Browse Source

Add files via upload

NRF24L01+ Radio send channel evaluation and hopping heuristik (helps to reduces TX retransmits in relation to TX count)
pull/1080/head
oberfritze 2 years ago
committed by GitHub
parent
commit
3d1a946bff
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 929
      src/hm/hmPayload.h
  2. 849
      src/hm/hmRadio.h

929
src/hm/hmPayload.h

@ -1,458 +1,471 @@
//-----------------------------------------------------------------------------
// 2023 Ahoy, https://ahoydtu.de
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
#ifndef __HM_PAYLOAD_H__
#define __HM_PAYLOAD_H__
#include "../utils/dbg.h"
#include "../utils/crc.h"
#include "../config/config.h"
#include <Arduino.h>
typedef struct {
uint8_t txCmd;
uint8_t txId;
uint8_t invId;
uint32_t ts;
uint8_t data[MAX_PAYLOAD_ENTRIES][MAX_RF_PAYLOAD_SIZE];
uint8_t len[MAX_PAYLOAD_ENTRIES];
bool complete;
uint8_t maxPackId;
bool lastFound;
uint8_t retransmits;
bool requested;
bool gotFragment;
bool rxTmo;
} invPayload_t;
typedef std::function<void(uint8_t)> payloadListenerType;
typedef std::function<void(uint16_t alarmCode, uint32_t start, uint32_t end)> alarmListenerType;
template<class HMSYSTEM>
class HmPayload {
public:
HmPayload() {}
void setup(IApp *app, HMSYSTEM *sys, statistics_t *stat, uint8_t maxRetransmits, uint32_t *timestamp) {
mApp = app;
mSys = sys;
mStat = stat;
mMaxRetrans = maxRetransmits;
mTimestamp = timestamp;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) {
reset(i);
}
mSerialDebug = false;
mHighPrioIv = NULL;
mCbAlarm = NULL;
mCbPayload = NULL;
}
void enableSerialDebug(bool enable) {
mSerialDebug = enable;
}
void addPayloadListener(payloadListenerType cb) {
mCbPayload = cb;
}
void addAlarmListener(alarmListenerType cb) {
mCbAlarm = cb;
}
void loop() {
if (NULL != mHighPrioIv) {
ivSend(mHighPrioIv, true);
mHighPrioIv = NULL;
}
}
void zeroYieldDay(Inverter<> *iv) {
DPRINTLN(DBG_DEBUG, F("zeroYieldDay"));
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
uint8_t pos;
for(uint8_t ch = 0; ch <= iv->channels; ch++) {
pos = iv->getPosByChFld(ch, FLD_YD, rec);
iv->setValue(pos, rec, 0.0f);
pos = iv->getPosByChFld(ch, FLD_MP, rec);
iv->setValue(pos, rec, 0.0f);
}
}
void zeroInverterValues(Inverter<> *iv) {
DPRINTLN(DBG_DEBUG, F("zeroInverterValues"));
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
for(uint8_t ch = 0; ch <= iv->channels; ch++) {
uint8_t pos = 0;
for(uint8_t fld = 0; fld < FLD_EVT; fld++) {
switch(fld) {
case FLD_YD:
case FLD_YT:
case FLD_MP:
continue;
}
pos = iv->getPosByChFld(ch, fld, rec);
iv->setValue(pos, rec, 0.0f);
}
}
notify(RealTimeRunData_Debug);
}
void ivSendHighPrio(Inverter<> *iv) {
mHighPrioIv = iv;
}
void ivSend(Inverter<> *iv, bool highPrio = false) {
bool save_rxTmo;
if(!highPrio) {
if (mPayload[iv->id].requested) {
if (!mPayload[iv->id].complete)
process(false); // no retransmit
if (!mPayload[iv->id].complete) {
if (mSerialDebug)
DPRINT_IVID(DBG_INFO, iv->id);
if (MAX_PAYLOAD_ENTRIES == mPayload[iv->id].maxPackId) {
mStat->rxFailNoAnser++; // got nothing
if (mSerialDebug)
DBGPRINTLN(F("enqueued cmd failed/timeout"));
} else {
mStat->rxFail++; // got fragments but not complete response
if (mSerialDebug) {
DBGPRINT(F("no complete Payload received! (retransmits: "));
DBGPRINT(String(mPayload[iv->id].retransmits));
DBGPRINTLN(F(")"));
}
}
iv->setQueuedCmdFinished(); // command failed
}
}
}
save_rxTmo = mPayload[iv->id].rxTmo;
reset(iv->id);
mPayload[iv->id].rxTmo = save_rxTmo;
mPayload[iv->id].requested = true;
yield();
#ifdef undef
if (mSerialDebug) {
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("Requesting Inv SN "));
DBGPRINTLN(String(iv->config->serial.u64, HEX));
}
#endif
if (iv->getDevControlRequest()) {
if (mSerialDebug) {
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("Devcontrol request 0x"));
DBGPRINT(String(iv->devControlCmd, HEX));
DBGPRINT(F(" power limit "));
DBGPRINTLN(String(iv->powerLimit[0]));
}
mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit, false);
mPayload[iv->id].txCmd = iv->devControlCmd;
//iv->clearCmdQueue();
//iv->enqueCommand<InfoCommand>(SystemConfigPara); // read back power limit
} else {
uint8_t cmd = iv->getQueuedCmd();
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("prepareDevInformCmd 0x"));
DBGHEXLN(cmd);
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false);
mPayload[iv->id].txCmd = cmd;
}
}
void add(Inverter<> *iv, packet_t *p) {
if (p->packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command
mPayload[iv->id].txId = p->packet[0];
DPRINTLN(DBG_DEBUG, F("Response from info request received"));
uint8_t *pid = &p->packet[9];
if (*pid == 0x00) {
DPRINTLN(DBG_DEBUG, F("fragment number zero received and ignored"));
} else {
DPRINT(DBG_DEBUG, F("PID: 0x"));
DPRINTLN(DBG_DEBUG, String(*pid, HEX));
if ((*pid & 0x7F) < MAX_PAYLOAD_ENTRIES) {
memcpy(mPayload[iv->id].data[(*pid & 0x7F) - 1], &p->packet[10], p->len - 11);
mPayload[iv->id].len[(*pid & 0x7F) - 1] = p->len - 11;
mPayload[iv->id].gotFragment = true;
}
if ((*pid & ALL_FRAMES) == ALL_FRAMES) {
// Last packet
if (((*pid & 0x7f) > mPayload[iv->id].maxPackId) || (MAX_PAYLOAD_ENTRIES == mPayload[iv->id].maxPackId)) {
mPayload[iv->id].maxPackId = (*pid & 0x7f);
if (*pid > 0x81)
mPayload[iv->id].lastFound = true;
}
}
}
} else if (p->packet[0] == (TX_REQ_DEVCONTROL + ALL_FRAMES)) { // response from dev control command
DPRINTLN(DBG_DEBUG, F("Response from devcontrol request received"));
mPayload[iv->id].txId = p->packet[0];
iv->clearDevControlRequest();
if ((p->packet[12] == ActivePowerContr) && (p->packet[13] == 0x00)) {
bool ok = true;
if((p->packet[10] == 0x00) && (p->packet[11] == 0x00)) {
#ifdef AHOY_MQTT_SUPPORT
mApp->setMqttPowerLimitAck(iv);
#endif
} else {
ok = false;
}
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("has "));
if(!ok) DBGPRINT(F("not "));
DBGPRINT(F("accepted power limit set point "));
DBGPRINT(String(iv->powerLimit[0]));
DBGPRINT(F(" with PowerLimitControl "));
DBGPRINTLN(String(iv->powerLimit[1]));
iv->clearCmdQueue();
iv->enqueCommand<InfoCommand>(SystemConfigPara); // read back power limit
if(mHighPrioIv == NULL) // do it immediately if possible
mHighPrioIv = iv;
}
iv->devControlCmd = Init;
}
}
void process(bool retransmit) {
for (uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
if (IV_MI == iv->ivGen) // only process HM inverters
continue; // skip to next inverter
if ((mPayload[iv->id].txId != (TX_REQ_INFO + ALL_FRAMES)) && (0 != mPayload[iv->id].txId)) {
// no processing needed if txId is not 0x95
mPayload[iv->id].complete = true;
continue; // skip to next inverter
}
if (!mPayload[iv->id].complete) {
bool crcPass, pyldComplete;
crcPass = build(iv->id, &pyldComplete);
if (!crcPass && !pyldComplete) { // payload not complete
if ((mPayload[iv->id].requested) && (retransmit)) {
if (mPayload[iv->id].retransmits < mMaxRetrans) {
mPayload[iv->id].retransmits++;
if (iv->devControlCmd == Restart || iv->devControlCmd == CleanState_LockAndAlarm) {
// This is required to prevent retransmissions without answer.
