Browse Source

Merge branch 'grindylow:main' into main

pull/37/head
stefan123t 3 years ago
committed by GitHub
parent
commit
70bedf82b3
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 5
      .gitignore
  2. 7
      README.md
  3. BIN
      doc/HM-400 data.xlsx
  4. BIN
      doc/Hoymiles-SerialNumbers.xlsx
  5. 49
      doc/getting-started-ESP8266.md
  6. 1157
      doc/hoymiles-format-description.txt
  7. 158
      tools/HoyDtuSim/CircularBuffer.h
  8. 23
      tools/HoyDtuSim/Debug.h
  9. 38
      tools/HoyDtuSim/HM1200.h
  10. 37
      tools/HoyDtuSim/HM600.h
  11. 605
      tools/HoyDtuSim/HoyDtuSim.ino
  12. 283
      tools/HoyDtuSim/Inverters.h
  13. 151
      tools/HoyDtuSim/ModWebserver.h
  14. 69
      tools/HoyDtuSim/Settings.h
  15. 55
      tools/HoyDtuSim/Sonne.h
  16. 102
      tools/HoyDtuSim/hm_crc.h
  17. 93
      tools/HoyDtuSim/hm_packets.h
  18. 345
      tools/HoyDtuSim/wifi.h
  19. 158
      tools/NRF24_SendRcv/CircularBuffer.h
  20. 23
      tools/NRF24_SendRcv/Debug.h
  21. 129
      tools/NRF24_SendRcv/ModWebserver.h
  22. 597
      tools/NRF24_SendRcv/NRF24_SendRcv.ino
  23. 55
      tools/NRF24_SendRcv/NRF24_sniff_types.h
  24. 82
      tools/NRF24_SendRcv/Settings.h
  25. 55
      tools/NRF24_SendRcv/Sonne.h
  26. 142
      tools/NRF24_SendRcv/hm_crc.cpp
  27. 8
      tools/NRF24_SendRcv/hm_crc.h
  28. 74
      tools/NRF24_SendRcv/hm_packets.cpp
  29. 18
      tools/NRF24_SendRcv/hm_packets.h
  30. 345
      tools/NRF24_SendRcv/wifi.h
  31. 283
      tools/esp8266/CircularBuffer.h
  32. 37
      tools/esp8266/README.md
  33. 704
      tools/esp8266/app.cpp
  34. 93
      tools/esp8266/app.h
  35. 44
      tools/esp8266/config.h
  36. 39
      tools/esp8266/debug.h
  37. 73
      tools/esp8266/defines.h
  38. 130
      tools/esp8266/eep.cpp
  39. 141
      tools/esp8266/eep.h
  40. 18
      tools/esp8266/esp8266.ino
  41. 159
      tools/esp8266/hmDefines.h
  42. 213
      tools/esp8266/hmInverter.h
  43. 328
      tools/esp8266/hmRadio.h
  44. 82
      tools/esp8266/hmSystem.h
  45. 178
      tools/esp8266/hoymiles.h
  46. 4
      tools/esp8266/html/conv.bat
  47. 29
      tools/esp8266/html/convert.py
  48. 4
      tools/esp8266/html/h/hoymiles_html.h
  49. 5
      tools/esp8266/html/h/index_html.h
  50. 5
      tools/esp8266/html/h/setup_html.h
  51. 5
      tools/esp8266/html/h/style_css.h
  52. 42
      tools/esp8266/html/hoymiles.html
  53. 12
      tools/esp8266/html/index.html
  54. 74
      tools/esp8266/html/setup.html
  55. 155
      tools/esp8266/html/style.css
  56. 180
      tools/esp8266/main.cpp
  57. 56
      tools/esp8266/main.h
  58. 87
      tools/esp8266/mqtt.h
  59. 31
      tools/esp8266/test/hmClassTest/hmClassTest.sln
  60. 147
      tools/esp8266/test/hmClassTest/hmClassTest/hmClassTest.vcxproj
  61. 22
      tools/esp8266/test/hmClassTest/hmClassTest/hmClassTest.vcxproj.filters
  62. 4
      tools/esp8266/test/hmClassTest/hmClassTest/hmClassTest.vcxproj.user
  63. 105
      tools/esp8266/test/hmClassTest/src/main.cpp
  64. BIN
      tools/esp8266/tools/fileConv.exe
  65. 11
      tools/rpi/.gitignore
  66. 67
      tools/rpi/README.md
  67. 11
      tools/rpi/ahoy.conf.example
  68. 345
      tools/rpi/ahoy.py
  69. 27
      tools/rpi/ahoy.yml.example
  70. 4270
      tools/rpi/example-logs/example.log
  71. 661
      tools/rpi/hoymiles/__init__.py
  72. 261
      tools/rpi/hoymiles/__main__.py
  73. 587
      tools/rpi/hoymiles/decoders/__init__.py
  74. 5
      tools/rpi/requirements.txt

5
.gitignore

@ -10,3 +10,8 @@ compile_commands.json
CTestTestfile.cmake
_deps
build
/**/Debug
/**/v16/*
*.db
*.suo
*.ipch

7
README.md

@ -7,6 +7,11 @@ In particular:
* `doc/hoymiles-format-description.txt` is a detailed description of the communications format and the history of this project
* `doc/getting-started-ESP8266.md` shows the hardware setup for an ESP8266-based system
* The `tools` folder contains various software tools for RaspberryPi, Arduino and ESP8266/ESP32
* The `tools` folder contains various software tools for RaspberryPi, Arduino and ESP8266/ESP32:
* A [version for ESP8266](tools/esp8266) that includes a web interface
* A [version for Arduino Nano](tools/nano/NRF24_SendRcv)
* An [alternative Version of the above](tools/NRF24_SendRcv)
* A [different implementation](tools/HoyDtuSim)
* An [implementation for Raspberry Pi](tools/rpi) that polls an inverter and archives results as log files/stdout as well as posting them to an MQTT broker.
Contributors are always welcome!

BIN
doc/HM-400 data.xlsx

Binary file not shown.

BIN
doc/Hoymiles-SerialNumbers.xlsx

Binary file not shown.

49
doc/getting-started-ESP8266.md

@ -1,28 +1,47 @@
# Getting Started with an ESP8266
```
Wire Connections
```ditaa
+-----------+ +-----------+
| nRF24L01+ |--colour--| ESP8266 |
| ESP8266 |--colour--| nRF24L01+ |
| | | |
| GND |---black--| GND |
| VCC |----red---| +3.3V |
| CE |---grey---| D4 |
| CSN |--purple--| D8 |
| SCK |---blue---| D5 |
| MOSI |---green--| D7 |
| MISO |---brown--| D6 |
| IRQ |--yellow--| D3 |
| GND |---black--|[GND] |
| +3.3V |----red---| VCC |
| D4 |---grey---| CE |
| D8 |--purple--| CSN |
| D5 |---blue---| SCK |
| D7 |---green--| MOSI |
| D6 |---brown--| MISO |
| D3 |--yellow--| IRQ |
+-----------+ +-----------+
```
![plot](./AhoyMiles_bb.png)
See
Fritzing diagrams & schematics
* [AhoyMiles_bb.png](./AhoyMiles_bb.png)
* [AhoyMiles_schem.png](./AhoyMiles_schem.png)
* [AhoyMiles.fzz](./AhoyMiles.fzz)
Libraries to be installed in Arduino IDE:
* RF24
* TimeLib
* AhoyMiles_bb.png
* AhoyMiles_schem.png
* AhoyMiles.fzz
Verify & Compile
* Connect to WiFi Network `ESP AHOY`
* Use password `esp_8266`
* Connect to Network settings
by "isnoAhoy"
Setup
* WiFi
* Enter SSID `mynetwork`
* Enter Password `mypassword`
* Device Host Name
* Enter Device Name `esp-ahoy`
* General
* Hoymiles Address (e.g. 114173123456)
* Choose inverter type
* Set individual inverter name
* [x] Reboot device after successful save
Save

1157
doc/hoymiles-format-description.txt

File diff suppressed because it is too large

158
tools/HoyDtuSim/CircularBuffer.h

@ -0,0 +1,158 @@
/*
CircularBuffer - An Arduino circular buffering library for arbitrary types.
Created by Ivo Pullens, Emmission, 2014 -- www.emmission.nl
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef CircularBuffer_h
#define CircularBuffer_h
#ifdef ESP8266
#define DISABLE_IRQ noInterrupts()
#define RESTORE_IRQ interrupts()
#else
#define DISABLE_IRQ \
uint8_t sreg = SREG; \
cli();
#define RESTORE_IRQ \
SREG = sreg;
#endif
template <class T> class CircularBuffer
{
public:
/** Constructor
* @param buffer Preallocated buffer of at least size records.
* @param size Number of records available in the buffer.
*/
CircularBuffer(T* buffer, const uint8_t size )
: m_size(size), m_buff(buffer)
{
clear();
}
/** Clear all entries in the circular buffer. */
void clear(void)
{
m_front = 0;
m_fill = 0;
}
/** Test if the circular buffer is empty */
inline bool empty(void) const
{
return !m_fill;
}
/** Return the number of records stored in the buffer */
inline uint8_t available(void) const
{
return m_fill;
}
/** Test if the circular buffer is full */
inline bool full(void) const
{
return m_fill == m_size;
}
/** Aquire record on front of the buffer, for writing.
* After filling the record, it has to be pushed to actually
* add it to the buffer.
* @return Pointer to record, or NULL when buffer is full.
*/
T* getFront(void) const
{
DISABLE_IRQ;
T* f = NULL;
if (!full())
f = get(m_front);
RESTORE_IRQ;
return f;
}
/** Push record to front of the buffer
* @param record Record to push. If record was aquired previously (using getFront) its
* data will not be copied as it is already present in the buffer.
* @return True, when record was pushed successfully.
*/
bool pushFront(T* record)
{
bool ok = false;
DISABLE_IRQ;
if (!full())
{
T* f = get(m_front);
if (f != record)
*f = *record;
m_front = (m_front+1) % m_size;
m_fill++;
ok = true;
}
RESTORE_IRQ;
return ok;
}
/** Aquire record on back of the buffer, for reading.
* After reading the record, it has to be pop'ed to actually
* remove it from the buffer.
* @return Pointer to record, or NULL when buffer is empty.
*/
T* getBack(void) const
{
T* b = NULL;
DISABLE_IRQ;
if (!empty())
b = get(back());
RESTORE_IRQ;
return b;
}
/** Remove record from back of the buffer.
* @return True, when record was pop'ed successfully.
*/
bool popBack(void)
{
bool ok = false;
DISABLE_IRQ;
if (!empty())
{
m_fill--;
ok = true;
}
RESTORE_IRQ;
return ok;
}
protected:
inline T * get(const uint8_t idx) const
{
return &(m_buff[idx]);
}
inline uint8_t back(void) const
{
return (m_front - m_fill + m_size) % m_size;
}
const uint8_t m_size; // Total number of records that can be stored in the buffer.
T* const m_buff; // Ptr to buffer holding all records.
volatile uint8_t m_front; // Index of front element (not pushed yet).
volatile uint8_t m_fill; // Amount of records currently pushed.
