Browse Source

Add files via upload

NRF24L01+ Radio send channel evaluation and hopping heuristik (helps to reduces TX retransmits in relation to TX count)
pull/1080/head
oberfritze 2 years ago
committed by GitHub
parent
commit
3d1a946bff
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 929
      src/hm/hmPayload.h
  2. 849
      src/hm/hmRadio.h

929
src/hm/hmPayload.h

@ -1,458 +1,471 @@
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// 2023 Ahoy, https://ahoydtu.de // 2023 Ahoy, https://ahoydtu.de
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/ // Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
#ifndef __HM_PAYLOAD_H__ #ifndef __HM_PAYLOAD_H__
#define __HM_PAYLOAD_H__ #define __HM_PAYLOAD_H__
#include "../utils/dbg.h" #include "../utils/dbg.h"
#include "../utils/crc.h" #include "../utils/crc.h"
#include "../config/config.h" #include "../config/config.h"
#include <Arduino.h> #include <Arduino.h>
typedef struct { typedef struct {
uint8_t txCmd; uint8_t txCmd;
uint8_t txId; uint8_t txId;
uint8_t invId; uint8_t invId;
uint32_t ts; uint32_t ts;
uint8_t data[MAX_PAYLOAD_ENTRIES][MAX_RF_PAYLOAD_SIZE]; uint8_t data[MAX_PAYLOAD_ENTRIES][MAX_RF_PAYLOAD_SIZE];
uint8_t len[MAX_PAYLOAD_ENTRIES]; uint8_t len[MAX_PAYLOAD_ENTRIES];
bool complete; bool complete;
uint8_t maxPackId; uint8_t maxPackId;
bool lastFound; bool lastFound;
uint8_t retransmits; uint8_t retransmits;
bool requested; bool requested;
bool gotFragment; bool gotFragment;
bool rxTmo; bool rxTmo;
} invPayload_t; uint8_t lastFragments; // for send quality measurement
} invPayload_t;
typedef std::function<void(uint8_t)> payloadListenerType;
typedef std::function<void(uint16_t alarmCode, uint32_t start, uint32_t end)> alarmListenerType; typedef std::function<void(uint8_t)> payloadListenerType;
typedef std::function<void(uint16_t alarmCode, uint32_t start, uint32_t end)> alarmListenerType;
template<class HMSYSTEM>
class HmPayload { template<class HMSYSTEM>
public: class HmPayload {
HmPayload() {} public:
HmPayload() {}
void setup(IApp *app, HMSYSTEM *sys, statistics_t *stat, uint8_t maxRetransmits, uint32_t *timestamp) {
mApp = app; void setup(IApp *app, HMSYSTEM *sys, statistics_t *stat, uint8_t maxRetransmits, uint32_t *timestamp) {
mSys = sys; mApp = app;
mStat = stat; mSys = sys;
mMaxRetrans = maxRetransmits; mStat = stat;
mTimestamp = timestamp; mMaxRetrans = maxRetransmits;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) { mTimestamp = timestamp;
reset(i); for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) {
} reset(i);
mSerialDebug = false; }
mHighPrioIv = NULL; mSerialDebug = false;
mCbAlarm = NULL; mHighPrioIv = NULL;
mCbPayload = NULL; mCbAlarm = NULL;
} mCbPayload = NULL;
}
void enableSerialDebug(bool enable) {
mSerialDebug = enable; void enableSerialDebug(bool enable) {
} mSerialDebug = enable;
}
void addPayloadListener(payloadListenerType cb) {
mCbPayload = cb; void addPayloadListener(payloadListenerType cb) {
} mCbPayload = cb;
}
void addAlarmListener(alarmListenerType cb) {
mCbAlarm = cb; void addAlarmListener(alarmListenerType cb) {
} mCbAlarm = cb;
}
void loop() {
if (NULL != mHighPrioIv) { void loop() {
ivSend(mHighPrioIv, true); if (NULL != mHighPrioIv) {
mHighPrioIv = NULL; ivSend(mHighPrioIv, true);
} mHighPrioIv = NULL;
} }
}
void zeroYieldDay(Inverter<> *iv) {
DPRINTLN(DBG_DEBUG, F("zeroYieldDay")); void zeroYieldDay(Inverter<> *iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); DPRINTLN(DBG_DEBUG, F("zeroYieldDay"));
uint8_t pos; record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
for(uint8_t ch = 0; ch <= iv->channels; ch++) { uint8_t pos;
pos = iv->getPosByChFld(ch, FLD_YD, rec); for(uint8_t ch = 0; ch <= iv->channels; ch++) {
iv->setValue(pos, rec, 0.0f); pos = iv->getPosByChFld(ch, FLD_YD, rec);
pos = iv->getPosByChFld(ch, FLD_MP, rec); iv->setValue(pos, rec, 0.0f);
iv->setValue(pos, rec, 0.0f); pos = iv->getPosByChFld(ch, FLD_MP, rec);
} iv->setValue(pos, rec, 0.0f);
} }
}
void zeroInverterValues(Inverter<> *iv) {
DPRINTLN(DBG_DEBUG, F("zeroInverterValues")); void zeroInverterValues(Inverter<> *iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); DPRINTLN(DBG_DEBUG, F("zeroInverterValues"));
for(uint8_t ch = 0; ch <= iv->channels; ch++) { record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
uint8_t pos = 0; for(uint8_t ch = 0; ch <= iv->channels; ch++) {
for(uint8_t fld = 0; fld < FLD_EVT; fld++) { uint8_t pos = 0;
switch(fld) { for(uint8_t fld = 0; fld < FLD_EVT; fld++) {
case FLD_YD: switch(fld) {
case FLD_YT: case FLD_YD:
case FLD_MP: case FLD_YT:
continue; case FLD_MP:
} continue;
pos = iv->getPosByChFld(ch, fld, rec); }
iv->setValue(pos, rec, 0.0f); pos = iv->getPosByChFld(ch, fld, rec);
} iv->setValue(pos, rec, 0.0f);
} }
}
notify(RealTimeRunData_Debug);
} notify(RealTimeRunData_Debug);
}
void ivSendHighPrio(Inverter<> *iv) {
mHighPrioIv = iv; void ivSendHighPrio(Inverter<> *iv) {
} mHighPrioIv = iv;
}
void ivSend(Inverter<> *iv, bool highPrio = false) {
bool save_rxTmo; void ivSend(Inverter<> *iv, bool highPrio = false) {
bool save_rxTmo;
if(!highPrio) {
if (mPayload[iv->id].requested) { if(!highPrio) {
if (!mPayload[iv->id].complete) if (mPayload[iv->id].requested) {
process(false); // no retransmit if (!mPayload[iv->id].complete)
process(false); // no retransmit
if (!mPayload[iv->id].complete) {
if (mSerialDebug) if (!mPayload[iv->id].complete) {
DPRINT_IVID(DBG_INFO, iv->id); if (mSerialDebug)
if (MAX_PAYLOAD_ENTRIES == mPayload[iv->id].maxPackId) { DPRINT_IVID(DBG_INFO, iv->id);
mStat->rxFailNoAnser++; // got nothing if (MAX_PAYLOAD_ENTRIES == mPayload[iv->id].maxPackId) {
if (mSerialDebug) mStat->rxFailNoAnser++; // got nothing
DBGPRINTLN(F("enqueued cmd failed/timeout")); if (mSerialDebug)
} else { DBGPRINTLN(F("enqueued cmd failed/timeout"));
mStat->rxFail++; // got fragments but not complete response } else {
if (mSerialDebug) { mStat->rxFail++; // got fragments but not complete response