DPRINTLN(DBG_INFO, F("Prevent retransmit on Restart / CleanState_LockAndAlarm..."));
mPayload[iv->id].retransmits = mMaxRetrans;
} else if(iv->devControlCmd == ActivePowerContr) {
DPRINT_IVID(DBG_INFO, iv->id);
DPRINTLN(DBG_INFO, F("retransmit power limit"));
mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit, true);
} else {
if(false == mPayload[iv->id].gotFragment) {
DPRINT_IVID(DBG_WARN, iv->id);
if (mPayload[iv->id].rxTmo) {
DBGPRINTLN(F("nothing received"));
mPayload[iv->id].retransmits = mMaxRetrans;
} else {
DBGPRINTLN(F("nothing received: complete retransmit"));
mPayload[iv->id].txCmd = iv->getQueuedCmd();
DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") prepareDevInformCmd 0x") + String(mPayload[iv->id].txCmd, HEX));
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex, true);
}
} else {
for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId - 1); i++) {
if (mPayload[iv->id].len[i] == 0) {
DPRINT_IVID(DBG_WARN, iv->id);
DBGPRINT(F("Frame "));
DBGPRINT(String(i + 1));
DBGPRINTLN(F(" missing: Request Retransmit"));
mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, (SINGLE_FRAME + i), true);
break; // only request retransmit one frame per loop
}
yield();
}
}
}
} else if (false == mPayload[iv->id].gotFragment) {
// only if there is no sign of life
mPayload[iv->id].rxTmo = true; // inv might be down, no complete retransmit anymore
}
}
} else if(!crcPass && pyldComplete) { // crc error on complete Payload
if (mPayload[iv->id].retransmits < mMaxRetrans) {
mPayload[iv->id].retransmits++;
DPRINTLN(DBG_WARN, F("CRC Error: Request Complete Retransmit"));
mPayload[iv->id].txCmd = iv->getQueuedCmd();
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("prepareDevInformCmd 0x"));
DBGHEXLN(mPayload[iv->id].txCmd);
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex, true);
} else if (false == mPayload[iv->id].gotFragment) {
// only if there is no sign of life
mPayload[iv->id].rxTmo = true; // inv might be down, no complete retransmit anymore
}
} else { // payload complete
#ifdef undef
DPRINT(DBG_INFO, F("procPyld: cmd: 0x"));
DBGHEXLN(mPayload[iv->id].txCmd);
DPRINT(DBG_INFO, F("procPyld: txid: 0x"));
DBGHEXLN(mPayload[iv->id].txId);
#endif
DPRINT(DBG_DEBUG, F("procPyld: max: "));
DPRINTLN(DBG_DEBUG, String(mPayload[iv->id].maxPackId));
record_t<> *rec = iv->getRecordStruct(mPayload[iv->id].txCmd); // choose the parser
mPayload[iv->id].complete = true;
mPayload[iv->id].rxTmo = false;
uint8_t payload[128];
uint8_t payloadLen = 0;
memset(payload, 0, 128);
for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i++) {
memcpy(&payload[payloadLen], mPayload[iv->id].data[i], (mPayload[iv->id].len[i]));
payloadLen += (mPayload[iv->id].len[i]);
yield();
}
payloadLen -= 2;
#ifdef undef
if (mSerialDebug) {
DPRINT(DBG_INFO, F("Payload ("));
DBGPRINT(String(payloadLen));
DBGPRINT(F("): "));
mSys->Radio.dumpBuf(payload, payloadLen);
}
#endif
if (NULL == rec) {
DPRINTLN(DBG_ERROR, F("record is NULL!"));
} else if ((rec->pyldLen == payloadLen) || (0 == rec->pyldLen)) {
if (mPayload[iv->id].txId == (TX_REQ_INFO + ALL_FRAMES))
mStat->rxSuccess++;
rec->ts = mPayload[iv->id].ts;
for (uint8_t i = 0; i < rec->length; i++) {
iv->addValue(i, payload, rec);
yield();
}
iv->doCalculations();
uint8_t pos = iv->getPosByChFld(CH0, FLD_PAC, rec);
if (pos != 0xff) {
float ac_power = iv->getValue(pos, rec);
mSys->handle_pac (iv, (uint16_t)(ac_power+0.5f));
}
notify(mPayload[iv->id].txCmd);
if(AlarmData == mPayload[iv->id].txCmd) {
uint8_t i = 0;
uint16_t code;
uint32_t start, end;
while(1) {
code = iv->parseAlarmLog(i++, payload, payloadLen, &start, &end);
if(0 == code)
break;
if (NULL != mCbAlarm)
(mCbAlarm)(code, start, end);
yield();
}
}
} else {
DPRINT(DBG_ERROR, F("plausibility check failed, expected "));
DBGPRINT(String(rec->pyldLen));
DBGPRINTLN(F(" bytes"));
mStat->rxFail++;
}
iv->setQueuedCmdFinished();
}
}
yield();
}
}
private:
void notify(uint8_t val) {
if(NULL != mCbPayload)
(mCbPayload)(val);
}
void notify(uint16_t code, uint32_t start, uint32_t endTime) {
if (NULL != mCbAlarm)
(mCbAlarm)(code, start, endTime);
}
bool build(uint8_t id, bool *complete) {
DPRINTLN(DBG_VERBOSE, F("build"));
uint16_t crc = 0xffff, crcRcv = 0x0000;
if (mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES)
mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES;
// check if all fragments are there
*complete = true;
for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) {
if(mPayload[id].len[i] == 0)
*complete = false;
}
if(!*complete)
return false;
for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) {
if (mPayload[id].len[i] > 0) {
if (i == (mPayload[id].maxPackId - 1)) {
crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc);
crcRcv = (mPayload[id].data[i][mPayload[id].len[i] - 2] << 8) | (mPayload[id].data[i][mPayload[id].len[i] - 1]);
} else
crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i], crc);
}
yield();
}
return (crc == crcRcv) ? true : false;
}
void reset(uint8_t id) {
#ifdef undef
DPRINT_IVID(DBG_INFO, id);
DBGPRINTLN(F("resetPayload"));
#endif
memset(mPayload[id].len, 0, MAX_PAYLOAD_ENTRIES);
mPayload[id].txCmd = 0;
mPayload[id].gotFragment = false;
mPayload[id].retransmits = 0;
mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES;
mPayload[id].lastFound = false;
mPayload[id].complete = false;
mPayload[id].requested = false;
mPayload[id].ts = *mTimestamp;
mPayload[id].rxTmo = true; // design: dont start with complete retransmit
}
IApp *mApp;
HMSYSTEM *mSys;
statistics_t *mStat;
uint8_t mMaxRetrans;
uint32_t *mTimestamp;
invPayload_t mPayload[MAX_NUM_INVERTERS];
bool mSerialDebug;
Inverter<> *mHighPrioIv;
alarmListenerType mCbAlarm;
payloadListenerType mCbPayload;
};
#endif /*__HM_PAYLOAD_H__*/
//-----------------------------------------------------------------------------
// 2023 Ahoy, https://ahoydtu.de
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
#ifndef __HM_PAYLOAD_H__
#define __HM_PAYLOAD_H__
#include "../utils/dbg.h"
#include "../utils/crc.h"
#include "../config/config.h"
#include <Arduino.h>
typedef struct {
uint8_t txCmd;
uint8_t txId;
uint8_t invId;
uint32_t ts;
uint8_t data[MAX_PAYLOAD_ENTRIES][MAX_RF_PAYLOAD_SIZE];
uint8_t len[MAX_PAYLOAD_ENTRIES];
bool complete;
uint8_t maxPackId;
bool lastFound;
uint8_t retransmits;
bool requested;
bool gotFragment;
bool rxTmo;