};
#endif // CircularBuffer_h

23
tools/HoyDtuSim/Debug.h

@ -0,0 +1,23 @@
#ifndef __DEBUG_H
#define __DEBUG_H
#ifdef DEBUG
#define DEBUG_OUT Serial
#else
//---
// disable Serial DEBUG output
#define DEBUG_OUT DummySerial
static class {
public:
void begin(...) {}
void print(...) {}
void println(...) {}
void flush() {}
bool available() { return false;}
int readBytes(...) { return 0;}
int printf (...) {return 0;}
} DummySerial;
#endif
#endif

38
tools/HoyDtuSim/HM1200.h

@ -0,0 +1,38 @@
#ifndef __HM1200_H
#define __HM1200_H
#define HM1200
const measureDef_t hm1200_measureDef[] = {
{ IDX_UDC, UNIT_V, CH1, CMD01, 14, BYTES2, DIV10 },
{ IDX_IDC, UNIT_A, CH1, CMD01, 16, BYTES2, DIV100 },
{ IDX_PDC, UNIT_W, CH1, CMD01, 20, BYTES2, DIV10 },
{ IDX_E_TAG, UNIT_WH, CH1, CMD02, 16, BYTES2, DIV1 },
{ IDX_E_TOTAL, UNIT_KWH, CH1, CMD01, 24, BYTES4, DIV1000 },
{ IDX_UDC, UNIT_V, CH2, CMD02, 20, BYTES2, DIV10 },
{ IDX_IDC, UNIT_A, CH2, CMD01, 18, BYTES2, DIV100 },
{ IDX_PDC, UNIT_W, CH2, CMD01, 22, BYTES2, DIV10 },
{ IDX_E_TAG, UNIT_WH, CH2, CMD02, 18, BYTES2, DIV1 },
{ IDX_E_TOTAL, UNIT_KWH, CH2, CMD02, 12, BYTES4, DIV1000 },
{ IDX_IDC, UNIT_A, CH3, CMD02, 22, BYTES2, DIV100 },
{ IDX_PDC, UNIT_W, CH3, CMD02, 26, BYTES2, DIV10 },
{ IDX_E_TAG, UNIT_WH, CH3, CMD03, 22, BYTES2, DIV1 },
{ IDX_E_TOTAL, UNIT_KWH, CH3, CMD03, 14, BYTES4, DIV1000 },
{ IDX_IDC, UNIT_A, CH4, CMD02, 24, BYTES2, DIV100 },
{ IDX_PDC, UNIT_W, CH4, CMD03, 12, BYTES2, DIV10 },
{ IDX_E_TAG, UNIT_WH, CH4, CMD03, 24, BYTES2, DIV1 },
{ IDX_E_TOTAL, UNIT_KWH, CH4, CMD03, 18, BYTES4, DIV1000 },
{ IDX_UAC, UNIT_V, CH0, CMD03, 26, BYTES2, DIV10 },
{ IDX_IPV, UNIT_A, CH0, CMD84, 18, BYTES2, DIV100 },
{ IDX_PAC, UNIT_W, CH0, CMD84, 14, BYTES2, DIV10 },
{ IDX_FREQ, UNIT_HZ, CH0, CMD84, 12, BYTES2, DIV100 },
{ IDX_PERCNT, UNIT_PCT, CH0, CMD84, 20, BYTES2, DIV10 },
{ IDX_WR_TEMP, UNIT_C, CH0, CMD84, 22, BYTES2, DIV10 }
};
measureCalc_t hm1200_measureCalc[] = {};
#define HM1200_MEASURE_LIST_LEN sizeof(hm1200_measureDef)/sizeof(measureDef_t)
#define HM1200_CALCED_LIST_LEN 0
#endif

37
tools/HoyDtuSim/HM600.h

@ -0,0 +1,37 @@
#ifndef __HM600_H
#define __HM600_H
#define HM600
#define HM700
float calcEheute (float *measure) { return measure[8] + measure[9]; }
float calcIpv (float *measure) { return (measure[10] != 0 ? measure[12]/measure[10] : 0); }
const measureDef_t hm600_measureDef[] = {
{ IDX_UDC, CH1, UNIT_V, CMD01, 14, BYTES2, DIV10},
{ IDX_IDC, CH1, UNIT_A, CMD01, 16, BYTES2, DIV100},
{ IDX_PDC, CH1, UNIT_W, CMD01, 18, BYTES2, DIV10},
{ IDX_UDC, CH2, UNIT_V, CMD01, 20, BYTES2, DIV10},
{ IDX_IDC, CH2, UNIT_A, CMD01, 22, BYTES2, DIV100},
{ IDX_PDC, CH2, UNIT_W, CMD01, 24, BYTES2, DIV10},
{ IDX_E_WOCHE,CH0, UNIT_WH, CMD02, 12, BYTES2, DIV1},
{ IDX_E_TOTAL,CH0, UNIT_WH, CMD02, 14, BYTES4, DIV1},
{ IDX_E_TAG, CH1, UNIT_WH, CMD02, 18, BYTES2, DIV1},
{ IDX_E_TAG, CH2, UNIT_WH, CMD02, 20, BYTES2, DIV1},
{ IDX_UAC, CH0, UNIT_V, CMD02, 22, BYTES2, DIV10},
{ IDX_FREQ, CH0, UNIT_HZ, CMD02, 24, BYTES2, DIV100},
{ IDX_PAC, CH0, UNIT_W, CMD02, 26, BYTES2, DIV10},
{ IDX_WR_TEMP,CH0, UNIT_C, CMD83, 18, BYTES2, DIV10}
};
measureCalc_t hm600_measureCalc[] = {
{ IDX_E_HEUTE, UNIT_WH, DIV1, &calcEheute},
{ IDX_IPV, UNIT_A, DIV100, &calcIpv}
};
#define HM600_MEASURE_LIST_LEN sizeof(hm600_measureDef)/sizeof(measureDef_t)
#define HM600_CALCED_LIST_LEN sizeof(hm600_measureCalc)/sizeof(measureCalc_t)
#endif

605
tools/HoyDtuSim/HoyDtuSim.ino

@ -0,0 +1,605 @@
#include <Arduino.h>
#include <SPI.h>
#include "CircularBuffer.h"
#include <RF24.h>
#include "printf.h"
#include <RF24_config.h>
#include "hm_crc.h"
#include "hm_packets.h"
#include "Settings.h" // Header für Einstellungen
#include "Debug.h"
#include "Inverters.h"
const char VERSION[] PROGMEM = "0.1.6";
#ifdef ESP8266
#define DISABLE_EINT noInterrupts()
#define ENABLE_EINT interrupts()
#else // für AVR z.B. ProMini oder Nano
#define DISABLE_EINT EIMSK = 0x00
#define ENABLE_EINT EIMSK = 0x01
#endif
#ifdef ESP8266
#define PACKET_BUFFER_SIZE (30)
#else
#define PACKET_BUFFER_SIZE (20)
#endif
// Startup defaults until user reconfigures it
//#define DEFAULT_RECV_CHANNEL (3) // 3 = Default channel for Hoymiles
//#define DEFAULT_SEND_CHANNEL (75) // 40 = Default channel for Hoymiles, 61
static HM_Packets hmPackets;
static uint32_t tickMillis;
// Set up nRF24L01 radio on SPI bus plus CE/CS pins
// If more than one RF24 unit is used the another CS pin than 10 must be used
// This pin is used hard coded in SPI library
static RF24 Radio (RF1_CE_PIN, RF1_CS_PIN);
static NRF24_packet_t bufferData[PACKET_BUFFER_SIZE];
static CircularBuffer<NRF24_packet_t> packetBuffer(bufferData, sizeof(bufferData) / sizeof(bufferData[0]));
static Serial_header_t SerialHdr;
#define CHECKCRC 1
static uint16_t lastCRC;
static uint16_t crc;
uint8_t channels[] = {3, 23, 40, 61, 75}; //{1, 3, 6, 9, 11, 23, 40, 61, 75}
uint8_t channelIdx = 2; // fange mit 40 an
uint8_t DEFAULT_SEND_CHANNEL = channels[channelIdx]; // = 40
#if USE_POOR_MAN_CHANNEL_HOPPING_RCV
uint8_t rcvChannelIdx = 0;
uint8_t rcvChannels[] = {3, 23, 40, 61, 75}; //{1, 3, 6, 9, 11, 23, 40, 61, 75}
uint8_t DEFAULT_RECV_CHANNEL = rcvChannels[rcvChannelIdx]; //3;
uint8_t intvl = 4; // Zeit für poor man hopping
int hophop;
#else
uint8_t DEFAULT_RECV_CHANNEL = 3;
#endif
boolean valueChanged = false;
static unsigned long timeLastPacket = millis();
static unsigned long timeLastIstTagCheck = millis();
static unsigned long timeLastRcvChannelSwitch = millis();
// Function forward declaration
static void SendPacket(uint64_t dest, uint8_t *buf, uint8_t len);
static const char BLANK = ' ';
static boolean istTag = true;
char CHANNELNAME_BUFFER[15];
#ifdef ESP8266
#include "wifi.h"
#include "ModWebserver.h"
#include "Sonne.h"
#endif
inline static void dumpData(uint8_t *p, int len) {
//-----------------------------------------------
while (len > 0){
if (*p < 16)
DEBUG_OUT.print(F("0"));
DEBUG_OUT.print(*p++, HEX);
len--;
}
DEBUG_OUT.print(BLANK);
}
float extractValue2 (uint8_t *p, int divisor) {
//-------------------------------------------
uint16_t b1 = *p++;
return ((float) (b1 << 8) + *p) / (float) divisor;
}
float extractValue4 (uint8_t *p, int divisor) {
//-------------------------------------------
uint32_t ret = *p++;
for (uint8_t i = 1; i <= 3; i++)
ret = (ret << 8) + *p++;
return (ret / divisor);
}
void outChannel (uint8_t wr, uint8_t i) {
//------------------------------------
DEBUG_OUT.print(getMeasureName(wr, i));
DEBUG_OUT.print(F("\t:"));
DEBUG_OUT.print(getMeasureValue(wr,i));
DEBUG_OUT.println(BLANK);
}
void analyseWords (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
DEBUG_OUT.print (F("analyse words:"));
p++;
for (int i = 0; i <12;i++) {
DEBUG_OUT.print(extractValue2(p,1));
DEBUG_OUT.print(BLANK);
p++;
}
DEBUG_OUT.println();
}
void analyseLongs (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
DEBUG_OUT.print (F("analyse longs:"));
p++;
for (int i = 0; i <12;i++) {
DEBUG_OUT.print(extractValue4(p,1));
DEBUG_OUT.print(BLANK);
p++;
}
DEBUG_OUT.println();
}
void analyse (NRF24_packet_t *p) {
//------------------------------
uint8_t wrIdx = findInverter (&p->packet[3]);
//DEBUG_OUT.print ("wrIdx="); DEBUG_OUT.println (wrIdx);
if (wrIdx == 0xFF) return;
uint8_t cmd = p->packet[11];
float val = 0;
if (cmd == 0x01 || cmd == 0x02 || cmd == 0x83) {
const measureDef_t *defs = inverters[wrIdx].measureDef;
for (uint8_t i = 0; i < inverters[wrIdx].anzMeasures; i++) {
if (defs[i].teleId == cmd) {
uint8_t pos = defs[i].pos;
if (defs[i].bytes == 2)
val = extractValue2 (&p->packet[pos], getDivisor(wrIdx, i) );
else if (defs[i].bytes == 4)
val = extractValue4 (&p->packet[pos], getDivisor(wrIdx, i) );
valueChanged = valueChanged ||(val != inverters[wrIdx].values[i]);
inverters[wrIdx].values[i] = val;
}
}
// calculated funstions
for (uint8_t i = 0; i < inverters[wrIdx].anzMeasureCalculated; i++) {
val = inverters[wrIdx].measureCalculated[i].f (inverters[wrIdx].values);
int idx = inverters[wrIdx].anzMeasures + i;
valueChanged = valueChanged ||(val != inverters[wrIdx].values[idx]);
inverters[wrIdx].values[idx] = val;
}
}
else if (cmd == 0x81) {
;
}
else {
DEBUG_OUT.print (F("---- neues cmd=")); DEBUG_OUT.println(cmd, HEX);
analyseWords (&p->packet[11]);
analyseLongs (&p->packet[11]);
DEBUG_OUT.println();
}
if (p->packetsLost > 0) {
DEBUG_OUT.print(F(" Lost: "));
DEBUG_OUT.println(p->packetsLost);
}
}
#ifdef ESP8266
IRAM_ATTR
#endif
void handleNrf1Irq() {
//-------------------------
static uint8_t lostPacketCount = 0;
uint8_t pipe;
DISABLE_EINT;
// Loop until RX buffer(s) contain no more packets.