DBGPRINT(F("no complete Payload received! (retransmits: ")); if (mSerialDebug) {
DBGPRINT(String(mPayload[iv->id].retransmits)); DBGPRINT(F("no complete Payload received! (retransmits: "));
DBGPRINTLN(F(")")); DBGPRINT(String(mPayload[iv->id].retransmits));
} DBGPRINTLN(F(")"));
} }
iv->setQueuedCmdFinished(); // command failed }
} iv->setQueuedCmdFinished(); // command failed
} }
} }
}
save_rxTmo = mPayload[iv->id].rxTmo;
reset(iv->id); save_rxTmo = mPayload[iv->id].rxTmo;
mPayload[iv->id].rxTmo = save_rxTmo; reset(iv->id);
mPayload[iv->id].requested = true; mPayload[iv->id].rxTmo = save_rxTmo;
mPayload[iv->id].requested = true;
yield();
#ifdef undef yield();
if (mSerialDebug) { #ifdef undef
DPRINT_IVID(DBG_INFO, iv->id); if (mSerialDebug) {
DBGPRINT(F("Requesting Inv SN ")); DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINTLN(String(iv->config->serial.u64, HEX)); DBGPRINT(F("Requesting Inv SN "));
} DBGPRINTLN(String(iv->config->serial.u64, HEX));
#endif }
#endif
if (iv->getDevControlRequest()) {
if (mSerialDebug) { if (iv->getDevControlRequest()) {
DPRINT_IVID(DBG_INFO, iv->id); if (mSerialDebug) {
DBGPRINT(F("Devcontrol request 0x")); DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(String(iv->devControlCmd, HEX)); DBGPRINT(F("Devcontrol request 0x"));
DBGPRINT(F(" power limit ")); DBGPRINT(String(iv->devControlCmd, HEX));
DBGPRINTLN(String(iv->powerLimit[0])); DBGPRINT(F(" power limit "));
} DBGPRINTLN(String(iv->powerLimit[0]));
mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit, false); }
mPayload[iv->id].txCmd = iv->devControlCmd; mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit, false);
//iv->clearCmdQueue(); mPayload[iv->id].txCmd = iv->devControlCmd;
//iv->enqueCommand<InfoCommand>(SystemConfigPara); // read back power limit //iv->clearCmdQueue();
} else { //iv->enqueCommand<InfoCommand>(SystemConfigPara); // read back power limit
uint8_t cmd = iv->getQueuedCmd(); } else {
DPRINT_IVID(DBG_INFO, iv->id); uint8_t cmd = iv->getQueuedCmd();
DBGPRINT(F("prepareDevInformCmd 0x")); DPRINT_IVID(DBG_INFO, iv->id);
DBGHEXLN(cmd); DBGPRINT(F("prepareDevInformCmd 0x"));
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false); DBGHEXLN(cmd);
mPayload[iv->id].txCmd = cmd; mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false);
} mPayload[iv->id].txCmd = cmd;
} }
}
void add(Inverter<> *iv, packet_t *p) {
if (p->packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command void add(Inverter<> *iv, packet_t *p) {
mPayload[iv->id].txId = p->packet[0]; if (p->packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command
DPRINTLN(DBG_DEBUG, F("Response from info request received")); mPayload[iv->id].txId = p->packet[0];
uint8_t *pid = &p->packet[9]; DPRINTLN(DBG_DEBUG, F("Response from info request received"));
if (*pid == 0x00) { uint8_t *pid = &p->packet[9];
DPRINTLN(DBG_DEBUG, F("fragment number zero received and ignored")); if (*pid == 0x00) {
} else { DPRINTLN(DBG_DEBUG, F("fragment number zero received and ignored"));
DPRINT(DBG_DEBUG, F("PID: 0x")); } else {
DPRINTLN(DBG_DEBUG, String(*pid, HEX)); DPRINT(DBG_DEBUG, F("PID: 0x"));
if ((*pid & 0x7F) < MAX_PAYLOAD_ENTRIES) { DPRINTLN(DBG_DEBUG, String(*pid, HEX));
memcpy(mPayload[iv->id].data[(*pid & 0x7F) - 1], &p->packet[10], p->len - 11); if ((*pid & 0x7F) < MAX_PAYLOAD_ENTRIES) {
mPayload[iv->id].len[(*pid & 0x7F) - 1] = p->len - 11; memcpy(mPayload[iv->id].data[(*pid & 0x7F) - 1], &p->packet[10], p->len - 11);
mPayload[iv->id].gotFragment = true; mPayload[iv->id].len[(*pid & 0x7F) - 1] = p->len - 11;
} mPayload[iv->id].gotFragment = true;
}
if ((*pid & ALL_FRAMES) == ALL_FRAMES) {
// Last packet if ((*pid & ALL_FRAMES) == ALL_FRAMES) {
if (((*pid & 0x7f) > mPayload[iv->id].maxPackId) || (MAX_PAYLOAD_ENTRIES == mPayload[iv->id].maxPackId)) { // Last packet
mPayload[iv->id].maxPackId = (*pid & 0x7f); if (((*pid & 0x7f) > mPayload[iv->id].maxPackId) || (MAX_PAYLOAD_ENTRIES == mPayload[iv->id].maxPackId)) {
if (*pid > 0x81) mPayload[iv->id].maxPackId = (*pid & 0x7f);
mPayload[iv->id].lastFound = true; if (*pid > 0x81)
} mPayload[iv->id].lastFound = true;
} }
} }
} else if (p->packet[0] == (TX_REQ_DEVCONTROL + ALL_FRAMES)) { // response from dev control command }
DPRINTLN(DBG_DEBUG, F("Response from devcontrol request received")); } else if (p->packet[0] == (TX_REQ_DEVCONTROL + ALL_FRAMES)) { // response from dev control command
DPRINTLN(DBG_DEBUG, F("Response from devcontrol request received"));
mPayload[iv->id].txId = p->packet[0];
iv->clearDevControlRequest(); mPayload[iv->id].txId = p->packet[0];
iv->clearDevControlRequest();
if ((p->packet[12] == ActivePowerContr) && (p->packet[13] == 0x00)) {
bool ok = true; if ((p->packet[12] == ActivePowerContr) && (p->packet[13] == 0x00)) {
bool ok = true;
if((p->packet[10] == 0x00) && (p->packet[11] == 0x00)) {
#ifdef AHOY_MQTT_SUPPORT if((p->packet[10] == 0x00) && (p->packet[11] == 0x00)) {
mApp->setMqttPowerLimitAck(iv); #ifdef AHOY_MQTT_SUPPORT
#endif mApp->setMqttPowerLimitAck(iv);
} else { #endif
ok = false; } else {
} ok = false;
DPRINT_IVID(DBG_INFO, iv->id); }
DBGPRINT(F("has ")); DPRINT_IVID(DBG_INFO, iv->id);
if(!ok) DBGPRINT(F("not ")); DBGPRINT(F("has "));
DBGPRINT(F("accepted power limit set point ")); if(!ok) DBGPRINT(F("not "));
DBGPRINT(String(iv->powerLimit[0])); DBGPRINT(F("accepted power limit set point "));
DBGPRINT(F(" with PowerLimitControl ")); DBGPRINT(String(iv->powerLimit[0]));
DBGPRINTLN(String(iv->powerLimit[1])); DBGPRINT(F(" with PowerLimitControl "));
DBGPRINTLN(String(iv->powerLimit[1]));
iv->clearCmdQueue();
iv->enqueCommand<InfoCommand>(SystemConfigPara); // read back power limit iv->clearCmdQueue();
if(mHighPrioIv == NULL) // do it immediately if possible iv->enqueCommand<InfoCommand>(SystemConfigPara); // read back power limit
mHighPrioIv = iv; if(mHighPrioIv == NULL) // do it immediately if possible
} mHighPrioIv = iv;
iv->devControlCmd = Init; }
} iv->devControlCmd = Init;
} }
}
void process(bool retransmit) {