uint8_t lastFragments; // for send quality measurement
} invPayload_t;
typedef std::function<void(uint8_t)> payloadListenerType;
typedef std::function<void(uint16_t alarmCode, uint32_t start, uint32_t end)> alarmListenerType;
template<class HMSYSTEM>
class HmPayload {
public:
HmPayload() {}
void setup(IApp *app, HMSYSTEM *sys, statistics_t *stat, uint8_t maxRetransmits, uint32_t *timestamp) {
mApp = app;
mSys = sys;
mStat = stat;
mMaxRetrans = maxRetransmits;
mTimestamp = timestamp;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) {
reset(i);
}
mSerialDebug = false;
mHighPrioIv = NULL;
mCbAlarm = NULL;
mCbPayload = NULL;
}
void enableSerialDebug(bool enable) {
mSerialDebug = enable;
}
void addPayloadListener(payloadListenerType cb) {
mCbPayload = cb;
}
void addAlarmListener(alarmListenerType cb) {
mCbAlarm = cb;
}
void loop() {
if (NULL != mHighPrioIv) {
ivSend(mHighPrioIv, true);
mHighPrioIv = NULL;
}
}
void zeroYieldDay(Inverter<> *iv) {
DPRINTLN(DBG_DEBUG, F("zeroYieldDay"));
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
uint8_t pos;
for(uint8_t ch = 0; ch <= iv->channels; ch++) {
pos = iv->getPosByChFld(ch, FLD_YD, rec);
iv->setValue(pos, rec, 0.0f);
pos = iv->getPosByChFld(ch, FLD_MP, rec);
iv->setValue(pos, rec, 0.0f);
}
}
void zeroInverterValues(Inverter<> *iv) {
DPRINTLN(DBG_DEBUG, F("zeroInverterValues"));
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
for(uint8_t ch = 0; ch <= iv->channels; ch++) {
uint8_t pos = 0;
for(uint8_t fld = 0; fld < FLD_EVT; fld++) {
switch(fld) {
case FLD_YD:
case FLD_YT:
case FLD_MP:
continue;
}
pos = iv->getPosByChFld(ch, fld, rec);
iv->setValue(pos, rec, 0.0f);
}
}
notify(RealTimeRunData_Debug);
}
void ivSendHighPrio(Inverter<> *iv) {
mHighPrioIv = iv;
}
void ivSend(Inverter<> *iv, bool highPrio = false) {
bool save_rxTmo;
if(!highPrio) {
if (mPayload[iv->id].requested) {
if (!mPayload[iv->id].complete)
process(false); // no retransmit
if (!mPayload[iv->id].complete) {
if (mSerialDebug)
DPRINT_IVID(DBG_INFO, iv->id);
if (MAX_PAYLOAD_ENTRIES == mPayload[iv->id].maxPackId) {
mStat->rxFailNoAnser++; // got nothing
if (mSerialDebug)
DBGPRINTLN(F("enqueued cmd failed/timeout"));
} else {
mStat->rxFail++; // got fragments but not complete response
if (mSerialDebug) {
DBGPRINT(F("no complete Payload received! (retransmits: "));
DBGPRINT(String(mPayload[iv->id].retransmits));
DBGPRINTLN(F(")"));
}
}
iv->setQueuedCmdFinished(); // command failed
}
}
}
save_rxTmo = mPayload[iv->id].rxTmo;
reset(iv->id);
mPayload[iv->id].rxTmo = save_rxTmo;
mPayload[iv->id].requested = true;
yield();
#ifdef undef
if (mSerialDebug) {
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("Requesting Inv SN "));
DBGPRINTLN(String(iv->config->serial.u64, HEX));
}
#endif
if (iv->getDevControlRequest()) {
if (mSerialDebug) {
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("Devcontrol request 0x"));
DBGPRINT(String(iv->devControlCmd, HEX));
DBGPRINT(F(" power limit "));
DBGPRINTLN(String(iv->powerLimit[0]));
}
mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit, false);
mPayload[iv->id].txCmd = iv->devControlCmd;
//iv->clearCmdQueue();
//iv->enqueCommand<InfoCommand>(SystemConfigPara); // read back power limit
} else {
uint8_t cmd = iv->getQueuedCmd();
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("prepareDevInformCmd 0x"));
DBGHEXLN(cmd);
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false);
mPayload[iv->id].txCmd = cmd;
}
}
void add(Inverter<> *iv, packet_t *p) {
if (p->packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command
mPayload[iv->id].txId = p->packet[0];
DPRINTLN(DBG_DEBUG, F("Response from info request received"));
uint8_t *pid = &p->packet[9];
if (*pid == 0x00) {
DPRINTLN(DBG_DEBUG, F("fragment number zero received and ignored"));
} else {
DPRINT(DBG_DEBUG, F("PID: 0x"));
DPRINTLN(DBG_DEBUG, String(*pid, HEX));
if ((*pid & 0x7F) < MAX_PAYLOAD_ENTRIES) {
memcpy(mPayload[iv->id].data[(*pid & 0x7F) - 1], &p->packet[10], p->len - 11);
mPayload[iv->id].len[(*pid & 0x7F) - 1] = p->len - 11;
mPayload[iv->id].gotFragment = true;
}
if ((*pid & ALL_FRAMES) == ALL_FRAMES) {
// Last packet
if (((*pid & 0x7f) > mPayload[iv->id].maxPackId) || (MAX_PAYLOAD_ENTRIES == mPayload[iv->id].maxPackId)) {
mPayload[iv->id].maxPackId = (*pid & 0x7f);
if (*pid > 0x81)
mPayload[iv->id].lastFound = true;
}
}
}
} else if (p->packet[0] == (TX_REQ_DEVCONTROL + ALL_FRAMES)) { // response from dev control command
DPRINTLN(DBG_DEBUG, F("Response from devcontrol request received"));
mPayload[iv->id].txId = p->packet[0];
iv->clearDevControlRequest();
if ((p->packet[12] == ActivePowerContr) && (p->packet[13] == 0x00)) {
bool ok = true;
if((p->packet[10] == 0x00) && (p->packet[11] == 0x00)) {
#ifdef AHOY_MQTT_SUPPORT
mApp->setMqttPowerLimitAck(iv);
#endif
} else {
ok = false;
}
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("has "));
if(!ok) DBGPRINT(F("not "));
DBGPRINT(F("accepted power limit set point "));
DBGPRINT(String(iv->powerLimit[0]));
DBGPRINT(F(" with PowerLimitControl "));
DBGPRINTLN(String(iv->powerLimit[1]));
iv->clearCmdQueue();
iv->enqueCommand<InfoCommand>(SystemConfigPara); // read back power limit
if(mHighPrioIv == NULL) // do it immediately if possible
mHighPrioIv = iv;
}
iv->devControlCmd = Init;
}
}
void process(bool retransmit) {
for (uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
if (IV_MI == iv->ivGen) // only process HM inverters
continue; // skip to next inverter
if ((mPayload[iv->id].txId != (TX_REQ_INFO + ALL_FRAMES)) && (0 != mPayload[iv->id].txId)) {
// no processing needed if txId is not 0x95
mPayload[iv->id].complete = true;
continue; // skip to next inverter
}
if (!mPayload[iv->id].complete) {
bool crcPass, pyldComplete;
uint8 Fragments;
crcPass = build(iv->id, &pyldComplete, &Fragments);
// evaluate quality of send channel with rcv params
mSys->Radio.evalSendChannelQuality (crcPass, mPayload[iv->id].retransmits,
Fragments, mPayload[iv->id].lastFragments);
mPayload[iv->id].lastFragments = Fragments;
if (!crcPass && !pyldComplete) { // payload not complete
if ((mPayload[iv->id].requested) && (retransmit)) {
if (mPayload[iv->id].retransmits < mMaxRetrans) {
mPayload[iv->id].retransmits++;
if (iv->devControlCmd == Restart || iv->devControlCmd == CleanState_LockAndAlarm) {
// This is required to prevent retransmissions without answer.