while (Radio.available(&pipe)) {
if (!packetBuffer.full()) {
NRF24_packet_t *p = packetBuffer.getFront();
p->timestamp = micros(); // Micros does not increase in interrupt, but it can be used.
p->packetsLost = lostPacketCount;
p->rcvChannel = DEFAULT_RECV_CHANNEL;
uint8_t packetLen = Radio.getPayloadSize();
if (packetLen > MAX_RF_PAYLOAD_SIZE)
packetLen = MAX_RF_PAYLOAD_SIZE;
Radio.read(p->packet, packetLen);
packetBuffer.pushFront(p);
lostPacketCount = 0;
}
else {
// Buffer full. Increase lost packet counter.
bool tx_ok, tx_fail, rx_ready;
if (lostPacketCount < 255)
lostPacketCount++;
// Call 'whatHappened' to reset interrupt status.
Radio.whatHappened(tx_ok, tx_fail, rx_ready);
// Flush buffer to drop the packet.
Radio.flush_rx();
}
}
ENABLE_EINT;
}
static void activateConf(void) {
//-----------------------------
Radio.begin();
// Disable shockburst for receiving and decode payload manually
Radio.setAutoAck(false);
Radio.setRetries(0, 0);
Radio.setChannel(DEFAULT_RECV_CHANNEL);
Radio.setDataRate(DEFAULT_RF_DATARATE);
Radio.disableCRC();
Radio.setAutoAck(0x00);
Radio.setPayloadSize(MAX_RF_PAYLOAD_SIZE);
Radio.setAddressWidth(5);
Radio.openReadingPipe(1, DTU_RADIO_ID);
// We want only RX irqs
Radio.maskIRQ(true, true, false);
// Use lo PA level, as a higher level will disturb CH340 DEBUG_OUT usb adapter
Radio.setPALevel(RF24_PA_MAX);
Radio.startListening();
// Attach interrupt handler to NRF IRQ output. Overwrites any earlier handler.
attachInterrupt(digitalPinToInterrupt(RF1_IRQ_PIN), handleNrf1Irq, FALLING); // NRF24 Irq pin is active low.
// Initialize SerialHdr header's address member to promiscuous address.
uint64_t addr = DTU_RADIO_ID;
for (int8_t i = sizeof(SerialHdr.address) - 1; i >= 0; --i) {
SerialHdr.address[i] = addr;
addr >>= 8;
}
//Radio.printDetails();
//DEBUG_OUT.println();
tickMillis = millis() + 200;
}
#define resetRF24() activateConf()
void setup(void) {
//--------------
#ifndef DEBUG
#ifndef ESP8266
Serial.begin(SER_BAUDRATE);
#endif
#endif
printf_begin();
DEBUG_OUT.begin(SER_BAUDRATE);
DEBUG_OUT.flush();
DEBUG_OUT.println(F("-- Hoymiles DTU Simulation --"));
// Configure nRF IRQ input
pinMode(RF1_IRQ_PIN, INPUT);
activateConf();
#ifdef ESP8266
setupWifi();
setupClock();
setupWebServer();
setupUpdateByOTA();
calcSunUpDown (getNow());
istTag = isDayTime();
DEBUG_OUT.print (F("Es ist ")); DEBUG_OUT.println (istTag?F("Tag"):F("Nacht"));
hmPackets.SetUnixTimeStamp (getNow());
#else
hmPackets.SetUnixTimeStamp(0x62456430);
#endif
setupInverts();
}
uint8_t sendBuf[MAX_RF_PAYLOAD_SIZE];
void isTime2Send () {
//-----------------
// Second timer
static const uint8_t warteZeit = 1;
static uint8_t tickSec = 0;
if (millis() >= tickMillis) {
static uint8_t tel = 0;
tickMillis += warteZeit*1000; //200;
tickSec++;
if (++tickSec >= 1) { // 5
for (uint8_t c=0; c < warteZeit; c++) hmPackets.UnixTimeStampTick();
tickSec = 0;
}
int32_t size = 0;
uint64_t dest = 0;
for (uint8_t wr = 0; wr < anzInv; wr++) {
dest = inverters[wr].RadioId;
if (tel > 1)
tel = 0;
if (tel == 0) {
#ifdef ESP8266
hmPackets.SetUnixTimeStamp (getNow());
#endif
size = hmPackets.GetTimePacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8);
//DEBUG_OUT.print ("Timepacket mit cid="); DEBUG_OUT.println(sendBuf[10], HEX);
}
else if (tel <= 1)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x80 + tel - 1);
SendPacket (dest, (uint8_t *)&sendBuf, size);
} // for wr
tel++;
/* for (uint8_t warte = 0; warte < 2; warte++) {
delay(1000);
hmPackets.UnixTimeStampTick();
}*/
}
}
void outputPacket(NRF24_packet_t *p, uint8_t payloadLen) {
//-----------------------------------------------------
// Write timestamp, packets lost, address and payload length
//printf(" %09lu ", SerialHdr.timestamp);
char _buf[20];
sprintf_P(_buf, PSTR("rcv CH:%d "), p->rcvChannel);
DEBUG_OUT.print (_buf);
dumpData((uint8_t *)&SerialHdr.packetsLost, sizeof(SerialHdr.packetsLost));
dumpData((uint8_t *)&SerialHdr.address, sizeof(SerialHdr.address));
// Trailing bit?!?
dumpData(&p->packet[0], 2);
// Payload length from PCF
dumpData(&payloadLen, sizeof(payloadLen));
// Packet control field - PID Packet identification
uint8_t val = (p->packet[1] >> 1) & 0x03;
DEBUG_OUT.print(val);
DEBUG_OUT.print(F(" "));
if (payloadLen > 9) {
dumpData(&p->packet[2], 1);
dumpData(&p->packet[3], 4);
dumpData(&p->packet[7], 4);
uint16_t remain = payloadLen - 2 - 1 - 4 - 4 + 4;
if (remain < 32) {
dumpData(&p->packet[11], remain);
printf_P(PSTR("%04X "), crc);
if (((crc >> 8) != p->packet[payloadLen + 2]) || ((crc & 0xFF) != p->packet[payloadLen + 3]))
DEBUG_OUT.print(0);
else
DEBUG_OUT.print(1);
}
else {
DEBUG_OUT.print(F("Ill remain "));
DEBUG_OUT.print(remain);
}
}
else {
dumpData(&p->packet[2], payloadLen + 2);
printf_P(PSTR("%04X "), crc);
}
DEBUG_OUT.println();
DEBUG_OUT.flush();
}
void writeArduinoInterface() {
//--------------------------
if (valueChanged) {
for (uint8_t wr = 0; wr < anzInv; wr++) {
if (anzInv > 1) {
Serial.print(wr); Serial.print('.');
}
for (uint8_t i = 0; i < inverters[wr].anzTotalMeasures; i++) {
Serial.print(getMeasureName(wr,i)); // Schnittstelle bei Arduino
Serial.print('=');
Serial.print(getMeasureValue(wr,i), getDigits(wr,i)); // Schnittstelle bei Arduino
Serial.print (BLANK);
Serial.println (getUnit(wr, i));
} // for i
} // for wr
Serial.println(F("-----------------------"));
valueChanged = false;
}
}
boolean doCheckCrc (NRF24_packet_t *p, uint8_t payloadLen) {
//--------------------------------------------------------
crc = 0xFFFF;
crc = crc16((uint8_t *)&SerialHdr.address, sizeof(SerialHdr.address), crc, 0, BYTES_TO_BITS(sizeof(SerialHdr.address)));
// Payload length
// Add one byte and one bit for 9-bit packet control field
crc = crc16((uint8_t *)&p->packet[0], sizeof(p->packet), crc, 7, BYTES_TO_BITS(payloadLen + 1) + 1);
if (CHECKCRC) {
// If CRC is invalid only show lost packets
if (((crc >> 8) != p->packet[payloadLen + 2]) || ((crc & 0xFF) != p->packet[payloadLen + 3])) {
if (p->packetsLost > 0) {
DEBUG_OUT.print(F(" Lost: "));
DEBUG_OUT.println(p->packetsLost);
}
packetBuffer.popBack();
return false;
}
// Dump a decoded packet only once
if (lastCRC == crc) {
packetBuffer.popBack();
return false;
}
lastCRC = crc;
}
// Don't dump mysterious ack packages
if (payloadLen == 0) {
packetBuffer.popBack();
return false;
}
return true;
}
void poorManChannelHopping() {
//--------------------------
if (hophop <= 0) return;
if (millis() >= timeLastRcvChannelSwitch + intvl) {
rcvChannelIdx++;
if (rcvChannelIdx >= sizeof(rcvChannels))
rcvChannelIdx = 0;
DEFAULT_RECV_CHANNEL = rcvChannels[rcvChannelIdx];
DISABLE_EINT;
Radio.stopListening();
Radio.setChannel (DEFAULT_RECV_CHANNEL);
Radio.startListening();
ENABLE_EINT;
timeLastRcvChannelSwitch = millis();
hophop--;
}
}
void loop(void) {
//=============
// poor man channel hopping on receive
#if USE_POOR_MAN_CHANNEL_HOPPING_RCV
poorManChannelHopping();
#endif
if (millis() > timeLastPacket + 50000UL) {
DEBUG_OUT.println (F("Reset RF24"));
resetRF24();
timeLastPacket = millis();
}
while (!packetBuffer.empty()) {
timeLastPacket = millis();
// One or more records present
NRF24_packet_t *p = packetBuffer.getBack();
// Shift payload data due to 9-bit packet control field
for (int16_t j = sizeof(p->packet) - 1; j >= 0; j--) {
if (j > 0)
p->packet[j] = (byte)(p->packet[j] >> 7) | (byte)(p->packet[j - 1] << 1);
else
p->packet[j] = (byte)(p->packet[j] >> 7);
}
SerialHdr.timestamp = p->timestamp;
SerialHdr.packetsLost = p->packetsLost;
uint8_t payloadLen = ((p->packet[0] & 0x01) << 5) | (p->packet[1] >> 3);
// Check CRC
if (! doCheckCrc(p, payloadLen) )
continue;
#ifdef DEBUG
uint8_t cmd = p->packet[11];
//if (cmd != 0x01 && cmd != 0x02 && cmd != 0x83 && cmd != 0x81)
outputPacket (p, payloadLen);
#endif
analyse (p);
#ifndef ESP8266
writeArduinoInterface();
#endif
// Remove record as we're done with it.