for (uint8_t id = 0; id < mSys->getNumInverters(); id++) { void process(bool retransmit) {
Inverter<> *iv = mSys->getInverterByPos(id); for (uint8_t id = 0; id < mSys->getNumInverters(); id++) {
if (NULL == iv) Inverter<> *iv = mSys->getInverterByPos(id);
continue; // skip to next inverter if (NULL == iv)
continue; // skip to next inverter
if (IV_MI == iv->ivGen) // only process HM inverters
continue; // skip to next inverter if (IV_MI == iv->ivGen) // only process HM inverters
continue; // skip to next inverter
if ((mPayload[iv->id].txId != (TX_REQ_INFO + ALL_FRAMES)) && (0 != mPayload[iv->id].txId)) {
// no processing needed if txId is not 0x95 if ((mPayload[iv->id].txId != (TX_REQ_INFO + ALL_FRAMES)) && (0 != mPayload[iv->id].txId)) {
mPayload[iv->id].complete = true; // no processing needed if txId is not 0x95
continue; // skip to next inverter mPayload[iv->id].complete = true;
} continue; // skip to next inverter
}
if (!mPayload[iv->id].complete) {
bool crcPass, pyldComplete; if (!mPayload[iv->id].complete) {
crcPass = build(iv->id, &pyldComplete); bool crcPass, pyldComplete;
if (!crcPass && !pyldComplete) { // payload not complete uint8 Fragments;
if ((mPayload[iv->id].requested) && (retransmit)) { crcPass = build(iv->id, &pyldComplete, &Fragments);
if (mPayload[iv->id].retransmits < mMaxRetrans) {
mPayload[iv->id].retransmits++; // evaluate quality of send channel with rcv params
if (iv->devControlCmd == Restart || iv->devControlCmd == CleanState_LockAndAlarm) { mSys->Radio.evalSendChannelQuality (crcPass, mPayload[iv->id].retransmits,
// This is required to prevent retransmissions without answer. Fragments, mPayload[iv->id].lastFragments);
DPRINTLN(DBG_INFO, F("Prevent retransmit on Restart / CleanState_LockAndAlarm...")); mPayload[iv->id].lastFragments = Fragments;
mPayload[iv->id].retransmits = mMaxRetrans; if (!crcPass && !pyldComplete) { // payload not complete
} else if(iv->devControlCmd == ActivePowerContr) { if ((mPayload[iv->id].requested) && (retransmit)) {
DPRINT_IVID(DBG_INFO, iv->id); if (mPayload[iv->id].retransmits < mMaxRetrans) {
DPRINTLN(DBG_INFO, F("retransmit power limit")); mPayload[iv->id].retransmits++;
mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit, true); if (iv->devControlCmd == Restart || iv->devControlCmd == CleanState_LockAndAlarm) {
} else { // This is required to prevent retransmissions without answer.
if(false == mPayload[iv->id].gotFragment) { DPRINTLN(DBG_INFO, F("Prevent retransmit on Restart / CleanState_LockAndAlarm..."));
DPRINT_IVID(DBG_WARN, iv->id); mPayload[iv->id].retransmits = mMaxRetrans;
if (mPayload[iv->id].rxTmo) { } else if(iv->devControlCmd == ActivePowerContr) {
DBGPRINTLN(F("nothing received")); DPRINT_IVID(DBG_INFO, iv->id);
mPayload[iv->id].retransmits = mMaxRetrans; DPRINTLN(DBG_INFO, F("retransmit power limit"));
} else { mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit, true);
DBGPRINTLN(F("nothing received: complete retransmit")); } else {
mPayload[iv->id].txCmd = iv->getQueuedCmd(); if(false == mPayload[iv->id].gotFragment) {
DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") prepareDevInformCmd 0x") + String(mPayload[iv->id].txCmd, HEX)); DPRINT_IVID(DBG_WARN, iv->id);
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex, true); if (mPayload[iv->id].rxTmo) {
} DBGPRINTLN(F("nothing received"));
} else { mPayload[iv->id].retransmits = mMaxRetrans;
for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId - 1); i++) { } else {
if (mPayload[iv->id].len[i] == 0) { DBGPRINTLN(F("nothing received: complete retransmit"));
DPRINT_IVID(DBG_WARN, iv->id); mPayload[iv->id].txCmd = iv->getQueuedCmd();
DBGPRINT(F("Frame ")); DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") prepareDevInformCmd 0x") + String(mPayload[iv->id].txCmd, HEX));
DBGPRINT(String(i + 1)); mSys->Radio.prepareDevInformCmd(iv->radioId.u64, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex, true);
DBGPRINTLN(F(" missing: Request Retransmit")); }
mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, (SINGLE_FRAME + i), true); } else {
break; // only request retransmit one frame per loop for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId - 1); i++) {
} if (mPayload[iv->id].len[i] == 0) {
yield(); DPRINT_IVID(DBG_WARN, iv->id);
} DBGPRINT(F("Frame "));
} DBGPRINT(String(i + 1));
} DBGPRINTLN(F(" missing: Request Retransmit"));
} else if (false == mPayload[iv->id].gotFragment) { mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, (SINGLE_FRAME + i), true);
// only if there is no sign of life break; // only request retransmit one frame per loop
mPayload[iv->id].rxTmo = true; // inv might be down, no complete retransmit anymore }
} yield();
} }
} else if(!crcPass && pyldComplete) { // crc error on complete Payload }
if (mPayload[iv->id].retransmits < mMaxRetrans) { }
mPayload[iv->id].retransmits++; } else if (false == mPayload[iv->id].gotFragment) {
DPRINTLN(DBG_WARN, F("CRC Error: Request Complete Retransmit")); // only if there is no sign of life
mPayload[iv->id].txCmd = iv->getQueuedCmd(); mPayload[iv->id].rxTmo = true; // inv might be down, no complete retransmit anymore
DPRINT_IVID(DBG_INFO, iv->id); }
DBGPRINT(F("prepareDevInformCmd 0x")); }
DBGHEXLN(mPayload[iv->id].txCmd); } else if(!crcPass && pyldComplete) { // crc error on complete Payload
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex, true); if (mPayload[iv->id].retransmits < mMaxRetrans) {
} else if (false == mPayload[iv->id].gotFragment) { mPayload[iv->id].retransmits++;
// only if there is no sign of life DPRINTLN(DBG_WARN, F("CRC Error: Request Complete Retransmit"));
mPayload[iv->id].rxTmo = true; // inv might be down, no complete retransmit anymore mPayload[iv->id].txCmd = iv->getQueuedCmd();
} DPRINT_IVID(DBG_INFO, iv->id);
} else { // payload complete DBGPRINT(F("prepareDevInformCmd 0x"));
#ifdef undef DBGHEXLN(mPayload[iv->id].txCmd);
DPRINT(DBG_INFO, F("procPyld: cmd: 0x")); mSys->Radio.prepareDevInformCmd(iv->radioId.u64, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex, true);