DPRINTLN(DBG_INFO, F("Prevent retransmit on Restart / CleanState_LockAndAlarm..."));
mPayload[iv->id].retransmits = mMaxRetrans;
} else if(iv->devControlCmd == ActivePowerContr) {
DPRINT_IVID(DBG_INFO, iv->id);
DPRINTLN(DBG_INFO, F("retransmit power limit"));
mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit, true);
} else {
if(false == mPayload[iv->id].gotFragment) {
DPRINT_IVID(DBG_WARN, iv->id);
if (mPayload[iv->id].rxTmo) {
DBGPRINTLN(F("nothing received"));
mPayload[iv->id].retransmits = mMaxRetrans;
} else {
DBGPRINTLN(F("nothing received: complete retransmit"));
mPayload[iv->id].txCmd = iv->getQueuedCmd();
DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") prepareDevInformCmd 0x") + String(mPayload[iv->id].txCmd, HEX));
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex, true);
}
} else {
for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId - 1); i++) {
if (mPayload[iv->id].len[i] == 0) {
DPRINT_IVID(DBG_WARN, iv->id);
DBGPRINT(F("Frame "));
DBGPRINT(String(i + 1));
DBGPRINTLN(F(" missing: Request Retransmit"));
mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, (SINGLE_FRAME + i), true);
break; // only request retransmit one frame per loop
}
yield();
}
}
}
} else if (false == mPayload[iv->id].gotFragment) {
// only if there is no sign of life
mPayload[iv->id].rxTmo = true; // inv might be down, no complete retransmit anymore
}
}
} else if(!crcPass && pyldComplete) { // crc error on complete Payload
if (mPayload[iv->id].retransmits < mMaxRetrans) {
mPayload[iv->id].retransmits++;
DPRINTLN(DBG_WARN, F("CRC Error: Request Complete Retransmit"));
mPayload[iv->id].txCmd = iv->getQueuedCmd();
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("prepareDevInformCmd 0x"));
DBGHEXLN(mPayload[iv->id].txCmd);
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex, true);
} else if (false == mPayload[iv->id].gotFragment) {
// only if there is no sign of life
mPayload[iv->id].rxTmo = true; // inv might be down, no complete retransmit anymore
}
} else { // payload complete
#ifdef undef
DPRINT(DBG_INFO, F("procPyld: cmd: 0x"));
DBGHEXLN(mPayload[iv->id].txCmd);
DPRINT(DBG_INFO, F("procPyld: txid: 0x"));
DBGHEXLN(mPayload[iv->id].txId);
#endif
DPRINT(DBG_DEBUG, F("procPyld: max: "));
DPRINTLN(DBG_DEBUG, String(mPayload[iv->id].maxPackId));
record_t<> *rec = iv->getRecordStruct(mPayload[iv->id].txCmd); // choose the parser
mPayload[iv->id].complete = true;
mPayload[iv->id].rxTmo = false;
uint8_t payload[128];
uint8_t payloadLen = 0;
memset(payload, 0, 128);
for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i++) {
memcpy(&payload[payloadLen], mPayload[iv->id].data[i], (mPayload[iv->id].len[i]));
payloadLen += (mPayload[iv->id].len[i]);
yield();
}
payloadLen -= 2;
#ifdef undef
if (mSerialDebug) {
DPRINT(DBG_INFO, F("Payload ("));
DBGPRINT(String(payloadLen));
DBGPRINT(F("): "));
mSys->Radio.dumpBuf(payload, payloadLen);
}
#endif
if (NULL == rec) {
DPRINTLN(DBG_ERROR, F("record is NULL!"));
} else if ((rec->pyldLen == payloadLen) || (0 == rec->pyldLen)) {
if (mPayload[iv->id].txId == (TX_REQ_INFO + ALL_FRAMES))
mStat->rxSuccess++;
rec->ts = mPayload[iv->id].ts;
for (uint8_t i = 0; i < rec->length; i++) {
iv->addValue(i, payload, rec);
yield();
}
iv->doCalculations();
uint8_t pos = iv->getPosByChFld(CH0, FLD_PAC, rec);
if (pos != 0xff) {
float ac_power = iv->getValue(pos, rec);
mSys->handle_pac (iv, (uint16_t)(ac_power+0.5f));
}
notify(mPayload[iv->id].txCmd);
if(AlarmData == mPayload[iv->id].txCmd) {
uint8_t i = 0;
uint16_t code;
uint32_t start, end;
while(1) {
code = iv->parseAlarmLog(i++, payload, payloadLen, &start, &end);
if(0 == code)
break;
if (NULL != mCbAlarm)
(mCbAlarm)(code, start, end);
yield();
}
}
} else {
DPRINT(DBG_ERROR, F("plausibility check failed, expected "));
DBGPRINT(String(rec->pyldLen));
DBGPRINTLN(F(" bytes"));
mStat->rxFail++;
}
iv->setQueuedCmdFinished();
}
}
yield();
}
}
private:
void notify(uint8_t val) {
if(NULL != mCbPayload)
(mCbPayload)(val);
}
void notify(uint16_t code, uint32_t start, uint32_t endTime) {
if (NULL != mCbAlarm)
(mCbAlarm)(code, start, endTime);
}
bool build(uint8_t id, bool *complete, uint8_t *fragments) {
DPRINTLN(DBG_VERBOSE, F("build"));
uint16_t crc = 0xffff, crcRcv = 0x0000;
if (mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES)
mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES;
// check if all fragments are there
*complete = true;
*fragments = 0;
for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) {
if(mPayload[id].len[i] == 0) {
*complete = false;
} else {
(*fragments)++;
}
}
if(!*complete)
return false;
for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) {
if (mPayload[id].len[i] > 0) {
if (i == (mPayload[id].maxPackId - 1)) {
crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc);
crcRcv = (mPayload[id].data[i][mPayload[id].len[i] - 2] << 8) | (mPayload[id].data[i][mPayload[id].len[i] - 1]);
} else
crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i], crc);
}
yield();
}
return (crc == crcRcv) ? true : false;
}
void reset(uint8_t id) {
#ifdef undef
DPRINT_IVID(DBG_INFO, id);
DBGPRINTLN(F("resetPayload"));
#endif
memset(mPayload[id].len, 0, MAX_PAYLOAD_ENTRIES);
mPayload[id].txCmd = 0;
mPayload[id].gotFragment = false;
mPayload[id].retransmits = 0;
mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES;
mPayload[id].lastFound = false;
mPayload[id].complete = false;
mPayload[id].requested = false;
mPayload[id].ts = *mTimestamp;
mPayload[id].rxTmo = true; // design: dont start with complete retransmit
mPayload[id].lastFragments = 0; // for send channel quality measurement
}
IApp *mApp;
HMSYSTEM *mSys;
statistics_t *mStat;
uint8_t mMaxRetrans;
uint32_t *mTimestamp;
invPayload_t mPayload[MAX_NUM_INVERTERS];
bool mSerialDebug;
Inverter<> *mHighPrioIv;
alarmListenerType mCbAlarm;
payloadListenerType mCbPayload;
};
#endif /*__HM_PAYLOAD_H__*/

849
src/hm/hmRadio.h

@ -1,379 +1,470 @@
//-----------------------------------------------------------------------------
// 2023 Ahoy, https://github.com/lumpapu/ahoy
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
#ifndef __RADIO_H__
#define __RADIO_H__
#include "../utils/dbg.h"
#include <RF24.h>