packetBuffer.popBack();
}
if (istTag)
isTime2Send();
#ifdef ESP8266
checkWifi();
webserverHandle();
checkUpdateByOTA();
if (hour() == 0 && minute() == 0) {
calcSunUpDown(getNow());
delay (60*1000);
}
if (millis() > timeLastIstTagCheck + 15UL * 60UL * 1000UL) { // alle 15 Minuten neu berechnen ob noch hell
istTag = isDayTime();
DEBUG_OUT.print (F("Es ist ")); DEBUG_OUT.println (istTag?F("Tag"):F("Nacht"));
timeLastIstTagCheck = millis();
}
#endif
/*
if (millis() > timeLastPacket + 60UL*SECOND) { // 60 Sekunden
channelIdx++;
if (channelIdx >= sizeof(channels)) channelIdx = 0;
DEFAULT_SEND_CHANNEL = channels[channelIdx];
DEBUG_OUT.print (F("\nneuer DEFAULT_SEND_CHANNEL: ")); DEBUG_OUT.println(DEFAULT_SEND_CHANNEL);
timeLastPacket = millis();
}
*/
}
static void SendPacket(uint64_t dest, uint8_t *buf, uint8_t len) {
//--------------------------------------------------------------
//DEBUG_OUT.print (F("Sende: ")); DEBUG_OUT.println (buf[9], HEX);
//dumpData (buf, len); DEBUG_OUT.println();
DISABLE_EINT;
Radio.stopListening();
#ifdef CHANNEL_HOP
static uint8_t hop = 0;
#if DEBUG_SEND
DEBUG_OUT.print(F("Send... CH"));
DEBUG_OUT.println(channels[hop]);
#endif
Radio.setChannel(channels[hop++]);
if (hop >= sizeof(channels) / sizeof(channels[0]))
hop = 0;
#else
Radio.setChannel(DEFAULT_SEND_CHANNEL);
#endif
Radio.openWritingPipe(dest);
Radio.setCRCLength(RF24_CRC_16);
Radio.enableDynamicPayloads();
Radio.setAutoAck(true);
Radio.setRetries(3, 15);
bool res = Radio.write(buf, len);
// Try to avoid zero payload acks (has no effect)
Radio.openWritingPipe(DUMMY_RADIO_ID);
Radio.setAutoAck(false);
Radio.setRetries(0, 0);
Radio.disableDynamicPayloads();
Radio.setCRCLength(RF24_CRC_DISABLED);
Radio.setChannel(DEFAULT_RECV_CHANNEL);
Radio.startListening();
ENABLE_EINT;
#if USE_POOR_MAN_CHANNEL_HOPPING_RCV
hophop = 5 * sizeof(rcvChannels);
#endif
}

283
tools/HoyDtuSim/Inverters.h

@ -0,0 +1,283 @@
#ifndef __INVERTERS_H
#define __INVERTERS_H
// Ausgabe von Debug Infos auf der seriellen Console
#include "Settings.h"
#include "Debug.h"
typedef struct _NRF24_packet_t {
uint32_t timestamp;
uint8_t packetsLost;
uint8_t rcvChannel;
uint8_t packet[MAX_RF_PAYLOAD_SIZE];
} NRF24_packet_t;
typedef struct _Serial_header_t {
unsigned long timestamp;
uint8_t packetsLost;
uint8_t address[RF_MAX_ADDR_WIDTH]; // MSB first, always RF_MAX_ADDR_WIDTH bytes.
} Serial_header_t;
// structs für Inverter und Kanalwerte
// Liste der Einheiten
enum UNITS {UNIT_V = 0, UNIT_HZ, UNIT_A, UNIT_W, UNIT_WH, UNIT_C, UNIT_KWH, UNIT_MA, UNIT_PCT};
const char* const units[] = {"V", "Hz", "A", "W", "Wh", "°C", "KWh", "mA", "%"};
// CH0 is default channel (freq, ac, temp)
enum CHANNELS {CH0 = 0, CH1, CH2, CH3, CH4};
enum CMDS {CMD01 = 0x01, CMD02, CMD03, CMD83 = 0x83, CMD84};
enum DIVS {DIV1 = 0, DIV10, DIV100, DIV1000};
#define BYTES2 2
#define BYTES4 4
const char UDC[] PROGMEM = "Udc";
const char IDC[] PROGMEM = "Idc";
const char PDC[] PROGMEM = "Pdc";
const char E_WOCHE[] PROGMEM = "E-Woche";
const char E_TOTAL[] PROGMEM = "E-Total";
const char E_TAG[] PROGMEM = "E-Tag";
const char UAC[] PROGMEM = "Uac";
const char FREQ[] PROGMEM = "Freq.ac";
const char PAC[] PROGMEM = "Pac";
const char E_HEUTE[] PROGMEM = "E-heute";
const char IPV[] PROGMEM = "Ipv";
const char WR_TEMP[] PROGMEM = "WR-Temp";
const char PERCNT[] PROGMEM = "Pct";
#define IDX_UDC 0
#define IDX_IDC 1
#define IDX_PDC 2
#define IDX_E_WOCHE 3
#define IDX_E_TOTAL 4
#define IDX_E_TAG 5
#define IDX_UAC 6
#define IDX_FREQ 7
#define IDX_PAC 8
#define IDX_E_HEUTE 9
#define IDX_IPV 10
#define IDX_WR_TEMP 11
#define IDX_PERCNT 12
const char* const NAMES[]
= {UDC, IDC, PDC, E_WOCHE, E_TOTAL, E_TAG, UAC, FREQ, PAC, E_HEUTE, IPV, WR_TEMP, PERCNT};
typedef float (*calcValueFunc)(float *);
struct measureDef_t {
uint8_t nameIdx; //const char* name; // Zeiger auf den Messwertnamen
uint8_t channel; // 0..4,
uint8_t unitIdx; // Index in die Liste der Einheiten 'units'
uint8_t teleId; // Telegramm ID, das was hinter der 2. WR Nummer im Telegramm, 02, 03, 83
uint8_t pos; // ab dieser POsition beginnt der Wert (Big Endian)
uint8_t bytes; // Anzahl der Bytes
uint8_t digits;
};
struct measureCalc_t {
uint8_t nameIdx; //const char* name; // Zeiger auf den Messwertnamen
uint8_t unitIdx; // Index in die Liste der Einheiten 'units'
uint8_t digits;
calcValueFunc f; // die Funktion zur Berechnung von Werten, zb Summe von Werten
};
struct inverter_t {
uint8_t ID; // Inverter-ID = Index
char name[20]; // Name des Inverters zb HM-600.1
uint64_t serialNo; // dier Seriennummer wie im Barcode auf dem WR, also 1141.....
uint64_t RadioId; // die gespiegelte (letzte 4 "Bytes") der Seriennummer
const measureDef_t *measureDef; // aus Include HMxxx.h : Liste mit Definitionen der Messwerte, wie Telgramm, offset, länge, ...
uint8_t anzMeasures; // Länge der Liste
measureCalc_t *measureCalculated; // Liste mit Defintion für berechnete Werte
uint8_t anzMeasureCalculated; // Länge der Liste
uint8_t anzTotalMeasures; // Gesamtanzahl Messwerte
float values[MAX_MEASURE_PER_INV]; // DIE Messewerte
};
char _buffer[20];
uint8_t anzInv = 0;
inverter_t inverters[MAX_ANZ_INV];
union longlongasbytes {
uint64_t ull;
uint32_t ul[2];
uint8_t bytes[8];
};
char *uint64toa (uint64_t s) {
//--------------------------------
//0x1141 72607952ULL
sprintf(_buffer, "%lX%08lX", (unsigned long)(s>>32), (unsigned long)(s&0xFFFFFFFFULL));
return _buffer;
}
uint64_t Serial2RadioID (uint64_t sn) {
//----------------------------------
longlongasbytes llsn;
longlongasbytes res;
llsn.ull = sn;
res.ull = 0;
res.bytes[4] = llsn.bytes[0];
res.bytes[3] = llsn.bytes[1];
res.bytes[2] = llsn.bytes[2];
res.bytes[1] = llsn.bytes[3];
res.bytes[0] = 0x01;
return res.ull;
}
void addInverter (uint8_t _ID, const char * _name, uint64_t _serial,
const measureDef_t * liste, int anzMeasure,
measureCalc_t * calcs, int anzMeasureCalculated) {
//-------------------------------------------------------------------------------------
if (anzInv >= MAX_ANZ_INV) {
DEBUG_OUT.println(F("ANZ_INV zu klein!"));
return;
}
inverter_t *p = &(inverters[anzInv]);
p->ID = _ID;
strcpy (p->name, _name);
p->serialNo = _serial;
p->RadioId = Serial2RadioID(_serial);
p->measureDef = liste;
p->anzMeasures = anzMeasure;
p->anzMeasureCalculated = anzMeasureCalculated;
p->measureCalculated = calcs;
p->anzTotalMeasures = anzMeasure + anzMeasureCalculated;
memset (p->values, 0, sizeof(p->values));
DEBUG_OUT.print (F("WR : ")); DEBUG_OUT.println(anzInv);
DEBUG_OUT.print (F("Type : ")); DEBUG_OUT.println(_name);
DEBUG_OUT.print (F("Serial : ")); DEBUG_OUT.println(uint64toa(_serial));
DEBUG_OUT.print (F("Radio-ID : ")); DEBUG_OUT.println(uint64toa(p->RadioId));
anzInv++;
}
static uint8_t toggle = 0; // nur für Test, ob's auch für mehere WR funzt
uint8_t findInverter (uint8_t *fourbytes) {
//---------------------------------------
for (uint8_t i = 0; i < anzInv; i++) {
longlongasbytes llb;
llb.ull = inverters[i].serialNo;
if (llb.bytes[3] == fourbytes[0] &&
llb.bytes[2] == fourbytes[1] &&
llb.bytes[1] == fourbytes[2] &&
llb.bytes[0] == fourbytes[3] )
{
return i;
//if (toggle) toggle = 0; else toggle = 1; return toggle; // Test ob mehr WR auch geht
}
}
return 0xFF; // nicht gefunden
}
char * error = {"error"};
char *getMeasureName (uint8_t wr, uint8_t i){
//------------------------------------------
inverter_t *p = &(inverters[wr]);
if (i >= p->anzTotalMeasures) return error;
uint8_t idx, channel = 0;
if (i < p->anzMeasures) {
idx = p->measureDef[i].nameIdx;
channel = p->measureDef[i].channel;
}
else {
idx = p->measureCalculated[i - p->anzMeasures].nameIdx;
}
char tmp[20];
strcpy_P (_buffer, NAMES[idx]);
if (channel) {
sprintf_P (tmp, PSTR(".CH%d"), channel);
strcat(_buffer,tmp);
}
return _buffer;
}
const char *getUnit (uint8_t wr, uint8_t i) {
//------------------------------------------
inverter_t *p = &(inverters[wr]);
if (i >= p->anzTotalMeasures) return error;
uint8_t idx;
if (i < p->anzMeasures)
idx = p->measureDef[i].unitIdx;
else
idx = p->measureCalculated[i-p->anzMeasures].unitIdx;
