36ff
mPayload[iv->id].complete = true;
continue; // skip to next inverter
}
//delayed next message?
//mPayload[iv->id].skipfirstrepeat++;
if (mPayload[iv->id].skipfirstrepeat) {
mPayload[iv->id].skipfirstrepeat = 0; //reset counter*/
continue; // skip to next inverter
}
if (!mPayload[iv->id].complete) {
//DPRINTLN(DBG_INFO, F("Pyld incompl code")); //info for testing only
bool crcPass, pyldComplete;
crcPass = build(iv->id, &pyldComplete);
if (!crcPass && !pyldComplete) { // payload not complete
if ((mPayload[iv->id].requested) && (retransmit)) {
if (iv->devControlCmd == Restart || iv->devControlCmd == CleanState_LockAndAlarm) {
// This is required to prevent retransmissions without answer.
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINTLN(F("Prevent retransmit on Restart / CleanState_LockAndAlarm..."));
mPayload[iv->id].retransmits = mMaxRetrans;
} else if(iv->devControlCmd == ActivePowerContr) {
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINTLN(F("retransmit power limit"));
mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit, true);
} else {
uint8_t cmd = mPayload[iv->id].txCmd;
if (mPayload[iv->id].retransmits < mMaxRetrans) {
mPayload[iv->id].retransmits++;
if( !mPayload[iv->id].gotFragment ) {
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINTLN(F("nothing received"));
mPayload[iv->id].retransmits = mMaxRetrans;
} else if ( cmd == 0x0f ) {
//hard/firmware request
mSys->Radio.sendCmdPacket(iv->radioId.u64, 0x0f, 0x00, true);
//iv->setQueuedCmdFinished();
//cmd = iv->getQueuedCmd();
} else {
bool change = false;
if ( cmd >= 0x36 && cmd < 0x39 ) { // MI-1500 Data command
cmd++; // just request the next channel
change = true;
} else if ( cmd == 0x09 ) {//MI single or dual channel device
if ( mPayload[iv->id].dataAB[CH1] && iv->type == INV_TYPE_2CH ) {
if (!mPayload[iv->id].stsAB[CH1] && mPayload[iv->id].retransmits<2) {}
//first try to get missing sts for first channel a second time
else if (!mPayload[iv->id].stsAB[CH2] || !mPayload[iv->id].dataAB[CH2] ) {
cmd = 0x11;
change = true;
mPayload[iv->id].retransmits = 0; //reset counter
}
}
} else if ( cmd == 0x11) {
if ( mPayload[iv->id].dataAB[CH2] ) { // data + status ch2 are there?
if (mPayload[iv->id].stsAB[CH2] && (!mPayload[iv->id].stsAB[CH1] || !mPayload[iv->id].dataAB[CH1])) {
cmd = 0x09;
change = true;
}
}
}
miDPRINTHead(DBG_INFO, iv->id);
if (change) {
DBGPRINT(F("next request is 0x"));
} else {
DBGPRINT(F("not complete: Request Retransmit 0x"));
}
DBGPRINTLN(String(cmd, HEX));
//mSys->Radio.sendCmdPacket(iv->radioId.u64, cmd, cmd, true);
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, true, cmd);
mPayload[iv->id].txCmd = cmd;
yield();
}
}
}
}
} else if(!crcPass && pyldComplete) { // crc error on complete Payload
if (mPayload[iv->id].retransmits < mMaxRetrans) {
mPayload[iv->id].retransmits++;
miDPRINTHead(DBG_WARN, iv->id);
DBGPRINTLN(F("CRC Error: Request Complete Retransmit"));
mPayload[iv->id].txCmd = iv->getQueuedCmd();
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINTLN(F("prepareDevInformCmd 0x") + String(mPayload[iv->id].txCmd, HEX));
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex, true);
}
}
/*else { // payload complete
//This tree is not really tested, most likely it's not truly complete....