#include "../utils/crc.h"
#include "../config/config.h"
#include "SPI.h"
#define SPI_SPEED 1000000
#define RF_CHANNELS 5
#define TX_REQ_INFO 0x15
#define TX_REQ_DEVCONTROL 0x51
#define ALL_FRAMES 0x80
#define SINGLE_FRAME 0x81
const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"};
//-----------------------------------------------------------------------------
// MACROS
//-----------------------------------------------------------------------------
#define CP_U32_LittleEndian(buf, v) ({ \
uint8_t *b = buf; \
b[0] = ((v >> 24) & 0xff); \
b[1] = ((v >> 16) & 0xff); \
b[2] = ((v >> 8) & 0xff); \
b[3] = ((v ) & 0xff); \
})
#define CP_U32_BigEndian(buf, v) ({ \
uint8_t *b = buf; \
b[3] = ((v >> 24) & 0xff); \
b[2] = ((v >> 16) & 0xff); \
b[1] = ((v >> 8) & 0xff); \
b[0] = ((v ) & 0xff); \
})
#define BIT_CNT(x) ((x)<<3)
//-----------------------------------------------------------------------------
// HM Radio class
//-----------------------------------------------------------------------------
template <uint8_t IRQ_PIN = DEF_IRQ_PIN, uint8_t CE_PIN = DEF_CE_PIN, uint8_t CS_PIN = DEF_CS_PIN, uint8_t AMP_PWR = RF24_PA_LOW, uint8_t SCLK_PIN = DEF_SCLK_PIN, uint8_t MOSI_PIN = DEF_MOSI_PIN, uint8_t MISO_PIN = DEF_MISO_PIN>
class HmRadio {
public:
HmRadio() : mNrf24(CE_PIN, CS_PIN, SPI_SPEED) {
if(mSerialDebug) {
DPRINT(DBG_VERBOSE, F("hmRadio.h : HmRadio():mNrf24(CE_PIN: "));
DBGPRINT(String(CE_PIN));
DBGPRINT(F(", CS_PIN: "));
DBGPRINT(String(CS_PIN));
DBGPRINT(F(", SPI_SPEED: "));
DBGPRINT(String(SPI_SPEED));
DBGPRINTLN(F(")"));
}
// Depending on the program, the module can work on 2403, 2423, 2440, 2461 or 2475MHz.
// Channel List 2403, 2423, 2440, 2461, 2475MHz
mRfChLst[0] = 03;
mRfChLst[1] = 23;
mRfChLst[2] = 40;
mRfChLst[3] = 61;
mRfChLst[4] = 75;
// default channels
mTxChIdx = 2; // Start TX with 40
mRxChIdx = 0; // Start RX with 03
mSendCnt = 0;
mRetransmits = 0;
mSerialDebug = false;
mIrqRcvd = false;
}
~HmRadio() {}
void setup(uint8_t ampPwr = RF24_PA_LOW, uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN, uint8_t sclk = SCLK_PIN, uint8_t mosi = MOSI_PIN, uint8_t miso = MISO_PIN) {
DPRINTLN(DBG_VERBOSE, F("hmRadio.h:setup"));
pinMode(irq, INPUT_PULLUP);
uint32_t dtuSn = 0x87654321;
uint32_t chipID = 0; // will be filled with last 3 bytes of MAC
#ifdef ESP32
uint64_t MAC = ESP.getEfuseMac();
chipID = ((MAC >> 8) & 0xFF0000) | ((MAC >> 24) & 0xFF00) | ((MAC >> 40) & 0xFF);
#else
chipID = ESP.getChipId();
#endif
if(chipID) {
dtuSn = 0x80000000; // the first digit is an 8 for DTU production year 2022, the rest is filled with the ESP chipID in decimal
for(int i = 0; i < 7; i++) {
dtuSn |= (chipID % 10) << (i * 4);
chipID /= 10;
}
}
// change the byte order of the DTU serial number and append the required 0x01 at the end
DTU_RADIO_ID = ((uint64_t)(((dtuSn >> 24) & 0xFF) | ((dtuSn >> 8) & 0xFF00) | ((dtuSn << 8) & 0xFF0000) | ((dtuSn << 24) & 0xFF000000)) << 8) | 0x01;
#ifdef ESP32
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
mSpi = new SPIClass(FSPI);
#else
mSpi = new SPIClass(VSPI);
#endif
mSpi->begin(sclk, miso, mosi, cs);
#else
//the old ESP82xx cannot freely place their SPI pins
mSpi = new SPIClass();
mSpi->begin();
#endif
mNrf24.begin(mSpi, ce, cs);
mNrf24.setRetries(3, 15); // 3*250us + 250us and 15 loops -> 15ms
mNrf24.setChannel(mRfChLst[mRxChIdx]);
mNrf24.startListening();
mNrf24.setDataRate(RF24_250KBPS);
mNrf24.setAutoAck(true);
mNrf24.enableDynamicPayloads();
mNrf24.setCRCLength(RF24_CRC_16);
mNrf24.setAddressWidth(5);
mNrf24.openReadingPipe(1, reinterpret_cast<uint8_t*>(&DTU_RADIO_ID));
// enable all receiving interrupts
mNrf24.maskIRQ(false, false, false);
DPRINT(DBG_INFO, F("RF24 Amp Pwr: RF24_PA_"));
DPRINTLN(DBG_INFO, String(rf24AmpPowerNames[ampPwr]));
mNrf24.setPALevel(ampPwr & 0x03);
if(mNrf24.isChipConnected()) {
DPRINTLN(DBG_INFO, F("Radio Config:"));
mNrf24.printPrettyDetails();
}
else
DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
}
bool loop(void) {
if (!mIrqRcvd)
return false; // nothing to do
mIrqRcvd = false;
bool tx_ok, tx_fail, rx_ready;
mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
mNrf24.flush_tx(); // empty TX FIFO
// start listening
mNrf24.setChannel(mRfChLst[mRxChIdx]);
mNrf24.startListening();
uint32_t startMicros = micros();
uint32_t loopMillis = millis();
while (millis()-loopMillis < 400) {
while (micros()-startMicros < 5110) { // listen (4088us or?) 5110us to each channel
if (mIrqRcvd) {
mIrqRcvd = false;
if (getReceived()) { // everything received
return true;
}
}
yield();
}
// switch to next RX channel
startMicros = micros();
if(++mRxChIdx >= RF_CHANNELS)
mRxChIdx = 0;
mNrf24.setChannel(mRfChLst[mRxChIdx]);
yield();
}
// not finished but time is over
return true;
}
void handleIntr(void) {
mIrqRcvd = true;
}
bool isChipConnected(void) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:isChipConnected"));
return mNrf24.isChipConnected();
}
void enableDebug() {
mSerialDebug = true;
}
void sendControlPacket(uint64_t invId, uint8_t cmd, uint16_t *data, bool isRetransmit, bool isNoMI = true) {
DPRINT(DBG_INFO, F("sendControlPacket cmd: 0x"));
DBGHEXLN(cmd);
initPacket(invId, TX_REQ_DEVCONTROL, SINGLE_FRAME);
uint8_t cnt = 10;
if (isNoMI) {
mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor
mTxBuf[cnt++] = 0x00;
if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet
mTxBuf[cnt++] = ((data[0] * 10) >> 8) & 0xff; // power limit
mTxBuf[cnt++] = ((data[0] * 10) ) & 0xff; // power limit
mTxBuf[cnt++] = ((data[1] ) >> 8) & 0xff; // setting for persistens handlings
mTxBuf[cnt++] = ((data[1] ) ) & 0xff; // setting for persistens handling
}
} else { //MI 2nd gen. specific
switch (cmd) {
case TurnOn:
//mTxBuf[0] = 0x50;
mTxBuf[9] = 0x55;
mTxBuf[10] = 0xaa;
break;
case TurnOff:
mTxBuf[9] = 0xaa;
mTxBuf[10] = 0x55;
break;
case ActivePowerContr:
cnt++;
mTxBuf[9] = 0x5a;
mTxBuf[10] = 0x5a;
mTxBuf[11] = data[0]; // power limit
break;
default:
return;
}
cnt++;
}
sendPacket(invId, cnt, isRetransmit, isNoMI);
}
void prepareDevInformCmd(uint64_t invId, uint8_t cmd, uint32_t ts, uint16_t alarmMesId, bool isRetransmit, uint8_t reqfld=TX_REQ_INFO) { // might not be necessary to add additional arg.