//strcpy (_buffer, units[i]);
//return _buffer;
return units[idx];
}
float getMeasureValue (uint8_t wr, uint8_t i) {
//------------------------------------------
if (i >= inverters[wr].anzTotalMeasures) return 0.0;
return inverters[wr].values[i];
}
int getDivisor (uint8_t wr, uint8_t i) {
//------------------------------------
inverter_t *p = &(inverters[wr]);
if (i >= p->anzTotalMeasures) return 1;
if (i < p->anzMeasures) {
uint8_t digits = p->measureDef[i].digits;
if (digits == DIV1) return 1;
if (digits == DIV10) return 10;
if (digits == DIV100) return 100;
if (digits == DIV1000) return 1000;
return 1;
}
else
return p->measureCalculated[i].digits;
}
uint8_t getDigits (uint8_t wr, uint8_t i) {
//---------------------------------------
inverter_t *p = &(inverters[wr]);
if (i >= p->anzTotalMeasures) return 0;
if (i < p->anzMeasures)
return p->measureDef[i].digits;
else
return p->measureCalculated[i-p->anzMeasures].digits;
}
// +++++++++++++++++++++++++++++++++++ Inverter ++++++++++++++++++++++++++++++++++++++++++++++
#include "HM600.h" // für HM-600 und HM-700
#include "HM1200.h"
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void setupInverts() {
//-----------------
addInverter (0,"HM-600", 0x114172607952ULL,
hm600_measureDef, HM600_MEASURE_LIST_LEN, // Tabelle der Messwerte
hm600_measureCalc, HM600_CALCED_LIST_LEN); // Tabelle berechnete Werte
/*
addInverter (1,"HM-1200", 0x114172607952ULL,
hm1200_measureDef, HM1200_MEASURE_LIST_LEN, // Tabelle der Messwerte
hm1200_measureCalc, HM1200_CALCED_LIST_LEN); // Tabelle berechnete Werte
*/
}
#endif

151
tools/HoyDtuSim/ModWebserver.h

@ -0,0 +1,151 @@
// ################# WebServer #################
#ifndef __MODWEBSERVER_H
#define __MODWEBSERVER_H
#define MODWEBSERVER
#include <ESP8266WebServer.h>
#include "Debug.h"
#include "Settings.h"
ESP8266WebServer server (WEBSERVER_PORT);
void returnOK () {
//--------------
server.send(200, F("text/plain"), "");
}
void returnFail(String msg) {
//-------------------------
server.send(500, F("text/plain"), msg + "\r\n");
}
void handleHelp () {
//-----------------
String out = "<html>";
out += "<body><h2>Hilfe</h2>";
out += "<br><br><table>";
out += "<tr><td>/</td><td>zeigt alle Messwerte in einer Tabelle; refresh alle 10 Sekunden</td></tr>";
out += "<tr><td>/data</td><td>zum Abruf der Messwerte in der Form Name=wert</td></tr>";
out += "<tr><td>:{port+1}/update</td><td>OTA</td></tr>";
out += "<tr><td>/reboot</td><td>startet neu</td></tr>";
out += "</table></body></html>";
server.send (200, "text/html", out);
}
void handleReboot () {
//-------------------
returnOK ();
ESP.reset();
}
void handleRoot() {
//----------------
String out = "<html><head><meta http-equiv=\"refresh\" content=\"10\":URL=\"" + server.uri() + "\"></head>";
out += "<body>";
out += "<h2>Hoymiles Micro-Inverters</h2>";
char floatString[20];
char line[100];
for (uint8_t wr = 0; wr < anzInv; wr++) {
out += "<h3>" + String(inverters[wr].name) + "</h3>";
out += "<h3>S/N " + String (getSerialNoTxt(wr)) + "</h3>";
out += "<br><br><table border='1'>";
out += "<tr><th>Kanal</th><th>Wert</th><th>Einheit</th></tr>";
for (uint8_t i = 0; i < inverters[wr].anzTotalMeasures; i++) {
dtostrf (getMeasureValue(wr, i),1, getDigits(wr,i), floatString);
sprintf(line, "<tr><td>%s</td><td>%s</td><td>%s</td></tr>", getMeasureName(wr, i), floatString, getUnit(wr, i));
//DEBUG_OUT.println(line);
out += String(line);
/* out += "<tr><td>" + getMeasureName(i) + "</td>";
out += "<td>" + String(getMeasureValue(i)) + "</td></tr>";
out += "<td>" + String(getUnit(i)) + "</td></tr>"; */
}
out += "</table>";
}
int pos = out.indexOf("°");
do {
if (pos>1) {
out = out.substring (0, pos) + "&deg;" + out.substring(pos+2);
}
pos = out.indexOf("°");
} while (pos>1);
out += "</body></html>";
server.send (200, "text/html", out);
//DEBUG_OUT.println (out);
}
void handleData () {
//-----------------
String out = "";
for (uint8_t wr = 0; wr < anzInv; wr++) {
for (int i = 0; i < inverters[wr].anzTotalMeasures; i++) {
out += (anzInv <= 1 ? "" : String (wr) + ".") + String(getMeasureName(wr,i)) + '='
+ String (getMeasureValue(wr,i)) /*+ ' ' + String(getUnit(wr,i))*/ + '\n';
}
}
server.send(200, "text/plain", out);
}
void handleNotFound() {
//--------------------
String message = "URI: ";
message += server.uri();
message += "\nMethod: ";
message += (server.method() == HTTP_GET) ? "GET" : "POST";
message += "\nArguments: ";
message += server.args();
message += "\n";
for (uint8_t i = 0; i < server.args(); i++) {
message += " NAME:" + server.argName(i) + "\n VALUE:" + server.arg(i) + "\n";
}
server.send(404, "text/plain", message);
}
void setupWebServer (void) {
//-------------------------
server.begin();
server.on("/", handleRoot);
server.on("/reboot", handleReboot);
server.on("/data", handleData);
server.on("/help", handleHelp);
//server.onNotFound(handleNotFound); wegen Spiffs-Dateimanager
DEBUG_OUT.println ("[HTTP] installed");
}
void webserverHandle() {
//====================
server.handleClient();
}
// ################# OTA #################
#ifdef WITH_OTA
#include <ESP8266HTTPUpdateServer.h>
ESP8266WebServer httpUpdateServer (UPDATESERVER_PORT);
ESP8266HTTPUpdateServer httpUpdater;
void setupUpdateByOTA () {
//------------------------
httpUpdater.setup (&httpUpdateServer, UPDATESERVER_DIR, UPDATESERVER_USER, UPDATESERVER_PW);
httpUpdateServer.begin();
DEBUG_OUT.println ("[OTA] installed");
}
void checkUpdateByOTA() {
//---------------------
httpUpdateServer.handleClient();
}
#endif
#endif

69
tools/HoyDtuSim/Settings.h

@ -0,0 +1,69 @@
#ifndef __SETTINGS_H
#define __SETTINGS_H
// Ausgabe von Debug Infos auf der seriellen Console
#define DEBUG
#define SER_BAUDRATE (115200)
#include "Debug.h"
// Ausgabe was gesendet wird; 0 oder 1
#define DEBUG_SEND 0
// soll zwichen den Sendekanälen 23, 40, 61, 75 ständig gewechselt werden
#define CHANNEL_HOP
// mit OTA Support, also update der Firmware über WLan mittels IP/update
#define WITH_OTA
// Hardware configuration
#ifdef ESP8266
#define RF1_CE_PIN (D4)
#define RF1_CS_PIN (D8)
#define RF1_IRQ_PIN (D3)
#else
#define RF1_CE_PIN (9)
#define RF1_CS_PIN (10)
#define RF1_IRQ_PIN (2)
#endif
// WR und DTU
#define RF_MAX_ADDR_WIDTH (5)
#define MAX_RF_PAYLOAD_SIZE (32)
#define DEFAULT_RF_DATARATE (RF24_250KBPS) // Datarate
#define USE_POOR_MAN_CHANNEL_HOPPING_RCV 1 // 0 = not use
#define DUMMY_RADIO_ID ((uint64_t)0xDEADBEEF01ULL)
#define DTU_RADIO_ID ((uint64_t)0x1234567801ULL)
#define MAX_ANZ_INV 2 // <<<<<<<<<<<<<<<<<<<<<<<< anpassen
#define MAX_MEASURE_PER_INV 25 // hier statisch, könnte auch dynamisch erzeugt werden, aber Overhead für dyn. Speicher?
// Webserver
#define WEBSERVER_PORT 80
// Time Server
//#define TIMESERVER_NAME "pool.ntp.org"
#define TIMESERVER_NAME "fritz.box" // <<<<<<<<<<<<<<<<<<<<<<<< anpassen
#ifdef WITH_OTA
// OTA Einstellungen
#define UPDATESERVER_PORT WEBSERVER_PORT+1
#define UPDATESERVER_DIR "/update"
#define UPDATESERVER_USER "?????" // <<<<<<<<<<<<<<<<<<<<<<<< anpassen
#define UPDATESERVER_PW "?????" // <<<<<<<<<<<<<<<<<<<<<<<< anpassen
#endif
// internes WLan
// PREFIXE dienen dazu, die eigenen WLans (wenn mehrere) von fremden zu unterscheiden
// gehe hier davon aus, dass alle WLans das gleiche Passwort haben. Wenn nicht, dann mehre Passwörter hinterlegen
#define SSID_PREFIX1 "pre1" // <<<<<<<<<<<<<<<<<<<<<<<< anpassen
#define SSID_PREFIX2 "pre2" // <<<<<<<<<<<<<<<<<<<<<<<< anpassen
#define SSID_PASSWORD "?????????????????" // <<<<<<<<<<<<<<<<<<<<<<<< anpassen
// zur Berechnung von Sonnenauf- und -untergang
#define geoBreite 49.2866 // <<<<<<<<<<<<<<<<<<<<<<<< anpassen
#define geoLaenge 7.3416 // <<<<<<<<<<<<<<<<<<<<<<<< anpassen
#endif

55
tools/HoyDtuSim/Sonne.h

@ -0,0 +1,55 @@
#ifndef __SONNE_H
#define __SONNE_H
#include "Settings.h"
#include "Debug.h"
long SunDown, SunUp;
void calcSunUpDown (time_t date) {
//SunUpDown res = new SunUpDown();
boolean isSummerTime = false; // TODO TimeZone.getDefault().inDaylightTime(new Date(date));
//- Bogenmass
double brad = geoBreite / 180.0 * PI;
// - Höhe Sonne -50 Bogenmin.