DBGHEXLN(mPayload[iv->id].txCmd); } else if (false == mPayload[iv->id].gotFragment) {
DPRINT(DBG_INFO, F("procPyld: txid: 0x")); // only if there is no sign of life
DBGHEXLN(mPayload[iv->id].txId); mPayload[iv->id].rxTmo = true; // inv might be down, no complete retransmit anymore
#endif }
DPRINT(DBG_DEBUG, F("procPyld: max: ")); } else { // payload complete
DPRINTLN(DBG_DEBUG, String(mPayload[iv->id].maxPackId)); #ifdef undef
DPRINT(DBG_INFO, F("procPyld: cmd: 0x"));
record_t<> *rec = iv->getRecordStruct(mPayload[iv->id].txCmd); // choose the parser DBGHEXLN(mPayload[iv->id].txCmd);
mPayload[iv->id].complete = true; DPRINT(DBG_INFO, F("procPyld: txid: 0x"));
mPayload[iv->id].rxTmo = false; DBGHEXLN(mPayload[iv->id].txId);
#endif
uint8_t payload[128]; DPRINT(DBG_DEBUG, F("procPyld: max: "));
uint8_t payloadLen = 0; DPRINTLN(DBG_DEBUG, String(mPayload[iv->id].maxPackId));
memset(payload, 0, 128); record_t<> *rec = iv->getRecordStruct(mPayload[iv->id].txCmd); // choose the parser
mPayload[iv->id].complete = true;
for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i++) { mPayload[iv->id].rxTmo = false;
memcpy(&payload[payloadLen], mPayload[iv->id].data[i], (mPayload[iv->id].len[i]));
payloadLen += (mPayload[iv->id].len[i]); uint8_t payload[128];
yield(); uint8_t payloadLen = 0;
}
payloadLen -= 2; memset(payload, 0, 128);
#ifdef undef for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i++) {
if (mSerialDebug) { memcpy(&payload[payloadLen], mPayload[iv->id].data[i], (mPayload[iv->id].len[i]));
DPRINT(DBG_INFO, F("Payload (")); payloadLen += (mPayload[iv->id].len[i]);
DBGPRINT(String(payloadLen)); yield();
DBGPRINT(F("): ")); }
mSys->Radio.dumpBuf(payload, payloadLen); payloadLen -= 2;
}
#endif #ifdef undef
if (mSerialDebug) {
if (NULL == rec) { DPRINT(DBG_INFO, F("Payload ("));
DPRINTLN(DBG_ERROR, F("record is NULL!")); DBGPRINT(String(payloadLen));
} else if ((rec->pyldLen == payloadLen) || (0 == rec->pyldLen)) { DBGPRINT(F("): "));
if (mPayload[iv->id].txId == (TX_REQ_INFO + ALL_FRAMES)) mSys->Radio.dumpBuf(payload, payloadLen);
mStat->rxSuccess++; }
#endif
rec->ts = mPayload[iv->id].ts;
for (uint8_t i = 0; i < rec->length; i++) { if (NULL == rec) {
iv->addValue(i, payload, rec); DPRINTLN(DBG_ERROR, F("record is NULL!"));
yield(); } else if ((rec->pyldLen == payloadLen) || (0 == rec->pyldLen)) {
} if (mPayload[iv->id].txId == (TX_REQ_INFO + ALL_FRAMES))
iv->doCalculations(); mStat->rxSuccess++;
uint8_t pos = iv->getPosByChFld(CH0, FLD_PAC, rec);
if (pos != 0xff) { rec->ts = mPayload[iv->id].ts;
float ac_power = iv->getValue(pos, rec); for (uint8_t i = 0; i < rec->length; i++) {
mSys->handle_pac (iv, (uint16_t)(ac_power+0.5f)); iv->addValue(i, payload, rec);
} yield();
}
notify(mPayload[iv->id].txCmd); iv->doCalculations();
uint8_t pos = iv->getPosByChFld(CH0, FLD_PAC, rec);
if(AlarmData == mPayload[iv->id].txCmd) {
uint8_t i = 0; if (pos != 0xff) {
uint16_t code; float ac_power = iv->getValue(pos, rec);
uint32_t start, end; mSys->handle_pac (iv, (uint16_t)(ac_power+0.5f));
while(1) { }
code = iv->parseAlarmLog(i++, payload, payloadLen, &start, &end);
if(0 == code) notify(mPayload[iv->id].txCmd);
break;
if (NULL != mCbAlarm) if(AlarmData == mPayload[iv->id].txCmd) {
(mCbAlarm)(code, start, end); uint8_t i = 0;
yield(); uint16_t code;
} uint32_t start, end;
} while(1) {
} else { code = iv->parseAlarmLog(i++, payload, payloadLen, &start, &end);
DPRINT(DBG_ERROR, F("plausibility check failed, expected ")); if(0 == code)
DBGPRINT(String(rec->pyldLen)); break;
DBGPRINTLN(F(" bytes")); if (NULL != mCbAlarm)
mStat->rxFail++; (mCbAlarm)(code, start, end);
} yield();
}
iv->setQueuedCmdFinished(); }
} } else {
} DPRINT(DBG_ERROR, F("plausibility check failed, expected "));
yield(); DBGPRINT(String(rec->pyldLen));
} DBGPRINTLN(F(" bytes"));
} mStat->rxFail++;
}
private:
void notify(uint8_t val) { iv->setQueuedCmdFinished();
if(NULL != mCbPayload) }
(mCbPayload)(val); }
} yield();
}
void notify(uint16_t code, uint32_t start, uint32_t endTime) { }
if (NULL != mCbAlarm)
(mCbAlarm)(code, start, endTime); private:
} void notify(uint8_t val) {
if(NULL != mCbPayload)
bool build(uint8_t id, bool *complete) { (mCbPayload)(val);
DPRINTLN(DBG_VERBOSE, F("build")); }
uint16_t crc = 0xffff, crcRcv = 0x0000;
if (mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES) void notify(uint16_t code, uint32_t start, uint32_t endTime) {
mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES; if (NULL != mCbAlarm)
(mCbAlarm)(code, start, endTime);
// check if all fragments are there }
*complete = true;
for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) { bool build(uint8_t id, bool *complete, uint8_t *fragments) {
if(mPayload[id].len[i] == 0) DPRINTLN(DBG_VERBOSE, F("build"));
*complete = false; uint16_t crc = 0xffff, crcRcv = 0x0000;
} if (mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES)
if(!*complete) mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES;
return false;
// check if all fragments are there
for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) { *complete = true;
if (mPayload[id].len[i] > 0) { *fragments = 0;
if (i == (mPayload[id].maxPackId - 1)) { for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) {
crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc); if(mPayload[id].len[i] == 0) {
crcRcv = (mPayload[id].data[i][mPayload[id].len[i] - 2] << 8) | (mPayload[id].data[i][mPayload[id].len[i] - 1]); *complete = false;
} else } else {
crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i], crc); (*fragments)++;
} }
yield(); }
} if(!*complete)
return false;
return (crc == crcRcv) ? true : false;
} for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) {
if (mPayload[id].len[i] > 0) {
void reset(uint8_t id) { if (i == (mPayload[id].maxPackId - 1)) {
#ifdef undef crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc);
DPRINT_IVID(DBG_INFO, id); crcRcv = (mPayload[id].data[i][mPayload[id].len[i] - 2] << 8) | (mPayload[id].data[i][mPayload[id].len[i] - 1]);