if(mSerialDebug) {
DPRINT(DBG_DEBUG, F("prepareDevInformCmd 0x"));
DPRINTLN(DBG_DEBUG,String(cmd, HEX));
}
initPacket(invId, reqfld, ALL_FRAMES);
mTxBuf[10] = cmd; // cid
mTxBuf[11] = 0x00;
CP_U32_LittleEndian(&mTxBuf[12], ts);
if (cmd == RealTimeRunData_Debug || cmd == AlarmData ) {
mTxBuf[18] = (alarmMesId >> 8) & 0xff;
mTxBuf[19] = (alarmMesId ) & 0xff;
}
sendPacket(invId, 24, isRetransmit, true);
}
void sendCmdPacket(uint64_t invId, uint8_t mid, uint8_t pid, bool isRetransmit, bool appendCrc16=true) {
initPacket(invId, mid, pid);
sendPacket(invId, 10, isRetransmit, appendCrc16);
}
void dumpBuf(uint8_t buf[], uint8_t len) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:dumpBuf"));
for(uint8_t i = 0; i < len; i++) {
DHEX(buf[i]);
DBGPRINT(" ");
}
DBGPRINTLN("");
}
uint8_t getDataRate(void) {
if(!mNrf24.isChipConnected())
return 3; // unkown
return mNrf24.getDataRate();
}
bool isPVariant(void) {
return mNrf24.isPVariant();
}
std::queue<packet_t> mBufCtrl;
uint32_t mSendCnt;
uint32_t mRetransmits;
bool mSerialDebug;
private:
bool getReceived(void) {
bool tx_ok, tx_fail, rx_ready;
mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
bool isLastPackage = false;
while(mNrf24.available()) {
uint8_t len;
len = mNrf24.getDynamicPayloadSize(); // if payload size > 32, corrupt payload has been flushed
if (len > 0) {
packet_t p;
p.ch = mRfChLst[mRxChIdx];
p.len = len;
mNrf24.read(p.packet, len);
if (p.packet[0] != 0x00) {
mBufCtrl.push(p);
if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES)) // response from get information command
isLastPackage = (p.packet[9] > ALL_FRAMES); // > ALL_FRAMES indicates last packet received
else if (p.packet[0] == ( 0x0f + ALL_FRAMES) ) // response from MI get information command
isLastPackage = (p.packet[9] > 0x10); // > 0x10 indicates last packet received
else if ((p.packet[0] != 0x88) && (p.packet[0] != 0x92)) // ignore fragment number zero and MI status messages //#0 was p.packet[0] != 0x00 &&
isLastPackage = true; // response from dev control command
}
}
yield();
}
return isLastPackage;
}
void initPacket(uint64_t invId, uint8_t mid, uint8_t pid) {
#ifdef undef
if(mSerialDebug) {
DPRINT(DBG_VERBOSE, F("initPacket, mid: "));
DHEX(mid);
DBGPRINT(F(" pid: "));
DBGHEXLN(pid);
}
#endif
memset(mTxBuf, 0, MAX_RF_PAYLOAD_SIZE);
mTxBuf[0] = mid; // message id
CP_U32_BigEndian(&mTxBuf[1], (invId >> 8));
CP_U32_BigEndian(&mTxBuf[5], (DTU_RADIO_ID >> 8));
mTxBuf[9] = pid;
}
void sendPacket(uint64_t invId, uint8_t len, bool isRetransmit, bool appendCrc16=true) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:sendPacket"));
//DPRINTLN(DBG_VERBOSE, "sent packet: #" + String(mSendCnt));
// append crc's
if (appendCrc16 && (len > 10)) {
// crc control data
uint16_t crc = ah::crc16(&mTxBuf[10], len - 10);
mTxBuf[len++] = (crc >> 8) & 0xff;
mTxBuf[len++] = (crc ) & 0xff;
}
// crc over all
mTxBuf[len] = ah::crc8(mTxBuf, len);
len++;
// set TX and RX channels
mTxChIdx = (mTxChIdx + 1) % RF_CHANNELS;
mRxChIdx = (mTxChIdx + 2) % RF_CHANNELS;
if(mSerialDebug) {
DPRINT(DBG_INFO, F("TX "));
DBGPRINT(String(len));
#ifdef undef
DBGPRINT("B Ch");
DBGPRINT(String(mRfChLst[mTxChIdx]));
DBGPRINT(F(" | "));
dumpBuf(mTxBuf, len);
#else
DBGPRINTLN (" Bytes");
#endif
}
mNrf24.stopListening();
mNrf24.setChannel(mRfChLst[mTxChIdx]);
mNrf24.openWritingPipe(reinterpret_cast<uint8_t*>(&invId));
mNrf24.startWrite(mTxBuf, len, false); // false = request ACK response
if(isRetransmit)
mRetransmits++;
else
mSendCnt++;
}
volatile bool mIrqRcvd;
uint64_t DTU_RADIO_ID;
uint8_t mRfChLst[RF_CHANNELS];
uint8_t mTxChIdx;
uint8_t mRxChIdx;
SPIClass* mSpi;
RF24 mNrf24;
uint8_t mTxBuf[MAX_RF_PAYLOAD_SIZE];
};
#endif /*__RADIO_H__*/
//-----------------------------------------------------------------------------
// 2023 Ahoy, https://github.com/lumpapu/ahoy
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
#ifndef __RADIO_H__
#define __RADIO_H__
#include "../utils/dbg.h"
#include <RF24.h>
#include "../utils/crc.h"
#include "../config/config.h"
#include "SPI.h"
#define SPI_SPEED 1000000
#define RF_CHANNELS 5
#define TX_REQ_INFO 0x15
#define TX_REQ_DEVCONTROL 0x51
#define ALL_FRAMES 0x80
#define SINGLE_FRAME 0x81
#define SEND_CHANNEL_QUALITY_INTEGRATOR_SIZE 4
#define SEND_CHANNEL_MAX_QUALITY 4
#define SEND_CHANNEL_MIN_QUALITY -6
#define SEND_CHANNEL_QUALITY_GOOD 2
#define SEND_CHANNEL_QUALITY_OK 1
#define SEND_CHANNEL_QUALITY_NEUTRAL 0
#define SEND_CHANNEL_QUALITY_LOW -1
#define SEND_CHANNEL_QUALITY_BAD -2
const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"};
//-----------------------------------------------------------------------------
// MACROS
//-----------------------------------------------------------------------------
#define CP_U32_LittleEndian(buf, v) ({ \
uint8_t *b = buf; \
b[0] = ((v >> 24) & 0xff); \
b[1] = ((v >> 16) & 0xff); \
b[2] = ((v >> 8) & 0xff); \
b[3] = ((v ) & 0xff); \
})
#define CP_U32_BigEndian(buf, v) ({ \
uint8_t *b = buf; \
b[3] = ((v >> 24) & 0xff); \
b[2] = ((v >> 16) & 0xff); \
b[1] = ((v >> 8) & 0xff); \
b[0] = ((v ) & 0xff); \
})
#define BIT_CNT(x) ((x)<<3)
//-----------------------------------------------------------------------------
// HM Radio class
//-----------------------------------------------------------------------------
template <uint8_t IRQ_PIN = DEF_IRQ_PIN, uint8_t CE_PIN = DEF_CE_PIN, uint8_t CS_PIN = DEF_CS_PIN, uint8_t AMP_PWR = RF24_PA_LOW, uint8_t SCLK_PIN = DEF_SCLK_PIN, uint8_t MOSI_PIN = DEF_MOSI_PIN, uint8_t MISO_PIN = DEF_MISO_PIN>
class HmRadio {
public:
HmRadio() : mNrf24(CE_PIN, CS_PIN, SPI_SPEED) {
if(mSerialDebug) {
DPRINT(DBG_VERBOSE, F("hmRadio.h : HmRadio():mNrf24(CE_PIN: "));
DBGPRINT(String(CE_PIN));
DBGPRINT(F(", CS_PIN: "));
DBGPRINT(String(CS_PIN));
DBGPRINT(F(", SPI_SPEED: "));
DBGPRINT(String(SPI_SPEED));
DBGPRINTLN(F(")"));
}
// Depending on the program, the module can work on 2403, 2423, 2440, 2461 or 2475MHz.