double h0 = -50.0 / 60.0 / 180.0 * PI;
//- Deklination dek, Tag des Jahres d0
int tage = 30 * month(date) - 30 + day(date);
double dek = 0.40954 * sin (0.0172 * (tage - 79.35));
double zh1 = sin (h0) - sin (brad) * sin(dek);
double zh2 = cos(brad) * cos(dek);
double zd = 12*acos (zh1/zh2) / PI;
double zgl = -0.1752 * sin (0.03343 * tage + 0.5474) - 0.134 * sin (0.018234 * tage - 0.1939);
//-Sonnenuntergang
double tsu = 12 + zd - zgl;
double su = (tsu + (15.0 - geoLaenge) / 15.0);
int std = (int)su;
int minute = (int) ((su - std)*60);
if (isSummerTime) std++;
SunDown = (100*std + minute) * 100;
//- Sonnenaufgang
double tsa = 12 - zd - zgl;
double sa = (tsa + (15.0 - geoLaenge) /15.0);
std = (int) sa;
minute = (int) ((sa - std)*60);
if (isSummerTime) std++;
SunUp = (100*std + minute) * 100;
DEBUG_OUT.print(F("Sonnenaufgang :")); DEBUG_OUT.println(SunUp);
DEBUG_OUT.print(F("Sonnenuntergang:")); DEBUG_OUT.println(SunDown);
}
boolean isDayTime() {
//-----------------
// 900 = 15 Minuten, vor Sonnenaufgang und nach -untergang
const int offset=60*15;
time_t no = getNow();
long jetztMinuteU = (100 * hour(no+offset) + minute(no+offset)) * 100;
long jetztMinuteO = (100 * hour(no-offset) + minute(no-offset)) * 100;
return ((jetztMinuteU >= SunUp) &&(jetztMinuteO <= SunDown));
}
#endif

102
tools/HoyDtuSim/hm_crc.h

@ -0,0 +1,102 @@
#ifndef __HM_CRC_H
#define __HM_CRC_H
#define BITS_TO_BYTES(x) (((x)+7)>>3)
#define BYTES_TO_BITS(x) ((x)<<3)
extern uint16_t crc16_modbus(uint8_t *puchMsg, uint16_t usDataLen);
extern uint8_t crc8(uint8_t *buf, const uint16_t bufLen);
extern uint16_t crc16(uint8_t* buf, const uint16_t bufLen, const uint16_t startCRC, const uint16_t startBit, const uint16_t len_bits);
//#define OUTPUT_DEBUG_INFO
#define CRC8_INIT 0x00
#define CRC8_POLY 0x01
#define CRC16_MODBUS_POLYNOM 0xA001
uint8_t crc8(uint8_t buf[], uint16_t len) {
uint8_t crc = CRC8_INIT;
for(uint8_t i = 0; i < len; i++) {
crc ^= buf[i];
for(uint8_t b = 0; b < 8; b ++) {
crc = (crc << 1) ^ ((crc & 0x80) ? CRC8_POLY : 0x00);
}
}
return crc;
}
uint16_t crc16_modbus(uint8_t buf[], uint16_t len) {
uint16_t crc = 0xffff;
uint8_t lsb;
for(uint8_t i = 0; i < len; i++) {
crc = crc ^ buf[i];
for(int8_t b = 7; b >= 0; b--) {
lsb = (crc & 0x0001);
if(lsb == 0x01)
crc--;
crc = crc >> 1;
if(lsb == 0x01)
crc = crc ^ CRC16_MODBUS_POLYNOM;
}
}
return crc;
}
// NRF24 CRC16 calculation with poly 0x1021 = (1) 0001 0000 0010 0001 = x^16+x^12+x^5+1
uint16_t crc16(uint8_t *buf, const uint16_t bufLen, const uint16_t startCRC, const uint16_t startBit, const uint16_t len_bits)
{
uint16_t crc = startCRC;
if ((len_bits > 0) && (len_bits <= BYTES_TO_BITS(bufLen)))
{
// The length of the data might not be a multiple of full bytes.
// Therefore we proceed over the data bit-by-bit (like the NRF24 does) to
// calculate the CRC.
uint16_t data;
uint8_t byte, shift;
uint16_t bitoffs = startBit;
// Get a new byte for the next 8 bits.
byte = buf[bitoffs >> 3];
#ifdef OUTPUT_DEBUG_INFO
printf_P(PSTR("\nStart CRC %04X, %u bits:"), startCRC, len_bits);
printf_P(PSTR("\nbyte %02X:"), byte);
#endif
while (bitoffs < len_bits + startBit)
{
shift = bitoffs & 7;
// Shift the active bit to the position of bit 15
data = ((uint16_t)byte) << (8 + shift);
#ifdef OUTPUT_DEBUG_INFO
printf_P(PSTR(" bit %u %u,"), shift, data & 0x8000 ? 1 : 0);
#endif
// Assure all other bits are 0
data &= 0x8000;
crc ^= data;
if (crc & 0x8000)
{
crc = (crc << 1) ^ 0x1021; // 0x1021 = (1) 0001 0000 0010 0001 = x^16+x^12+x^5+1
}
else
{
crc = (crc << 1);
}
++bitoffs;
if (0 == (bitoffs & 7))
{
// Get a new byte for the next 8 bits.
byte = buf[bitoffs >> 3];
#ifdef OUTPUT_DEBUG_INFO
printf_P(PSTR("crc %04X:"), crc);
if (bitoffs < len_bits + startBit)
printf_P(PSTR("\nbyte %02X:"), byte);
#endif
}
}
}
return crc;
}
#endif

93
tools/HoyDtuSim/hm_packets.h

@ -0,0 +1,93 @@
#ifndef __HM_PACKETS_H
#define __HM_PACKETS_H
#include "hm_crc.h"
class HM_Packets
{
private:
uint32_t unixTimeStamp;
void prepareBuffer(uint8_t *buf);
void copyToBuffer(uint8_t *buf, uint32_t val);
void copyToBufferBE(uint8_t *buf, uint32_t val);
public:
void SetUnixTimeStamp(uint32_t ts);
void UnixTimeStampTick();
int32_t GetTimePacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr);
int32_t GetCmdPacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr, uint8_t mid, uint8_t cmd);
};
void HM_Packets::SetUnixTimeStamp(uint32_t ts)
{
unixTimeStamp = ts;
}
void HM_Packets::UnixTimeStampTick()
{
unixTimeStamp++;
}
void HM_Packets::prepareBuffer(uint8_t *buf)
{
// minimal buffer size of 32 bytes is assumed
memset(buf, 0x00, 32);
}
void HM_Packets::copyToBuffer(uint8_t *buf, uint32_t val)
{
buf[0]= (uint8_t)(val >> 24);
buf[1]= (uint8_t)(val >> 16);
buf[2]= (uint8_t)(val >> 8);
buf[3]= (uint8_t)(val & 0xFF);
}
void HM_Packets::copyToBufferBE(uint8_t *buf, uint32_t val)
{
memcpy(buf, &val, sizeof(uint32_t));
}
static uint8_t cid = 0;
int32_t HM_Packets::GetTimePacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr)
{
prepareBuffer(buf);
buf[0] = 0x15;
copyToBufferBE(&buf[1], wrAdr);
copyToBufferBE(&buf[5], dtuAdr);
buf[9] = 0x80;
buf[10] = 0x0B; //0x0B; 0x03 0x11
buf[11] = 0x00;
copyToBuffer(&buf[12], unixTimeStamp);
buf[19] = 0x05;
// CRC16
uint16_t crc16 = crc16_modbus(&buf[10], 14);
buf[24] = crc16 >> 8;
buf[25] = crc16 & 0xFF;
// crc8
buf[26] = crc8(&buf[0], 26);
return 27;
}
int32_t HM_Packets::GetCmdPacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr, uint8_t mid, uint8_t cmd)
{
buf[0] = mid;
copyToBufferBE(&buf[1], wrAdr);
copyToBufferBE(&buf[5], dtuAdr);
buf[9] = cmd;
// crc8
buf[10] = crc8(&buf[0], 10);
return 11;
}
#endif

345
tools/HoyDtuSim/wifi.h

@ -0,0 +1,345 @@
#ifndef __WIFI_H
#define __WIFI_H
#include "Settings.h"
#include "Debug.h"
#include <ESP8266WiFi.h>
#include <Pinger.h> // von url=https://www.technologytourist.com
String SSID = ""; // bestes WLan
// Prototypes
time_t getNow ();
boolean setupWifi ();
boolean checkWifi();
String findWifi () {
//----------------
String ssid;
int32_t rssi;
uint8_t encryptionType;
uint8_t* bssid;
int32_t channel;
bool hidden;
int scanResult;
String best_ssid = "";
int32_t best_rssi = -100;
DEBUG_OUT.println(F("Starting WiFi scan..."));
scanResult = WiFi.scanNetworks(/*async=*/false, /*hidden=*/true);
if (scanResult == 0) {
DEBUG_OUT.println(F("keine WLans"));
} else if (scanResult > 0) {
DEBUG_OUT.printf(PSTR("%d WLans gefunden:\n"), scanResult);
// Print unsorted scan results
for (int8_t i = 0; i < scanResult; i++) {
WiFi.getNetworkInfo(i, ssid, encryptionType, rssi, bssid, channel, hidden);
DEBUG_OUT.printf(PSTR(" %02d: [CH %02d] [%02X:%02X:%02X:%02X:%02X:%02X] %ddBm %c %c %s\n"),
i,
channel,
bssid[0], bssid[1], bssid[2],
bssid[3], bssid[4], bssid[5],
rssi,
(encryptionType == ENC_TYPE_NONE) ? ' ' : '*',
hidden ? 'H' : 'V',
ssid.c_str());
delay(1);
boolean check;
#ifdef SSID_PREFIX1
check = ssid.substring(0,strlen(SSID_PREFIX1)).equals(SSID_PREFIX1);
#else
check = true;
#endif
#ifdef SSID_PREFIX2
check = check || ssid.substring(0,strlen(SSID_PREFIX2)).equals(SSID_PREFIX2);
#endif
if (check) {
if (rssi > best_rssi) {
best_rssi = rssi;
best_ssid = ssid;
}
}
}
} else {
DEBUG_OUT.printf(PSTR("WiFi scan error %d"), scanResult);
}
if (! best_ssid.equals("")) {
SSID = best_ssid;
DEBUG_OUT.printf ("Bestes Wifi unter: %s\n", SSID.c_str());
return SSID;
}
else
return "";
}
void IP2string (IPAddress IP, char * buf) {
sprintf (buf, "%d.%d.%d.%d", IP[0], IP[1], IP[2], IP[3]);
}
void connectWifi() {
//------------------
// if (SSID.equals(""))
String s = findWifi();
if (!SSID.equals("")) {
DEBUG_OUT.print("versuche zu verbinden mit "); DEBUG_OUT.println(SSID);
//while (WiFi.status() != WL_CONNECTED) {
WiFi.begin (SSID, SSID_PASSWORD);
int versuche = 20;
while (WiFi.status() != WL_CONNECTED && versuche > 0) {
delay(1000);
versuche--;
DEBUG_OUT.print(versuche); DEBUG_OUT.print(' ');
}
//}
if (WiFi.status() == WL_CONNECTED) {
char buffer[30];
IP2string (WiFi.localIP(), buffer);
String out = "\n[WiFi]Verbunden; meine IP:" + String (buffer);
DEBUG_OUT.println (out);
}
else
DEBUG_OUT.print("\nkeine Verbindung mit SSID "); DEBUG_OUT.println(SSID);
}
}
boolean setupWifi () {
//------------------
int count=5;
while (count-- && WiFi.status() != WL_CONNECTED)
connectWifi();
return (WiFi.status() == WL_CONNECTED);
}
Pinger pinger;
IPAddress ROUTER = IPAddress(192,168,1,1);
boolean checkWifi() {
//---------------
boolean NotConnected = (WiFi.status() != WL_CONNECTED) || !pinger.Ping(ROUTER);
if (NotConnected) {
setupWifi();
if (WiFi.status() == WL_CONNECTED)
getNow();
}
return (WiFi.status() == WL_CONNECTED);
}
// ################ Clock #################
#include <WiFiUdp.h>
#include <TimeLib.h>
IPAddress timeServer;
unsigned int localPort = 8888;