DBGPRINTLN(F("resetPayload")); } else
#endif crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i], crc);
memset(mPayload[id].len, 0, MAX_PAYLOAD_ENTRIES); }
mPayload[id].txCmd = 0; yield();
mPayload[id].gotFragment = false; }
mPayload[id].retransmits = 0;
mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES; return (crc == crcRcv) ? true : false;
mPayload[id].lastFound = false; }
mPayload[id].complete = false;
mPayload[id].requested = false; void reset(uint8_t id) {
mPayload[id].ts = *mTimestamp; #ifdef undef
mPayload[id].rxTmo = true; // design: dont start with complete retransmit DPRINT_IVID(DBG_INFO, id);
} DBGPRINTLN(F("resetPayload"));
#endif
IApp *mApp; memset(mPayload[id].len, 0, MAX_PAYLOAD_ENTRIES);
HMSYSTEM *mSys; mPayload[id].txCmd = 0;
statistics_t *mStat; mPayload[id].gotFragment = false;
uint8_t mMaxRetrans; mPayload[id].retransmits = 0;
uint32_t *mTimestamp; mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES;
invPayload_t mPayload[MAX_NUM_INVERTERS]; mPayload[id].lastFound = false;
bool mSerialDebug; mPayload[id].complete = false;
Inverter<> *mHighPrioIv; mPayload[id].requested = false;
mPayload[id].ts = *mTimestamp;
alarmListenerType mCbAlarm; mPayload[id].rxTmo = true; // design: dont start with complete retransmit
payloadListenerType mCbPayload; mPayload[id].lastFragments = 0; // for send channel quality measurement
}; }
#endif /*__HM_PAYLOAD_H__*/ IApp *mApp;
HMSYSTEM *mSys;
statistics_t *mStat;
uint8_t mMaxRetrans;
uint32_t *mTimestamp;
invPayload_t mPayload[MAX_NUM_INVERTERS];
bool mSerialDebug;
Inverter<> *mHighPrioIv;
alarmListenerType mCbAlarm;
payloadListenerType mCbPayload;
};
#endif /*__HM_PAYLOAD_H__*/

849
src/hm/hmRadio.h

@ -1,379 +1,470 @@
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// 2023 Ahoy, https://github.com/lumpapu/ahoy // 2023 Ahoy, https://github.com/lumpapu/ahoy
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/ // Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
#ifndef __RADIO_H__ #ifndef __RADIO_H__
#define __RADIO_H__ #define __RADIO_H__
#include "../utils/dbg.h" #include "../utils/dbg.h"
#include <RF24.h> #include <RF24.h>
#include "../utils/crc.h" #include "../utils/crc.h"
#include "../config/config.h" #include "../config/config.h"
#include "SPI.h" #include "SPI.h"
#define SPI_SPEED 1000000 #define SPI_SPEED 1000000
#define RF_CHANNELS 5 #define RF_CHANNELS 5
#define TX_REQ_INFO 0x15 #define TX_REQ_INFO 0x15
#define TX_REQ_DEVCONTROL 0x51 #define TX_REQ_DEVCONTROL 0x51
#define ALL_FRAMES 0x80 #define ALL_FRAMES 0x80
#define SINGLE_FRAME 0x81 #define SINGLE_FRAME 0x81
const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"}; #define SEND_CHANNEL_QUALITY_INTEGRATOR_SIZE 4
#define SEND_CHANNEL_MAX_QUALITY 4
#define SEND_CHANNEL_MIN_QUALITY -6
//----------------------------------------------------------------------------- #define SEND_CHANNEL_QUALITY_GOOD 2
// MACROS #define SEND_CHANNEL_QUALITY_OK 1
//----------------------------------------------------------------------------- #define SEND_CHANNEL_QUALITY_NEUTRAL 0
#define CP_U32_LittleEndian(buf, v) ({ \ #define SEND_CHANNEL_QUALITY_LOW -1
uint8_t *b = buf; \ #define SEND_CHANNEL_QUALITY_BAD -2
b[0] = ((v >> 24) & 0xff); \
b[1] = ((v >> 16) & 0xff); \ const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"};
b[2] = ((v >> 8) & 0xff); \
b[3] = ((v ) & 0xff); \
}) //-----------------------------------------------------------------------------
// MACROS
#define CP_U32_BigEndian(buf, v) ({ \ //-----------------------------------------------------------------------------
uint8_t *b = buf; \ #define CP_U32_LittleEndian(buf, v) ({ \
b[3] = ((v >> 24) & 0xff); \ uint8_t *b = buf; \
b[2] = ((v >> 16) & 0xff); \ b[0] = ((v >> 24) & 0xff); \
b[1] = ((v >> 8) & 0xff); \ b[1] = ((v >> 16) & 0xff); \
b[0] = ((v ) & 0xff); \ b[2] = ((v >> 8) & 0xff); \
}) b[3] = ((v ) & 0xff); \
})
#define BIT_CNT(x) ((x)<<3)
#define CP_U32_BigEndian(buf, v) ({ \
//----------------------------------------------------------------------------- uint8_t *b = buf; \
// HM Radio class b[3] = ((v >> 24) & 0xff); \
//----------------------------------------------------------------------------- b[2] = ((v >> 16) & 0xff); \
template <uint8_t IRQ_PIN = DEF_IRQ_PIN, uint8_t CE_PIN = DEF_CE_PIN, uint8_t CS_PIN = DEF_CS_PIN, uint8_t AMP_PWR = RF24_PA_LOW, uint8_t SCLK_PIN = DEF_SCLK_PIN, uint8_t MOSI_PIN = DEF_MOSI_PIN, uint8_t MISO_PIN = DEF_MISO_PIN> b[1] = ((v >> 8) & 0xff); \
class HmRadio { b[0] = ((v ) & 0xff); \
public: })
HmRadio() : mNrf24(CE_PIN, CS_PIN, SPI_SPEED) {
if(mSerialDebug) { #define BIT_CNT(x) ((x)<<3)
DPRINT(DBG_VERBOSE, F("hmRadio.h : HmRadio():mNrf24(CE_PIN: "));
DBGPRINT(String(CE_PIN)); //-----------------------------------------------------------------------------
DBGPRINT(F(", CS_PIN: ")); // HM Radio class
DBGPRINT(String(CS_PIN)); //-----------------------------------------------------------------------------
DBGPRINT(F(", SPI_SPEED: ")); template <uint8_t IRQ_PIN = DEF_IRQ_PIN, uint8_t CE_PIN = DEF_CE_PIN, uint8_t CS_PIN = DEF_CS_PIN, uint8_t AMP_PWR = RF24_PA_LOW, uint8_t SCLK_PIN = DEF_SCLK_PIN, uint8_t MOSI_PIN = DEF_MOSI_PIN, uint8_t MISO_PIN = DEF_MISO_PIN>
DBGPRINT(String(SPI_SPEED)); class HmRadio {
DBGPRINTLN(F(")")); public:
} HmRadio() : mNrf24(CE_PIN, CS_PIN, SPI_SPEED) {
if(mSerialDebug) {
// Depending on the program, the module can work on 2403, 2423, 2440, 2461 or 2475MHz. DPRINT(DBG_VERBOSE, F("hmRadio.h : HmRadio():mNrf24(CE_PIN: "));
// Channel List 2403, 2423, 2440, 2461, 2475MHz DBGPRINT(String(CE_PIN));
mRfChLst[0] = 03; DBGPRINT(F(", CS_PIN: "));
mRfChLst[1] = 23; DBGPRINT(String(CS_PIN));
mRfChLst[2] = 40; DBGPRINT(F(", SPI_SPEED: "));
mRfChLst[3] = 61; DBGPRINT(String(SPI_SPEED));
mRfChLst[4] = 75; DBGPRINTLN(F(")"));
}
// default channels
mTxChIdx = 2; // Start TX with 40 // Depending on the program, the module can work on 2403, 2423, 2440, 2461 or 2475MHz.