// Channel List 2403, 2423, 2440, 2461, 2475MHz
mRfChLst[0] = 03;
mRfChLst[1] = 23;
mRfChLst[2] = 40;
mRfChLst[3] = 61;
mRfChLst[4] = 75;
// default channels
mTxChIdx = 2; // Start TX with 40
mRxChIdx = 0; // Start RX with 03
mSendCnt = 0;
mRetransmits = 0;
mSerialDebug = false;
mIrqRcvd = false;
}
~HmRadio() {}
void setup(uint8_t ampPwr = RF24_PA_LOW, uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN, uint8_t sclk = SCLK_PIN, uint8_t mosi = MOSI_PIN, uint8_t miso = MISO_PIN) {
DPRINTLN(DBG_VERBOSE, F("hmRadio.h:setup"));
pinMode(irq, INPUT_PULLUP);
uint32_t dtuSn = 0x87654321;
uint32_t chipID = 0; // will be filled with last 3 bytes of MAC
#ifdef ESP32
uint64_t MAC = ESP.getEfuseMac();
chipID = ((MAC >> 8) & 0xFF0000) | ((MAC >> 24) & 0xFF00) | ((MAC >> 40) & 0xFF);
#else
chipID = ESP.getChipId();
#endif
if(chipID) {
dtuSn = 0x80000000; // the first digit is an 8 for DTU production year 2022, the rest is filled with the ESP chipID in decimal
for(int i = 0; i < 7; i++) {
dtuSn |= (chipID % 10) << (i * 4);
chipID /= 10;
}
}
// change the byte order of the DTU serial number and append the required 0x01 at the end
DTU_RADIO_ID = ((uint64_t)(((dtuSn >> 24) & 0xFF) | ((dtuSn >> 8) & 0xFF00) | ((dtuSn << 8) & 0xFF0000) | ((dtuSn << 24) & 0xFF000000)) << 8) | 0x01;
#ifdef ESP32
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
mSpi = new SPIClass(FSPI);
#else
mSpi = new SPIClass(VSPI);
#endif
mSpi->begin(sclk, miso, mosi, cs);
#else
//the old ESP82xx cannot freely place their SPI pins
mSpi = new SPIClass();
mSpi->begin();
#endif
mNrf24.begin(mSpi, ce, cs);
mNrf24.setRetries(3, 15); // 3*250us + 250us and 15 loops -> 15ms
mNrf24.setChannel(mRfChLst[mRxChIdx]);
mNrf24.startListening();
mNrf24.setDataRate(RF24_250KBPS);
mNrf24.setAutoAck(true);
mNrf24.enableDynamicPayloads();
mNrf24.setCRCLength(RF24_CRC_16);
mNrf24.setAddressWidth(5);
mNrf24.openReadingPipe(1, reinterpret_cast<uint8_t*>(&DTU_RADIO_ID));
// enable all receiving interrupts
mNrf24.maskIRQ(false, false, false);
DPRINT(DBG_INFO, F("RF24 Amp Pwr: RF24_PA_"));
DPRINTLN(DBG_INFO, String(rf24AmpPowerNames[ampPwr]));
mNrf24.setPALevel(ampPwr & 0x03);
if(mNrf24.isChipConnected()) {
DPRINTLN(DBG_INFO, F("Radio Config:"));
mNrf24.printPrettyDetails();
}
else
DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
}
bool loop(void) {
if (!mIrqRcvd)
return false; // nothing to do
mIrqRcvd = false;
bool tx_ok, tx_fail, rx_ready;
mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
mNrf24.flush_tx(); // empty TX FIFO
// start listening
mNrf24.setChannel(mRfChLst[mRxChIdx]);
mNrf24.startListening();
uint32_t startMicros = micros();
uint32_t loopMillis = millis();
while (millis()-loopMillis < 400) {
while (micros()-startMicros < 5110) { // listen (4088us or?) 5110us to each channel
if (mIrqRcvd) {
mIrqRcvd = false;
if (getReceived()) { // everything received
return true;
}
}
yield();
}
// switch to next RX channel
startMicros = micros();
if(++mRxChIdx >= RF_CHANNELS)
mRxChIdx = 0;
mNrf24.setChannel(mRfChLst[mRxChIdx]);
yield();
}
// not finished but time is over
return true;
}
void handleIntr(void) {
mIrqRcvd = true;
}
bool isChipConnected(void) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:isChipConnected"));
return mNrf24.isChipConnected();
}
void enableDebug() {
mSerialDebug = true;
}
void sendControlPacket(uint64_t invId, uint8_t cmd, uint16_t *data, bool isRetransmit, bool isNoMI = true) {
DPRINT(DBG_INFO, F("sendControlPacket cmd: 0x"));
DBGHEXLN(cmd);
initPacket(invId, TX_REQ_DEVCONTROL, SINGLE_FRAME);
uint8_t cnt = 10;
if (isNoMI) {
mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor
mTxBuf[cnt++] = 0x00;
if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet
mTxBuf[cnt++] = ((data[0] * 10) >> 8) & 0xff; // power limit
mTxBuf[cnt++] = ((data[0] * 10) ) & 0xff; // power limit
mTxBuf[cnt++] = ((data[1] ) >> 8) & 0xff; // setting for persistens handlings
mTxBuf[cnt++] = ((data[1] ) ) & 0xff; // setting for persistens handling
}
} else { //MI 2nd gen. specific
switch (cmd) {
case TurnOn:
//mTxBuf[0] = 0x50;
mTxBuf[9] = 0x55;
mTxBuf[10] = 0xaa;
break;
case TurnOff:
mTxBuf[9] = 0xaa;
mTxBuf[10] = 0x55;
break;
case ActivePowerContr:
cnt++;
mTxBuf[9] = 0x5a;
mTxBuf[10] = 0x5a;
mTxBuf[11] = data[0]; // power limit
break;
default:
return;
}
cnt++;
}
sendPacket(invId, cnt, isRetransmit, isNoMI);
}
void prepareDevInformCmd(uint64_t invId, uint8_t cmd, uint32_t ts, uint16_t alarmMesId, bool isRetransmit, uint8_t reqfld=TX_REQ_INFO) { // might not be necessary to add additional arg.