const int NTP_PACKET_SIZE= 48; // NTP time stamp is in the first 48 bytes of the message
byte packetBuf[NTP_PACKET_SIZE]; // Buffer to hold incoming and outgoing packets
const int timeZone = 1; // Central European Time = +1
long SYNCINTERVALL = 0;
WiFiUDP Udp; // A UDP instance to let us send and receive packets over UDP
// prototypes
time_t getNtpTime ();
void sendNTPpacket (IPAddress &address);
time_t getNow ();
char* getDateTimeStr (time_t no = getNow());
time_t offsetDayLightSaving (uint32_t local_t);
bool isDayofDaylightChange (time_t local_t);
void _setSyncInterval (long intervall) {
//----------------------------------------
SYNCINTERVALL = intervall;
setSyncInterval (intervall);
}
void setupClock() {
//-----------------
WiFi.hostByName (TIMESERVER_NAME,timeServer); // at this point the function works
Udp.begin(localPort);
getNtpTime();
setSyncProvider (getNtpTime);
while(timeStatus()== timeNotSet)
delay(1); //
_setSyncInterval (SECS_PER_DAY / 2); // Set seconds between re-sync
//lastClock = now();
//Serial.print("[NTP] get time from NTP server ");
getNow();
//char buf[20];
DEBUG_OUT.print ("[NTP] get time from NTP server ");
DEBUG_OUT.print (timeServer);
//sprintf (buf, ": %02d:%02d:%02d", hour(no), minute(no), second(no));
DEBUG_OUT.print (": got ");
DEBUG_OUT.println (getDateTimeStr());
}
//*-------- NTP code ----------*/
time_t getNtpTime() {
//-------------------
sendNTPpacket(timeServer); // send an NTP packet to a time server
//uint32_t beginWait = millis();
//while (millis() - beginWait < 1500) {
int versuch = 0;
while (versuch < 5) {
int wait = 150; // results in max 1500 ms waitTime
while (wait--) {
int size = Udp.parsePacket();
if (size >= NTP_PACKET_SIZE) {
//Serial.println("Receive NTP Response");
Udp.read(packetBuf, NTP_PACKET_SIZE); // read packet into the buffer
unsigned long secsSince1900;
// convert four bytes starting at location 40 to a long integer
secsSince1900 = (unsigned long)packetBuf[40] << 24;
secsSince1900 |= (unsigned long)packetBuf[41] << 16;
secsSince1900 |= (unsigned long)packetBuf[42] << 8;
secsSince1900 |= (unsigned long)packetBuf[43];
// time_t now = secsSince1900 - 2208988800UL + timeZone * SECS_PER_HOUR;
time_t utc = secsSince1900 - 2208988800UL;
time_t now = utc + (timeZone +offsetDayLightSaving(utc)) * SECS_PER_HOUR;
if (isDayofDaylightChange (utc) && hour(utc) <= 4)
_setSyncInterval (SECS_PER_HOUR);
else
_setSyncInterval (SECS_PER_DAY / 2);
return now;
}
else
delay(10);
}
versuch++;
}
return 0;
}
// send an NTP request to the time server at the given address
void sendNTPpacket(IPAddress& address) {
//------------------------------------
memset(packetBuf, 0, NTP_PACKET_SIZE); // set all bytes in the buffer to 0
// Initialize values needed to form NTP request
packetBuf[0] = B11100011; // LI, Version, Mode
packetBuf[1] = 0; // Stratum
packetBuf[2] = 6; // Max Interval between messages in seconds
packetBuf[3] = 0xEC; // Clock Precision
// bytes 4 - 11 are for Root Delay and Dispersion and were set to 0 by memset
packetBuf[12] = 49; // four-byte reference ID identifying
packetBuf[13] = 0x4E;
packetBuf[14] = 49;
packetBuf[15] = 52;
// send the packet requesting a timestamp:
Udp.beginPacket(address, 123); //NTP requests are to port 123
Udp.write(packetBuf,NTP_PACKET_SIZE);
Udp.endPacket();
}
int getTimeTrials = 0;
bool isValidDateTime (time_t no) {
return (year(no) > 2020 && year(no) < 2038);
}
bool isDayofDaylightChange (time_t local_t) {
//-----------------------------------------
int jahr = year (local_t);
int monat = month (local_t);
int tag = day (local_t);
bool ret = ( (monat ==3 && tag == (31 - (5 * jahr /4 + 4) % 7)) ||
(monat==10 && tag == (31 - (5 * jahr /4 + 1) % 7)));
DEBUG_OUT.print ("isDayofDaylightChange="); DEBUG_OUT.println (ret);
return ret;
}
// calculates the daylight saving time for middle Europe. Input: Unixtime in UTC (!)
// übernommen von Jurs, see : https://forum.arduino.cc/index.php?topic=172044.msg1278536#msg1278536
time_t offsetDayLightSaving (uint32_t local_t) {
//--------------------------------------------
int monat = month (local_t);
if (monat < 3 || monat > 10) return 0; // no DSL in Jan, Feb, Nov, Dez
if (monat > 3 && monat < 10) return 1; // DSL in Apr, May, Jun, Jul, Aug, Sep
int jahr = year (local_t);
int std = hour (local_t);
//int tag = day (local_t);
int stundenBisHeute = (std + 24 * day(local_t));
if ( (monat == 3 && stundenBisHeute >= (1 + timeZone + 24 * (31 - (5 * jahr /4 + 4) % 7))) ||
(monat == 10 && stundenBisHeute < (1 + timeZone + 24 * (31 - (5 * jahr /4 + 1) % 7))) )
return 1;
else
return 0;
/*
int stundenBisWechsel = (1 + 24 * (31 - (5 * year(local_t) / 4 + 4) % 7));
if (monat == 3 && stundenBisHeute >= stundenBisWechsel || monat == 10 && stundenBisHeute < stundenBisWechsel)
return 1;
else
return 0;
*/
}
time_t getNow () {
//---------------
time_t jetzt = now();
while (!isValidDateTime(jetzt) && getTimeTrials < 10) { // ungültig, max 10x probieren
if (getTimeTrials) {
//Serial.print (getTimeTrials);
//Serial.println(". Versuch für getNtpTime");
}
jetzt = getNtpTime ();
if (isValidDateTime(jetzt)) {
setTime (jetzt);
getTimeTrials = 0;
}
else
getTimeTrials++;
}
//return jetzt + offsetDayLightSaving(jetzt)*SECS_PER_HOUR;
return jetzt;
}
char _timestr[24];
char* getNowStr (time_t no = getNow()) {
//------------------------------------
sprintf (_timestr, "%02d:%02d:%02d", hour(no), minute(no), second(no));
return _timestr;
}
char* getTimeStr (time_t no = getNow()) {
//------------------------------------
return getNowStr (no);
}
char* getDateTimeStr (time_t no) {
//------------------------------
sprintf (_timestr, "%04d-%02d-%02d+%02d:%02d:%02d", year(no), month(no), day(no), hour(no), minute(no), second(no));
return _timestr;
}
char* getDateStr (time_t no) {
//------------------------------
sprintf (_timestr, "%04d-%02d-%02d", year(no), month(no), day(no));
return _timestr;
}
#endif

158
tools/NRF24_SendRcv/CircularBuffer.h

@ -0,0 +1,158 @@
/*
CircularBuffer - An Arduino circular buffering library for arbitrary types.
Created by Ivo Pullens, Emmission, 2014 -- www.emmission.nl
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef CircularBuffer_h
#define CircularBuffer_h
#ifdef ESP8266
#define DISABLE_IRQ noInterrupts()
#define RESTORE_IRQ interrupts()
#else
#define DISABLE_IRQ \
uint8_t sreg = SREG; \
cli();
#define RESTORE_IRQ \
SREG = sreg;
#endif
template <class T> class CircularBuffer
{
public:
/** Constructor
* @param buffer Preallocated buffer of at least size records.
* @param size Number of records available in the buffer.
*/
CircularBuffer(T* buffer, const uint8_t size )
: m_size(size), m_buff(buffer)
{
clear();
}
/** Clear all entries in the circular buffer. */
void clear(void)
{
m_front = 0;
m_fill = 0;
}
/** Test if the circular buffer is empty */
inline bool empty(void) const
{
return !m_fill;
}
/** Return the number of records stored in the buffer */
inline uint8_t available(void) const
{
return m_fill;
}
/** Test if the circular buffer is full */
inline bool full(void) const
{
return m_fill == m_size;
}
/** Aquire record on front of the buffer, for writing.
* After filling the record, it has to be pushed to actually
* add it to the buffer.
* @return Pointer to record, or NULL when buffer is full.
*/
T* getFront(void) const
{
DISABLE_IRQ;
T* f = NULL;
if (!full())
f = get(m_front);
RESTORE_IRQ;
return f;
}
/** Push record to front of the buffer
* @param record Record to push. If record was aquired previously (using getFront) its
* data will not be copied as it is already present in the buffer.
* @return True, when record was pushed successfully.
*/
bool pushFront(T* record)
{
bool ok = false;
DISABLE_IRQ;
if (!full())
{
T* f = get(m_front);
if (f != record)
*f = *record;
m_front = (m_front+1) % m_size;
m_fill++;
ok = true;
}
RESTORE_IRQ;
return ok;
}
/** Aquire record on back of the buffer, for reading.
* After reading the record, it has to be pop'ed to actually
* remove it from the buffer.
* @return Pointer to record, or NULL when buffer is empty.
*/
T* getBack(void) const
{
T* b = NULL;
DISABLE_IRQ;
if (!empty())
b = get(back());
RESTORE_IRQ;
return b;
}
/** Remove record from back of the buffer.
* @return True, when record was pop'ed successfully.
*/
bool popBack(void)
{
bool ok = false;
DISABLE_IRQ;
if (!empty())
{
m_fill--;
ok = true;
}
RESTORE_IRQ;
return ok;
}
protected:
inline T * get(const uint8_t idx) const
{
return &(m_buff[idx]);
}
inline uint8_t back(void) const
{
return (m_front - m_fill + m_size) % m_size;
}
const uint8_t m_size; // Total number of records that can be stored in the buffer.
T* const m_buff; // Ptr to buffer holding all records.
volatile uint8_t m_front; // Index of front element (not pushed yet).
volatile uint8_t m_fill; // Amount of records currently pushed.