mRxChIdx = 0; // Start RX with 03 // Channel List 2403, 2423, 2440, 2461, 2475MHz
mRfChLst[0] = 03;
mSendCnt = 0; mRfChLst[1] = 23;
mRetransmits = 0; mRfChLst[2] = 40;
mRfChLst[3] = 61;
mSerialDebug = false; mRfChLst[4] = 75;
mIrqRcvd = false;
} // default channels
~HmRadio() {} mTxChIdx = 2; // Start TX with 40
mRxChIdx = 0; // Start RX with 03
void setup(uint8_t ampPwr = RF24_PA_LOW, uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN, uint8_t sclk = SCLK_PIN, uint8_t mosi = MOSI_PIN, uint8_t miso = MISO_PIN) {
DPRINTLN(DBG_VERBOSE, F("hmRadio.h:setup")); mSendCnt = 0;
pinMode(irq, INPUT_PULLUP); mRetransmits = 0;
uint32_t dtuSn = 0x87654321; mSerialDebug = false;
uint32_t chipID = 0; // will be filled with last 3 bytes of MAC mIrqRcvd = false;
#ifdef ESP32 }
uint64_t MAC = ESP.getEfuseMac(); ~HmRadio() {}
chipID = ((MAC >> 8) & 0xFF0000) | ((MAC >> 24) & 0xFF00) | ((MAC >> 40) & 0xFF);
#else void setup(uint8_t ampPwr = RF24_PA_LOW, uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN, uint8_t sclk = SCLK_PIN, uint8_t mosi = MOSI_PIN, uint8_t miso = MISO_PIN) {
chipID = ESP.getChipId(); DPRINTLN(DBG_VERBOSE, F("hmRadio.h:setup"));
#endif pinMode(irq, INPUT_PULLUP);
if(chipID) {
dtuSn = 0x80000000; // the first digit is an 8 for DTU production year 2022, the rest is filled with the ESP chipID in decimal uint32_t dtuSn = 0x87654321;
for(int i = 0; i < 7; i++) { uint32_t chipID = 0; // will be filled with last 3 bytes of MAC
dtuSn |= (chipID % 10) << (i * 4); #ifdef ESP32
chipID /= 10; uint64_t MAC = ESP.getEfuseMac();
} chipID = ((MAC >> 8) & 0xFF0000) | ((MAC >> 24) & 0xFF00) | ((MAC >> 40) & 0xFF);
} #else
// change the byte order of the DTU serial number and append the required 0x01 at the end chipID = ESP.getChipId();
DTU_RADIO_ID = ((uint64_t)(((dtuSn >> 24) & 0xFF) | ((dtuSn >> 8) & 0xFF00) | ((dtuSn << 8) & 0xFF0000) | ((dtuSn << 24) & 0xFF000000)) << 8) | 0x01; #endif
if(chipID) {
#ifdef ESP32 dtuSn = 0x80000000; // the first digit is an 8 for DTU production year 2022, the rest is filled with the ESP chipID in decimal
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3 for(int i = 0; i < 7; i++) {
mSpi = new SPIClass(FSPI); dtuSn |= (chipID % 10) << (i * 4);
#else chipID /= 10;
mSpi = new SPIClass(VSPI); }
#endif }
mSpi->begin(sclk, miso, mosi, cs); // change the byte order of the DTU serial number and append the required 0x01 at the end
#else DTU_RADIO_ID = ((uint64_t)(((dtuSn >> 24) & 0xFF) | ((dtuSn >> 8) & 0xFF00) | ((dtuSn << 8) & 0xFF0000) | ((dtuSn << 24) & 0xFF000000)) << 8) | 0x01;
//the old ESP82xx cannot freely place their SPI pins
mSpi = new SPIClass(); #ifdef ESP32
mSpi->begin(); #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
#endif mSpi = new SPIClass(FSPI);
mNrf24.begin(mSpi, ce, cs); #else
mNrf24.setRetries(3, 15); // 3*250us + 250us and 15 loops -> 15ms mSpi = new SPIClass(VSPI);
#endif
mNrf24.setChannel(mRfChLst[mRxChIdx]); mSpi->begin(sclk, miso, mosi, cs);
mNrf24.startListening(); #else
mNrf24.setDataRate(RF24_250KBPS); //the old ESP82xx cannot freely place their SPI pins
mNrf24.setAutoAck(true); mSpi = new SPIClass();
mNrf24.enableDynamicPayloads(); mSpi->begin();
mNrf24.setCRCLength(RF24_CRC_16); #endif
mNrf24.setAddressWidth(5); mNrf24.begin(mSpi, ce, cs);
mNrf24.openReadingPipe(1, reinterpret_cast<uint8_t*>(&DTU_RADIO_ID)); mNrf24.setRetries(3, 15); // 3*250us + 250us and 15 loops -> 15ms
// enable all receiving interrupts mNrf24.setChannel(mRfChLst[mRxChIdx]);
mNrf24.maskIRQ(false, false, false); mNrf24.startListening();
mNrf24.setDataRate(RF24_250KBPS);
DPRINT(DBG_INFO, F("RF24 Amp Pwr: RF24_PA_")); mNrf24.setAutoAck(true);
DPRINTLN(DBG_INFO, String(rf24AmpPowerNames[ampPwr])); mNrf24.enableDynamicPayloads();
mNrf24.setPALevel(ampPwr & 0x03); mNrf24.setCRCLength(RF24_CRC_16);
mNrf24.setAddressWidth(5);
if(mNrf24.isChipConnected()) { mNrf24.openReadingPipe(1, reinterpret_cast<uint8_t*>(&DTU_RADIO_ID));
DPRINTLN(DBG_INFO, F("Radio Config:"));
mNrf24.printPrettyDetails(); // enable all receiving interrupts
} mNrf24.maskIRQ(false, false, false);
else
DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring")); DPRINT(DBG_INFO, F("RF24 Amp Pwr: RF24_PA_"));
} DPRINTLN(DBG_INFO, String(rf24AmpPowerNames[ampPwr]));
mNrf24.setPALevel(ampPwr & 0x03);
bool loop(void) {
if (!mIrqRcvd) if(mNrf24.isChipConnected()) {
return false; // nothing to do DPRINTLN(DBG_INFO, F("Radio Config:"));
mIrqRcvd = false; mNrf24.printPrettyDetails();
bool tx_ok, tx_fail, rx_ready; }
mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH else
mNrf24.flush_tx(); // empty TX FIFO DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
}
// start listening
mNrf24.setChannel(mRfChLst[mRxChIdx]); bool loop(void) {
mNrf24.startListening(); if (!mIrqRcvd)
return false; // nothing to do
uint32_t startMicros = micros(); mIrqRcvd = false;
uint32_t loopMillis = millis(); bool tx_ok, tx_fail, rx_ready;
while (millis()-loopMillis < 400) { mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
while (micros()-startMicros < 5110) { // listen (4088us or?) 5110us to each channel mNrf24.flush_tx(); // empty TX FIFO
if (mIrqRcvd) {
mIrqRcvd = false; // start listening
if (getReceived()) { // everything received mNrf24.setChannel(mRfChLst[mRxChIdx]);
return true; mNrf24.startListening();
}
} uint32_t startMicros = micros();
yield(); uint32_t loopMillis = millis();
} while (millis()-loopMillis < 400) {
// switch to next RX channel while (micros()-startMicros < 5110) { // listen (4088us or?) 5110us to each channel
startMicros = micros(); if (mIrqRcvd) {
if(++mRxChIdx >= RF_CHANNELS) mIrqRcvd = false;
mRxChIdx = 0; if (getReceived()) { // everything received
mNrf24.setChannel(mRfChLst[mRxChIdx]); return true;
yield(); }
} }
// not finished but time is over yield();
return true; }
} // switch to next RX channel
startMicros = micros();
void handleIntr(void) { if(++mRxChIdx >= RF_CHANNELS)
mIrqRcvd = true; mRxChIdx = 0;
} mNrf24.setChannel(mRfChLst[mRxChIdx]);
yield();
bool isChipConnected(void) { }
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:isChipConnected")); // not finished but time is over
return mNrf24.isChipConnected(); return true;