if(mSerialDebug) {
DPRINT(DBG_DEBUG, F("prepareDevInformCmd 0x"));
DPRINTLN(DBG_DEBUG,String(cmd, HEX));
}
initPacket(invId, reqfld, ALL_FRAMES);
mTxBuf[10] = cmd; // cid
mTxBuf[11] = 0x00;
CP_U32_LittleEndian(&mTxBuf[12], ts);
if (cmd == RealTimeRunData_Debug || cmd == AlarmData ) {
mTxBuf[18] = (alarmMesId >> 8) & 0xff;
mTxBuf[19] = (alarmMesId ) & 0xff;
}
sendPacket(invId, 24, isRetransmit, true);
}
void sendCmdPacket(uint64_t invId, uint8_t mid, uint8_t pid, bool isRetransmit, bool appendCrc16=true) {
initPacket(invId, mid, pid);
sendPacket(invId, 10, isRetransmit, appendCrc16);
}
void dumpBuf(uint8_t buf[], uint8_t len) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:dumpBuf"));
for(uint8_t i = 0; i < len; i++) {
DHEX(buf[i]);
DBGPRINT(" ");
}
DBGPRINTLN("");
}
uint8_t getDataRate(void) {
if(!mNrf24.isChipConnected())
return 3; // unkown
return mNrf24.getDataRate();
}
bool isPVariant(void) {
return mNrf24.isPVariant();
}
bool isNewSendChannel ()
{
return mTxChIdx != mTxLastChIdx;
}
uint8_t getNextSendChannelIndex (void)
{
// start with the next index: round robbin in case of same max bad quality for all channels
uint8_t bestIndex = (mTxChIdx + 1) % RF_CHANNELS;
uint8_t curIndex = (bestIndex + 1) % RF_CHANNELS;
uint16_t i;
for (i=1; i<RF_CHANNELS; i++) {
if (mChQuality[curIndex] > mChQuality[bestIndex]) {
bestIndex = curIndex;
}
curIndex = (curIndex + 1) % RF_CHANNELS;
}
return bestIndex;
}
void addSendChannelQuality (int8_t quality)
{
// continous averaging
// assume: mTxChIdx is still the last send channel index used
quality = mChQuality[mTxChIdx] + quality;
if (quality < SEND_CHANNEL_MIN_QUALITY) {
quality = SEND_CHANNEL_MIN_QUALITY;
} else if (quality > SEND_CHANNEL_MAX_QUALITY) {
quality = SEND_CHANNEL_MAX_QUALITY;
}
mChQuality[mTxChIdx] = quality;
}
void evalSendChannelQuality (bool crcPass, uint8_t Retransmits, uint8_t rxFragments,
uint8_t lastRxFragments)
{
if (lastRxFragments == rxFragments) {
// nothing received: send probably lost
if (!Retransmits || isNewSendChannel()) {
// dont overestimate burst distortion
addSendChannelQuality (SEND_CHANNEL_QUALITY_BAD);
}
} else if (!lastRxFragments && crcPass) {
if (!Retransmits || isNewSendChannel()) {
// every fragment received successfull immediately
addSendChannelQuality (SEND_CHANNEL_QUALITY_GOOD);
} else {
// every fragment received successfully
addSendChannelQuality (SEND_CHANNEL_QUALITY_OK);
}
} else if (crcPass) {
if (isNewSendChannel ()) {
// last Fragment successfully received on new send channel
addSendChannelQuality (SEND_CHANNEL_QUALITY_OK);
}
} else if (!Retransmits || isNewSendChannel()) {
// no complete receive for this send channel
addSendChannelQuality (SEND_CHANNEL_QUALITY_LOW);
}
}
void resetSendChannelQuality ()
{
for(uint8_t i = 0; i < RF_CHANNELS; i++) {
mChQuality[mTxChIdx] = 0;
}
}
void dumpSendQuality()
{
for(uint8_t i = 0; i < RF_CHANNELS; i++) {
DBGPRINT(" " + String (mChQuality[i]));
}
}
std::queue<packet_t> mBufCtrl;
uint32_t mSendCnt;
uint32_t mRetransmits;
bool mSerialDebug;
private:
bool getReceived(void) {
bool tx_ok, tx_fail, rx_ready;
mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
bool isLastPackage = false;
while(mNrf24.available()) {
uint8_t len;
len = mNrf24.getDynamicPayloadSize(); // if payload size > 32, corrupt payload has been flushed
if (len > 0) {
packet_t p;
p.ch = mRfChLst[mRxChIdx];
p.len = len;
mNrf24.read(p.packet, len);
if (p.packet[0] != 0x00) {
mBufCtrl.push(p);
if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES)) // response from get information command
isLastPackage = (p.packet[9] > ALL_FRAMES); // > ALL_FRAMES indicates last packet received
else if (p.packet[0] == ( 0x0f + ALL_FRAMES) ) // response from MI get information command
isLastPackage = (p.packet[9] > 0x10); // > 0x10 indicates last packet received
else if ((p.packet[0] != 0x88) && (p.packet[0] != 0x92)) // ignore fragment number zero and MI status messages //#0 was p.packet[0] != 0x00 &&
isLastPackage = true; // response from dev control command
}
}
yield();
}
return isLastPackage;
}
void initPacket(uint64_t invId, uint8_t mid, uint8_t pid) {
#ifdef undef
if(mSerialDebug) {
DPRINT(DBG_VERBOSE, F("initPacket, mid: "));
DHEX(mid);
DBGPRINT(F(" pid: "));
DBGHEXLN(pid);
}
#endif
memset(mTxBuf, 0, MAX_RF_PAYLOAD_SIZE);
mTxBuf[0] = mid; // message id
CP_U32_BigEndian(&mTxBuf[1], (invId >> 8));
CP_U32_BigEndian(&mTxBuf[5], (DTU_RADIO_ID >> 8));
mTxBuf[9] = pid;
}
void sendPacket(uint64_t invId, uint8_t len, bool isRetransmit, bool appendCrc16=true) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:sendPacket"));
//DPRINTLN(DBG_VERBOSE, "sent packet: #" + String(mSendCnt));
// append crc's
if (appendCrc16 && (len > 10)) {
// crc control data
uint16_t crc = ah::crc16(&mTxBuf[10], len - 10);
mTxBuf[len++] = (crc >> 8) & 0xff;
mTxBuf[len++] = (crc ) & 0xff;
}
// crc over all
mTxBuf[len] = ah::crc8(mTxBuf, len);
len++;
// set TX and RX channels
mTxLastChIdx = mTxChIdx;
mTxChIdx = getNextSendChannelIndex ();
mRxChIdx = (mTxChIdx + 2) % RF_CHANNELS;
if(mSerialDebug) {
#ifdef undef
DPRINT(DBG_INFO, F("TX "));
DBGPRINT(String(len));
DBGPRINT("B Ch");
DBGPRINT(String(mRfChLst[mTxChIdx]));
DBGPRINT(F(" | "));
dumpBuf(mTxBuf, len);
#else
DPRINT(DBG_INFO, F("TX (Ch ") + String (mRfChLst[mTxChIdx]) + "), " +
String (len) + " Bytes, Quality:");
dumpSendQuality();
DBGPRINTLN("");
#endif
}
mNrf24.stopListening();
mNrf24.setChannel(mRfChLst[mTxChIdx]);
mNrf24.openWritingPipe(reinterpret_cast<uint8_t*>(&invId));
mNrf24.startWrite(mTxBuf, len, false); // false = request ACK response
if(isRetransmit)
mRetransmits++;
else
mSendCnt++;
}
volatile bool mIrqRcvd;
uint64_t DTU_RADIO_ID;
uint8_t mRfChLst[RF_CHANNELS];
int8_t mChQuality[RF_CHANNELS];
uint8_t mTxChIdx;
uint8_t mTxLastChIdx;
uint8_t mRxChIdx;
SPIClass* mSpi;
RF24 mNrf24;
uint8_t mTxBuf[MAX_RF_PAYLOAD_SIZE];
};
#endif /*__RADIO_H__*/

Loading…
Cancel
Save