DPRINTLN(DBG_INFO, F("procPyld: cmd: 0x") + String(mPayload[iv->id].txCmd, HEX));
DPRINTLN(DBG_INFO, F("procPyld: txid: 0x") + String(mPayload[iv->id].txId, HEX));
//DPRINTLN(DBG_DEBUG, F("procPyld: max: ") + String(mPayload[iv->id].maxPackId));
//record_t<> *rec = iv->getRecordStruct(mPayload[iv->id].txCmd); // choose the parser
mPayload[iv->id].complete = true;
uint8_t ac_pow = 0;
//if (mPayload[iv->id].sts[0] == 3) {
ac_pow = calcPowerDcCh0(iv, 0)*9.5;
//}
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); // choose the parser
iv->setValue(iv->getPosByChFld(0, FLD_PAC, rec), rec, (float) (ac_pow/10));
DPRINTLN(DBG_INFO, F("process: compl. set of msgs detected"));
iv->setValue(iv->getPosByChFld(0, FLD_YD, rec), rec, calcYieldDayCh0(iv,0));
iv->doCalculations();
//uint8_t payload[128];
//uint8_t payloadLen = 0;
//memset(payload, 0, 128);
//for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i++) {
// memcpy(&payload[payloadLen], mPayload[iv->id].data[i], (mPayload[iv->id].len[i]));
// payloadLen += (mPayload[iv->id].len[i]);
// yield();
//}
//payloadLen -= 2;
//if (mSerialDebug) {
// DPRINT(DBG_INFO, F("Payload (") + String(payloadLen) + "): ");
// mSys->Radio.dumpBuf(payload, payloadLen);
//}
//if (NULL == rec) {
// DPRINTLN(DBG_ERROR, F("record is NULL!"));
//} else if ((rec->pyldLen == payloadLen) || (0 == rec->pyldLen)) {
// if (mPayload[iv->id].txId == (TX_REQ_INFO + ALL_FRAMES))
// mStat->rxSuccess++;
// rec->ts = mPayload[iv->id].ts;
// for (uint8_t i = 0; i < rec->length; i++) {
// iv->addValue(i, payload, rec);
// yield();
// }
// iv->doCalculations();
// notify(mPayload[iv->id].txCmd);
// if(AlarmData == mPayload[iv->id].txCmd) {
// uint8_t i = 0;
// uint16_t code;
// uint32_t start, end;
// while(1) {
// code = iv->parseAlarmLog(i++, payload, payloadLen, &start, &end);
// if(0 == code)
// break;
// if (NULL != mCbAlarm)
// (mCbAlarm)(code, start, end);
// yield();
// }
// }
//} else {
// DPRINTLN(DBG_ERROR, F("plausibility check failed, expected ") + String(rec->pyldLen) + F(" bytes"));
// mStat->rxFail++;
//}
//iv->setQueuedCmdFinished();
//}*/
}
yield();
}
}
private:
void notify(uint8_t val) {
if(NULL != mCbMiPayload)
(mCbMiPayload)(val);
}
void miStsDecode(Inverter<> *iv, packet_t *p, uint8_t stschan = CH1) {
//DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") status msg 0x") + String(p->packet[0], HEX));
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); // choose the record structure
rec->ts = mPayload[iv->id].ts;
mPayload[iv->id].gotFragment = true;
mPayload[iv->id].txId = p->packet[0];
//uint8_t status = (p->packet[11] << 8) + p->packet[12];
uint8_t status = (p->packet[9] << 8) + p->packet[10];
//uint8_t stschan = p->packet[0] == 0x88 ? CH1 : CH2;
mPayload[iv->id].sts[stschan] = status;
mPayload[iv->id].stsAB[stschan] = true;
if (mPayload[iv->id].stsAB[CH1] && mPayload[iv->id].stsAB[CH2])
mPayload[iv->id].stsAB[CH0] = true;
if ( !mPayload[iv->id].sts[0] || status < mPayload[iv->id].sts[0]) {
mPayload[iv->id].sts[0] = status;
iv->setValue(iv->getPosByChFld(0, FLD_EVT, rec), rec, status);
}
if (iv->alarmMesIndex < rec->record[iv->getPosByChFld(0, FLD_EVT, rec)]){
iv->alarmMesIndex = rec->record[iv->getPosByChFld(0, FLD_EVT, rec)]; // seems there's no status per channel in 3rd gen. models?!?