} }
void enableDebug() {
mSerialDebug = true; void handleIntr(void) {
} mIrqRcvd = true;
}
void sendControlPacket(uint64_t invId, uint8_t cmd, uint16_t *data, bool isRetransmit, bool isNoMI = true) {
DPRINT(DBG_INFO, F("sendControlPacket cmd: 0x")); bool isChipConnected(void) {
DBGHEXLN(cmd); //DPRINTLN(DBG_VERBOSE, F("hmRadio.h:isChipConnected"));
initPacket(invId, TX_REQ_DEVCONTROL, SINGLE_FRAME); return mNrf24.isChipConnected();
uint8_t cnt = 10; }
if (isNoMI) { void enableDebug() {
mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor mSerialDebug = true;
mTxBuf[cnt++] = 0x00; }
if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet
mTxBuf[cnt++] = ((data[0] * 10) >> 8) & 0xff; // power limit void sendControlPacket(uint64_t invId, uint8_t cmd, uint16_t *data, bool isRetransmit, bool isNoMI = true) {
mTxBuf[cnt++] = ((data[0] * 10) ) & 0xff; // power limit DPRINT(DBG_INFO, F("sendControlPacket cmd: 0x"));
mTxBuf[cnt++] = ((data[1] ) >> 8) & 0xff; // setting for persistens handlings DBGHEXLN(cmd);
mTxBuf[cnt++] = ((data[1] ) ) & 0xff; // setting for persistens handling initPacket(invId, TX_REQ_DEVCONTROL, SINGLE_FRAME);
} uint8_t cnt = 10;
} else { //MI 2nd gen. specific if (isNoMI) {
switch (cmd) { mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor
case TurnOn: mTxBuf[cnt++] = 0x00;
//mTxBuf[0] = 0x50; if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet
mTxBuf[9] = 0x55; mTxBuf[cnt++] = ((data[0] * 10) >> 8) & 0xff; // power limit
mTxBuf[10] = 0xaa; mTxBuf[cnt++] = ((data[0] * 10) ) & 0xff; // power limit
break; mTxBuf[cnt++] = ((data[1] ) >> 8) & 0xff; // setting for persistens handlings
case TurnOff: mTxBuf[cnt++] = ((data[1] ) ) & 0xff; // setting for persistens handling
mTxBuf[9] = 0xaa; }
mTxBuf[10] = 0x55; } else { //MI 2nd gen. specific
break; switch (cmd) {
case ActivePowerContr: case TurnOn:
cnt++; //mTxBuf[0] = 0x50;
mTxBuf[9] = 0x5a; mTxBuf[9] = 0x55;
mTxBuf[10] = 0x5a; mTxBuf[10] = 0xaa;
mTxBuf[11] = data[0]; // power limit break;
break; case TurnOff:
default: mTxBuf[9] = 0xaa;
return; mTxBuf[10] = 0x55;
} break;
cnt++; case ActivePowerContr:
} cnt++;
sendPacket(invId, cnt, isRetransmit, isNoMI); mTxBuf[9] = 0x5a;
} mTxBuf[10] = 0x5a;
mTxBuf[11] = data[0]; // power limit
void prepareDevInformCmd(uint64_t invId, uint8_t cmd, uint32_t ts, uint16_t alarmMesId, bool isRetransmit, uint8_t reqfld=TX_REQ_INFO) { // might not be necessary to add additional arg. break;
if(mSerialDebug) { default:
DPRINT(DBG_DEBUG, F("prepareDevInformCmd 0x")); return;
DPRINTLN(DBG_DEBUG,String(cmd, HEX)); }
} cnt++;
initPacket(invId, reqfld, ALL_FRAMES); }
mTxBuf[10] = cmd; // cid sendPacket(invId, cnt, isRetransmit, isNoMI);
mTxBuf[11] = 0x00; }
CP_U32_LittleEndian(&mTxBuf[12], ts);
if (cmd == RealTimeRunData_Debug || cmd == AlarmData ) { void prepareDevInformCmd(uint64_t invId, uint8_t cmd, uint32_t ts, uint16_t alarmMesId, bool isRetransmit, uint8_t reqfld=TX_REQ_INFO) { // might not be necessary to add additional arg.
mTxBuf[18] = (alarmMesId >> 8) & 0xff; if(mSerialDebug) {
mTxBuf[19] = (alarmMesId ) & 0xff; DPRINT(DBG_DEBUG, F("prepareDevInformCmd 0x"));
} DPRINTLN(DBG_DEBUG,String(cmd, HEX));
sendPacket(invId, 24, isRetransmit, true); }
} initPacket(invId, reqfld, ALL_FRAMES);
mTxBuf[10] = cmd; // cid
void sendCmdPacket(uint64_t invId, uint8_t mid, uint8_t pid, bool isRetransmit, bool appendCrc16=true) { mTxBuf[11] = 0x00;
initPacket(invId, mid, pid); CP_U32_LittleEndian(&mTxBuf[12], ts);
sendPacket(invId, 10, isRetransmit, appendCrc16); if (cmd == RealTimeRunData_Debug || cmd == AlarmData ) {
} mTxBuf[18] = (alarmMesId >> 8) & 0xff;
mTxBuf[19] = (alarmMesId ) & 0xff;
void dumpBuf(uint8_t buf[], uint8_t len) { }
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:dumpBuf")); sendPacket(invId, 24, isRetransmit, true);
for(uint8_t i = 0; i < len; i++) { }
DHEX(buf[i]);
DBGPRINT(" "); void sendCmdPacket(uint64_t invId, uint8_t mid, uint8_t pid, bool isRetransmit, bool appendCrc16=true) {
} initPacket(invId, mid, pid);
DBGPRINTLN(""); sendPacket(invId, 10, isRetransmit, appendCrc16);
} }
uint8_t getDataRate(void) { void dumpBuf(uint8_t buf[], uint8_t len) {
if(!mNrf24.isChipConnected()) //DPRINTLN(DBG_VERBOSE, F("hmRadio.h:dumpBuf"));
return 3; // unkown for(uint8_t i = 0; i < len; i++) {
return mNrf24.getDataRate(); DHEX(buf[i]);
} DBGPRINT(" ");
}
bool isPVariant(void) { DBGPRINTLN("");
return mNrf24.isPVariant(); }
}
uint8_t getDataRate(void) {
std::queue<packet_t> mBufCtrl; if(!mNrf24.isChipConnected())
return 3; // unkown
uint32_t mSendCnt; return mNrf24.getDataRate();
uint32_t mRetransmits; }
bool mSerialDebug; bool isPVariant(void) {
return mNrf24.isPVariant();
private: }
bool getReceived(void) {
bool tx_ok, tx_fail, rx_ready; bool isNewSendChannel ()
mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH {
return mTxChIdx != mTxLastChIdx;
bool isLastPackage = false; }
while(mNrf24.available()) {
uint8_t len; uint8_t getNextSendChannelIndex (void)
len = mNrf24.getDynamicPayloadSize(); // if payload size > 32, corrupt payload has been flushed {
if (len > 0) { // start with the next index: round robbin in case of same max bad quality for all channels
packet_t p; uint8_t bestIndex = (mTxChIdx + 1) % RF_CHANNELS;
p.ch = mRfChLst[mRxChIdx]; uint8_t curIndex = (bestIndex + 1) % RF_CHANNELS;
p.len = len; uint16_t i;
mNrf24.read(p.packet, len);
if (p.packet[0] != 0x00) { for (i=1; i<RF_CHANNELS; i++) {
mBufCtrl.push(p); if (mChQuality[curIndex] > mChQuality[bestIndex]) {
if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES)) // response from get information command bestIndex = curIndex;
isLastPackage = (p.packet[9] > ALL_FRAMES); // > ALL_FRAMES indicates last packet received }
else if (p.packet[0] == ( 0x0f + ALL_FRAMES) ) // response from MI get information command curIndex = (curIndex + 1) % RF_CHANNELS;
isLastPackage = (p.packet[9] > 0x10); // > 0x10 indicates last packet received }
else if ((p.packet[0] != 0x88) && (p.packet[0] != 0x92)) // ignore fragment number zero and MI status messages //#0 was p.packet[0] != 0x00 && return bestIndex;
isLastPackage = true; // response from dev control command }
}
} void addSendChannelQuality (int8_t quality)
yield(); {
} // continous averaging
return isLastPackage; // assume: mTxChIdx is still the last send channel index used
} quality = mChQuality[mTxChIdx] + quality;
if (quality < SEND_CHANNEL_MIN_QUALITY) {
void initPacket(uint64_t invId, uint8_t mid, uint8_t pid) { quality = SEND_CHANNEL_MIN_QUALITY;
#ifdef undef } else if (quality > SEND_CHANNEL_MAX_QUALITY) {
if(mSerialDebug) { quality = SEND_CHANNEL_MAX_QUALITY;
DPRINT(DBG_VERBOSE, F("initPacket, mid: ")); }
DHEX(mid); mChQuality[mTxChIdx] = quality;
DBGPRINT(F(" pid: ")); }
DBGHEXLN(pid);
} void evalSendChannelQuality (bool crcPass, uint8_t Retransmits, uint8_t rxFragments,
#endif uint8_t lastRxFragments)
memset(mTxBuf, 0, MAX_RF_PAYLOAD_SIZE); {
mTxBuf[0] = mid; // message id if (lastRxFragments == rxFragments) {
CP_U32_BigEndian(&mTxBuf[1], (invId >> 8)); // nothing received: send probably lost
CP_U32_BigEndian(&mTxBuf[5], (DTU_RADIO_ID >> 8)); if (!Retransmits || isNewSendChannel()) {
mTxBuf[9] = pid; // dont overestimate burst distortion
} addSendChannelQuality (SEND_CHANNEL_QUALITY_BAD);
}
void sendPacket(uint64_t invId, uint8_t len, bool isRetransmit, bool appendCrc16=true) { } else if (!lastRxFragments && crcPass) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:sendPacket")); if (!Retransmits || isNewSendChannel()) {
//DPRINTLN(DBG_VERBOSE, "sent packet: #" + String(mSendCnt)); // every fragment received successfull immediately
addSendChannelQuality (SEND_CHANNEL_QUALITY_GOOD);
// append crc's } else {
if (appendCrc16 && (len > 10)) { // every fragment received successfully
// crc control data addSendChannelQuality (SEND_CHANNEL_QUALITY_OK);
uint16_t crc = ah::crc16(&mTxBuf[10], len - 10); }
mTxBuf[len++] = (crc >> 8) & 0xff; } else if (crcPass) {
mTxBuf[len++] = (crc ) & 0xff; if (isNewSendChannel ()) {
} // last Fragment successfully received on new send channel
// crc over all addSendChannelQuality (SEND_CHANNEL_QUALITY_OK);
mTxBuf[len] = ah::crc8(mTxBuf, len); }
len++; } else if (!Retransmits || isNewSendChannel()) {
// no complete receive for this send channel
// set TX and RX channels addSendChannelQuality (SEND_CHANNEL_QUALITY_LOW);
mTxChIdx = (mTxChIdx + 1) % RF_CHANNELS; }
mRxChIdx = (mTxChIdx + 2) % RF_CHANNELS; }
if(mSerialDebug) { void resetSendChannelQuality ()
DPRINT(DBG_INFO, F("TX ")); {
DBGPRINT(String(len)); for(uint8_t i = 0; i < RF_CHANNELS; i++) {
#ifdef undef mChQuality[mTxChIdx] = 0;
DBGPRINT("B Ch"); }
DBGPRINT(String(mRfChLst[mTxChIdx])); }
DBGPRINT(F(" | "));
dumpBuf(mTxBuf, len); void dumpSendQuality()
#else {
DBGPRINTLN (" Bytes"); for(uint8_t i = 0; i < RF_CHANNELS; i++) {
#endif DBGPRINT(" " + String (mChQuality[i]));
} }
}
mNrf24.stopListening();
mNrf24.setChannel(mRfChLst[mTxChIdx]); std::queue<packet_t> mBufCtrl;
mNrf24.openWritingPipe(reinterpret_cast<uint8_t*>(&invId));
mNrf24.startWrite(mTxBuf, len, false); // false = request ACK response uint32_t mSendCnt;
uint32_t mRetransmits;
if(isRetransmit)
mRetransmits++; bool mSerialDebug;
else
mSendCnt++; private:
} bool getReceived(void) {
bool tx_ok, tx_fail, rx_ready;
volatile bool mIrqRcvd; mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
uint64_t DTU_RADIO_ID;
bool isLastPackage = false;
uint8_t mRfChLst[RF_CHANNELS]; while(mNrf24.available()) {
uint8_t mTxChIdx; uint8_t len;
uint8_t mRxChIdx; len = mNrf24.getDynamicPayloadSize(); // if payload size > 32, corrupt payload has been flushed
if (len > 0) {
SPIClass* mSpi; packet_t p;
RF24 mNrf24; p.ch = mRfChLst[mRxChIdx];
uint8_t mTxBuf[MAX_RF_PAYLOAD_SIZE]; p.len = len;
}; mNrf24.read(p.packet, len);
if (p.packet[0] != 0x00) {
#endif /*__RADIO_H__*/ mBufCtrl.push(p);
if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES)) // response from get information command
isLastPackage = (p.packet[9] > ALL_FRAMES); // > ALL_FRAMES indicates last packet received
else if (p.packet[0] == ( 0x0f + ALL_FRAMES) ) // response from MI get information command
isLastPackage = (p.packet[9] > 0x10); // > 0x10 indicates last packet received
else if ((p.packet[0] != 0x88) && (p.packet[0] != 0x92)) // ignore fragment number zero and MI status messages //#0 was p.packet[0] != 0x00 &&
isLastPackage = true; // response from dev control command
}
}
yield();
}
return isLastPackage;
}
void initPacket(uint64_t invId, uint8_t mid, uint8_t pid) {
#ifdef undef
if(mSerialDebug) {
DPRINT(DBG_VERBOSE, F("initPacket, mid: "));
DHEX(mid);
DBGPRINT(F(" pid: "));
DBGHEXLN(pid);
}
#endif
memset(mTxBuf, 0, MAX_RF_PAYLOAD_SIZE);
mTxBuf[0] = mid; // message id
CP_U32_BigEndian(&mTxBuf[1], (invId >> 8));
CP_U32_BigEndian(&mTxBuf[5], (DTU_RADIO_ID >> 8));
mTxBuf[9] = pid;
}
void sendPacket(uint64_t invId, uint8_t len, bool isRetransmit, bool appendCrc16=true) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:sendPacket"));
//DPRINTLN(DBG_VERBOSE, "sent packet: #" + String(mSendCnt));
// append crc's
if (appendCrc16 && (len > 10)) {
// crc control data
uint16_t crc = ah::crc16(&mTxBuf[10], len - 10);
mTxBuf[len++] = (crc >> 8) & 0xff;
mTxBuf[len++] = (crc ) & 0xff;
}
// crc over all
mTxBuf[len] = ah::crc8(mTxBuf, len);
len++;
// set TX and RX channels
mTxLastChIdx = mTxChIdx;
mTxChIdx = getNextSendChannelIndex ();
mRxChIdx = (mTxChIdx + 2) % RF_CHANNELS;
if(mSerialDebug) {
#ifdef undef
DPRINT(DBG_INFO, F("TX "));
DBGPRINT(String(len));
DBGPRINT("B Ch");
DBGPRINT(String(mRfChLst[mTxChIdx]));
DBGPRINT(F(" | "));
dumpBuf(mTxBuf, len);
#else
DPRINT(DBG_INFO, F("TX (Ch ") + String (mRfChLst[mTxChIdx]) + "), " +
String (len) + " Bytes, Quality:");
dumpSendQuality();
DBGPRINTLN("");
#endif
}
mNrf24.stopListening();
mNrf24.setChannel(mRfChLst[mTxChIdx]);
mNrf24.openWritingPipe(reinterpret_cast<uint8_t*>(&invId));
mNrf24.startWrite(mTxBuf, len, false); // false = request ACK response
if(isRetransmit)
mRetransmits++;
else
mSendCnt++;
}
volatile bool mIrqRcvd;
uint64_t DTU_RADIO_ID;
uint8_t mRfChLst[RF_CHANNELS];
int8_t mChQuality[RF_CHANNELS];
uint8_t mTxChIdx;
uint8_t mTxLastChIdx;
uint8_t mRxChIdx;
SPIClass* mSpi;
RF24 mNrf24;
uint8_t mTxBuf[MAX_RF_PAYLOAD_SIZE];
};
#endif /*__RADIO_H__*/

Loading…
Cancel
Save