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINTLN(F("alarm ID incremented to ") + String(iv->alarmMesIndex));
iv->enqueCommand<InfoCommand>(AlarmData);
}
//mPayload[iv->id].skipfirstrepeat = 1;
if (mPayload[iv->id].stsAB[CH0] && mPayload[iv->id].dataAB[CH0] && !mPayload[iv->id].complete) {
miComplete(iv);
}
}
void miDataDecode(Inverter<> *iv, packet_t *p) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); // choose the parser
rec->ts = mPayload[iv->id].ts;
mPayload[iv->id].gotFragment = true;
uint8_t datachan = ( p->packet[0] == 0x89 || p->packet[0] == (0x36 + ALL_FRAMES) ) ? CH1 :
( p->packet[0] == 0x91 || p->packet[0] == (0x37 + ALL_FRAMES) ) ? CH2 :
p->packet[0] == (0x38 + ALL_FRAMES) ? CH3 :
CH4;
//DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") data msg 0x") + String(p->packet[0], HEX) + F(" channel ") + datachan);
// count in RF_communication_protocol.xlsx is with offset = -1
iv->setValue(iv->getPosByChFld(datachan, FLD_UDC, rec), rec, (float)((p->packet[9] << 8) + p->packet[10])/10);
yield();
iv->setValue(iv->getPosByChFld(datachan, FLD_IDC, rec), rec, (float)((p->packet[11] << 8) + p->packet[12])/10);
yield();
iv->setValue(iv->getPosByChFld(0, FLD_UAC, rec), rec, (float)((p->packet[13] << 8) + p->packet[14])/10);
yield();
iv->setValue(iv->getPosByChFld(0, FLD_F, rec), rec, (float) ((p->packet[15] << 8) + p->packet[16])/100);
iv->setValue(iv->getPosByChFld(datachan, FLD_PDC, rec), rec, (float)((p->packet[17] << 8) + p->packet[18])/10);
yield();
iv->setValue(iv->getPosByChFld(datachan, FLD_YD, rec), rec, (float)((p->packet[19] << 8) + p->packet[20])/1);
yield();
iv->setValue(iv->getPosByChFld(0, FLD_T, rec), rec, (float) ((int16_t)(p->packet[21] << 8) + p->packet[22])/10);
iv->setValue(iv->getPosByChFld(0, FLD_IRR, rec), rec, (float) (calcIrradiation(iv, datachan)));
//AC Power is missing; we may have to calculate, as no respective data is in payload
if ( datachan < 3 ) {
mPayload[iv->id].dataAB[datachan] = true;
}
if ( !mPayload[iv->id].dataAB[CH0] && mPayload[iv->id].dataAB[CH2] && mPayload[iv->id].dataAB[CH2] ) {
mPayload[iv->id].dataAB[CH0] = true;
}
if (p->packet[0] >= (0x36 + ALL_FRAMES) ) {
/*For MI1500:
if (MI1500) {
STAT = (uint8_t)(p->packet[25] );
FCNT = (uint8_t)(p->packet[26]);
FCODE = (uint8_t)(p->packet[27]);
}*/
uint8_t status = (uint8_t)(p->packet[23]);
mPayload[iv->id].sts[datachan] = status;
if ( !mPayload[iv->id].sts[0] || status < mPayload[iv->id].sts[0]) {
mPayload[iv->id].sts[0] = status;
iv->setValue(iv->getPosByChFld(0, FLD_EVT, rec), rec, status);
}
if (p->packet[0] < (0x39 + ALL_FRAMES) ) {
/*uint8_t cmd = p->packet[0] - ALL_FRAMES + 1;
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false, cmd);
mPayload[iv->id].txCmd = cmd;*/
mPayload[iv->id].complete = false;
}
else if (p->packet[0] == (0x39 + ALL_FRAMES) ) {
/*uint8_t cmd = p->packet[0] - ALL_FRAMES + 1;
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false, cmd);
mPayload[iv->id].txCmd = cmd;*/
mPayload[iv->id].complete = true;
}
//iv->setValue(iv->getPosByChFld(0, FLD_EVT, rec), rec, calcMiSts(iv));yield();
if (iv->alarmMesIndex < rec->record[iv->getPosByChFld(0, FLD_EVT, rec)]){
iv->alarmMesIndex = rec->record[iv->getPosByChFld(0, FLD_EVT, rec)];
miDPRINTHead(DBG_INFO, iv->id);
DBGPRINTLN(F("alarm ID incremented to ") + String(iv->alarmMesIndex));
//iv->enqueCommand<InfoCommand>(AlarmData);
}
}
if ( mPayload[iv->id].complete || //4ch device
(iv->type != INV_TYPE_4CH //other devices
&& mPayload[iv->id].dataAB[CH0]
&& mPayload[iv->id].stsAB[CH0])) {
miComplete(iv);
}
/*
if(AlarmData == mPayload[iv->id].txCmd) {
uint8_t i = 0;
uint16_t code;
uint32_t start, end;
while(1) {
code = iv->parseAlarmLog(i++, payload, payloadLen, &start, &end);
if(0 == code)
break;
if (NULL != mCbMiAlarm)
(mCbAlarm)(code, start, end);
yield();
}
}*/
}
void miComplete(Inverter<> *iv) {
mPayload[iv->id].complete = true; // For 2 CH devices, this might be too short...
DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") got all msgs"));
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
iv->setValue(iv->getPosByChFld(0, FLD_YD, rec), rec, calcYieldDayCh0(iv,0));
//preliminary AC calculation...
float ac_pow = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
if (mPayload[iv->id].sts[i] == 3) {
uint8_t pos = iv->getPosByChFld(i, FLD_PDC, rec);
ac_pow += iv->getValue(pos, rec);
}
}
ac_pow = (int) (ac_pow*9.5);
iv->setValue(iv->getPosByChFld(0, FLD_PAC, rec), rec, (float) ac_pow/10);
iv->doCalculations();
iv->setQueuedCmdFinished();
mStat->rxSuccess++;
yield();
notify(mPayload[iv->id].txCmd);
}
bool build(uint8_t id, bool *complete) {
DPRINTLN(DBG_VERBOSE, F("build"));
/*uint16_t crc = 0xffff, crcRcv = 0x0000;
if (mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES)
mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES;
*/
// check if all messages are there
*complete = mPayload[id].complete;
uint8_t txCmd = mPayload[id].txCmd;
//uint8_t cmd = getQueuedCmd();
if(!*complete) {
DPRINTLN(DBG_VERBOSE, F("incomlete, txCmd is 0x") + String(txCmd, HEX)); // + F("cmd is 0x") + String(cmd, HEX));
if (txCmd == 0x09 || txCmd == 0x11 || (txCmd >= 0x36 && txCmd <= 0x39))
return false;
}
/*for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) {
if (mPayload[id].len[i] > 0) {
if (i == (mPayload[id].maxPackId - 1)) {
crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc);
crcRcv = (mPayload[id].data[i][mPayload[id].len[i] - 2] << 8) | (mPayload[id].data[i][mPayload[id].len[i] - 1]);
} else
crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i], crc);
}
yield();
}
return (crc == crcRcv) ? true : false;*/
return true;
}
void miDPRINTHead(uint8_t lvl, uint8_t id) {
DPRINT(lvl, F("(#"));
DBGPRINT(String(id));
DBGPRINT(F(") "));
}
void reset(uint8_t id) {
//DPRINTLN(DBG_INFO, F("resetPayload: id: ") + String(id));
miDPRINTHead(DBG_INFO, id);
DBGPRINTLN(F("resetPayload"));
memset(mPayload[id].len, 0, MAX_PAYLOAD_ENTRIES);
mPayload[id].gotFragment = false;
/*mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES;
mPayload[id].lastFound = false;*/
mPayload[id].retransmits = 0;
mPayload[id].complete = false;
mPayload[id].dataAB[CH0] = true; //required for 1CH and 2CH devices
mPayload[id].dataAB[CH1] = true; //required for 1CH and 2CH devices
mPayload[id].dataAB[CH2] = true; //only required for 2CH devices
mPayload[id].stsAB[CH0] = true; //required for 1CH and 2CH devices
mPayload[id].stsAB[CH1] = true; //required for 1CH and 2CH devices
mPayload[id].stsAB[CH2] = true; //only required for 2CH devices
mPayload[id].txCmd = 0;
mPayload[id].skipfirstrepeat = 0;
mPayload[id].requested = false;
mPayload[id].ts = *mTimestamp;
mPayload[id].sts[0] = 0;
mPayload[id].sts[CH1] = 0;
mPayload[id].sts[CH2] = 0;
mPayload[id].sts[CH3] = 0;
mPayload[id].sts[CH4] = 0;
}
IApp *mApp;
HMSYSTEM *mSys;
statistics_t *mStat;
uint8_t mMaxRetrans;
uint32_t *mTimestamp;
miPayload_t mPayload[MAX_NUM_INVERTERS];
bool mSerialDebug;
Inverter<> *mHighPrioIv;
alarmListenerType mCbMiAlarm;
payloadListenerType mCbMiPayload;
};
#endif /*__MI_PAYLOAD_H__*/
Loading…
Cancel
Save