};
#endif // CircularBuffer_h

23
tools/NRF24_SendRcv/Debug.h

@ -0,0 +1,23 @@
#ifndef __DEBUG_H
#define __DEBUG_H
#ifdef DEBUG
#define DEBUG_OUT Serial
#else
//---
// disable Serial DEBUG output
#define DEBUG_OUT DummySerial
static class {
public:
void begin(...) {}
void print(...) {}
void println(...) {}
void flush() {}
bool available() { return false;}
int readBytes(...) { return 0;}
int printf (...) {return 0;}
} DummySerial;
#endif
#endif

129
tools/NRF24_SendRcv/ModWebserver.h

@ -0,0 +1,129 @@
// ################# WebServer #################
#ifndef __MODWEBSERVER_H
#define __MODWEBSERVER_H
#define MODWEBSERVER
#include <ESP8266WebServer.h>
#include "Debug.h"
#include "Settings.h"
ESP8266WebServer server (WEBSERVER_PORT);
void returnOK () {
//--------------
server.send(200, F("text/plain"), "");
}
void returnFail(String msg) {
//-------------------------
server.send(500, F("text/plain"), msg + "\r\n");
}
void handleHelp () {
//-----------------
String out = "<html>";
out += "<body><h2>Hilfe</h2>";
out += "<br><br><table>";
out += "<tr><td>/</td><td>zeigt alle Messwerte in einer Tabelle; refresh alle 10 Sekunden</td></tr>";
out += "<tr><td>/data</td><td>zum Abruf der Messwerte in der Form Name=wert</td></tr>";
out += "<tr><td>:{port+1}/update</td><td>OTA</td></tr>";
out += "<tr><td>/reboot</td><td>startet neu</td></tr>";
out += "</table></body></html>";
server.send (200, "text/html", out);
}
void handleReboot () {
//-------------------
returnOK ();
ESP.reset();
}
void handleRoot() {
//----------------
String out = "<html><head><meta http-equiv=\"refresh\" content=\"10\":URL=\"" + server.uri() + "\"></head>";
out += "<body>";
out += "<h2>Hoymiles Micro-Inverter HM-600</h2>";
out += "<br><br><table border='1'>";
out += "<tr><th>Kanal</th><th>Wert</th></tr>";
for (byte i = 0; i < ANZAHL_VALUES; i++) {
out += "<tr><td>" + String(getChannelName(i)) + "</td>";
out += "<td>" + String(VALUES[i]) + "</td></tr>";
}
out += "</table>";
out += "</body></html>";
server.send (200, "text/html", out);
//DEBUG_OUT.println (out);
}
void handleData () {
//-----------------
String out = "";
for (int i = 0; i < ANZAHL_VALUES; i++) {
out += String(getChannelName(i)) + '=' + String (VALUES[i]) + '\n';
}
server.send(200, "text/plain", out);
}
void handleNotFound() {
//--------------------
String message = "URI: ";
message += server.uri();
message += "\nMethod: ";
message += (server.method() == HTTP_GET) ? "GET" : "POST";
message += "\nArguments: ";
message += server.args();
message += "\n";
for (uint8_t i = 0; i < server.args(); i++) {
message += " NAME:" + server.argName(i) + "\n VALUE:" + server.arg(i) + "\n";
}
server.send(404, "text/plain", message);
}
void setupWebServer (void) {
//-------------------------
server.on("/", handleRoot);
server.on("/reboot", handleReboot);
server.on("/data", handleData);
server.on("/help", handleHelp);
//server.onNotFound(handleNotFound); wegen Spiffs-Dateimanager
server.begin();
DEBUG_OUT.println ("[HTTP] installed");
}
void webserverHandle() {
//====================
server.handleClient();
}
// ################# OTA #################
#ifdef WITH_OTA
#include <ESP8266HTTPUpdateServer.h>
ESP8266WebServer httpUpdateServer (UPDATESERVER_PORT);
ESP8266HTTPUpdateServer httpUpdater;
void setupUpdateByOTA () {
//------------------------
httpUpdater.setup (&httpUpdateServer, UPDATESERVER_DIR, UPDATESERVER_USER, UPDATESERVER_PW);
httpUpdateServer.begin();
DEBUG_OUT.println (F("[OTA] installed"));
}
void checkUpdateByOTA() {
//---------------------
httpUpdateServer.handleClient();
}
#endif
#endif

597
tools/NRF24_SendRcv/NRF24_SendRcv.ino

@ -0,0 +1,597 @@
#include <Arduino.h>
#include <SPI.h>
#include "CircularBuffer.h"
#include <RF24.h>
#include <RF24_config.h>
#include "hm_crc.h"
#include "hm_packets.h"
#include "Settings.h" // Header für Einstellungen
#include "Debug.h"
#ifdef ESP8266
#define DISABLE_EINT noInterrupts()
#define ENABLE_EINT interrupts()
#else // für AVR z.B. ProMini oder Nano
#define DISABLE_EINT EIMSK = 0x00
#define ENABLE_EINT EIMSK = 0x01
#endif
#define RF_MAX_ADDR_WIDTH (5)
#define MAX_RF_PAYLOAD_SIZE (32)
#ifdef ESP8266
#define PACKET_BUFFER_SIZE (30)
#else
#define PACKET_BUFFER_SIZE (20)
#endif
// Startup defaults until user reconfigures it
#define DEFAULT_RECV_CHANNEL (3) // 3 = Default channel for Hoymiles
//#define DEFAULT_SEND_CHANNEL (75) // 40 = Default channel for Hoymiles, 61
#define DEFAULT_RF_DATARATE (RF24_250KBPS) // Datarate
#include "NRF24_sniff_types.h"
static HM_Packets hmPackets;
static uint32_t tickMillis;
// Set up nRF24L01 radio on SPI bus plus CE/CS pins
// If more than one RF24 unit is used the another CS pin than 10 must be used
// This pin is used hard coded in SPI library
static RF24 radio1 (RF1_CE_PIN, RF1_CS_PIN);
static NRF24_packet_t bufferData[PACKET_BUFFER_SIZE];
static CircularBuffer<NRF24_packet_t> packetBuffer(bufferData, sizeof(bufferData) / sizeof(bufferData[0]));
static Serial_header_t SerialHdr;
#define CHECKCRC 1
static uint16_t lastCRC;
static uint16_t crc;
uint8_t channels[] = {/*3,*/ 23, 40, 61, 75}; //{1, 3, 6, 9, 11, 23, 40, 61, 75}
uint8_t channelIdx = 1; // fange mit 40 an
uint8_t DEFAULT_SEND_CHANNEL = channels[channelIdx]; // = 40
static unsigned long timeLastPacket = millis();
// Function forward declaration
static void SendPacket(uint64_t dest, uint8_t *buf, uint8_t len);
char * getChannelName (uint8_t i);
static const int ANZAHL_VALUES = 16;
static float VALUES[ANZAHL_VALUES] = {};
static const char *CHANNEL_NAMES[ANZAHL_VALUES]
= {"P1.Udc", "P1.Idc", "P1.Pdc", "P2.Udc", "P2.Idc", "P2.Pdc",
"E-Woche", "E-Total", "E1-Tag", "E2-Tag", "Uac", "Freq.ac", "Pac", "E-heute", "Ipv", "WR-Temp"};
static const uint8_t DIVISOR[ANZAHL_VALUES] = {10,100,10,10,100,10,1,1,1,1,10,100,10,0,0,10};
static const char BLANK = ' ';
static boolean istTag = true;
char CHANNELNAME_BUFFER[15];
#ifdef ESP8266
#include "wifi.h"
#include "ModWebserver.h"
#include "Sonne.h"
#endif
char * getChannelName (uint8_t i) {
//-------------------------------
memset (CHANNELNAME_BUFFER, 0, sizeof(CHANNELNAME_BUFFER));
strcpy (CHANNELNAME_BUFFER, CHANNEL_NAMES[i]);
//itoa (i, CHANNELNAME_BUFFER, 10);
return CHANNELNAME_BUFFER;
}
inline static void dumpData(uint8_t *p, int len) {
//-----------------------------------------------
while (len--){
if (*p < 16)
DEBUG_OUT.print(F("0"));
DEBUG_OUT.print(*p++, HEX);
}
DEBUG_OUT.print(BLANK);
}
float extractValue2 (uint8_t *p, int divisor) {
//-------------------------------------------
uint16_t b1 = *p++;
return ((float) (b1 << 8) + *p) / (float) divisor;
}
float extractValue4 (uint8_t *p, int divisor) {
//-------------------------------------------
uint32_t ret = *p++;
for (uint8_t i = 1; i <= 3; i++)
ret = (ret << 8) + *p++;
return (ret / divisor);
}
void outChannel (uint8_t i) {
//-------------------------
DEBUG_OUT.print(getChannelName(i)); DEBUG_OUT.print(F("\t:")); DEBUG_OUT.print(VALUES[i]); DEBUG_OUT.println(BLANK);
}
void analyse01 (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
//DEBUG_OUT.print (F("analyse 01: "));
p += 3;
// PV1.U PV1.I PV1.P PV2.U PV2.I PV2.P
// [0.1V] [0.01A] [.1W] [0.1V] [0.01A] [.1W]
for (int i = 0; i < 6; i++) {
VALUES[i] = extractValue2 (p,DIVISOR[i]); p += 2;
outChannel(i);
}
/*
DEBUG_OUT.print(F("PV1.U:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" PV1.I:")); DEBUG_OUT.print(extractValue2(p,100));
p += 2;
DEBUG_OUT.print(F(" PV1.Pac:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" PV2.U:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" PV2.I:")); DEBUG_OUT.print(extractValue2(p,100));
p += 2;
DEBUG_OUT.print(F(" PV2.Pac:")); DEBUG_OUT.print(extractValue2(p,10));
*/
DEBUG_OUT.println();
}
void analyse02 (uint8_t *p) { // p zeigt auf 02 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
//DEBUG_OUT.print (F("analyse 02: "));
// +11 = Spannung, +13 = Frequenz, +15 = Leistung
//p += 11;
p++;
for (int i = 6; i < 13; i++) {
if (i == 7) {
VALUES[i] = extractValue4 (p,DIVISOR[i]);
p += 4;
}
else {
VALUES[i] = extractValue2 (p,DIVISOR[i]);
p += 2;
}
outChannel(i);
}
VALUES[13] = VALUES[8] + VALUES[9]; // E-heute = P1+P2
if (VALUES[10] > 0)
VALUES[14] = VALUES[12] / VALUES[10]; // Ipv = Pac / Spannung
/*
DEBUG_OUT.print(F("P Woche:")); DEBUG_OUT.print(extractValue2(p,1));
p += 2;
DEBUG_OUT.print(F(" P Total:")); DEBUG_OUT.print(extractValue4(p,1));
p += 4;
DEBUG_OUT.print(F(" P1 Tag:")); DEBUG_OUT.print(extractValue2(p,1));
p += 2;
DEBUG_OUT.print(F(" P2 Tag:")); DEBUG_OUT.print(extractValue2(p,1));
p += 2;
DEBUG_OUT.print(F(" Spannung:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" Freq.:")); DEBUG_OUT.print(extractValue2(p,100));
p += 2;
DEBUG_OUT.print(F(" Leist.:")); DEBUG_OUT.print(extractValue2(p,10));
*/
DEBUG_OUT.println();
}
void analyse83 (uint8_t *p) { // p zeigt auf 83 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
//DEBUG_OUT.print (F("++++++analyse 83:"));
p += 7;
VALUES[15] = extractValue2 (p,DIVISOR[15]);
outChannel(15);
DEBUG_OUT.println();
}
void analyseWords (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
DEBUG_OUT.print (F("analyse words:"));
p++;
for (int i = 0; i <12;i++) {
DEBUG_OUT.print(extractValue2(p,1));
DEBUG_OUT.print(BLANK);
p++;
}
DEBUG_OUT.println();
}
void analyseLongs (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
DEBUG_OUT.print (F("analyse words:"));
p++;
for (int i = 0; i <12;i++) {
DEBUG_OUT.print(extractValue4(p,1));
DEBUG_OUT.print(BLANK);
p++;
}
DEBUG_OUT.println();
}
#ifdef ESP8266
IRAM_ATTR
#endif
void handleNrf1Irq() {
//-------------------------
static uint8_t lostPacketCount = 0;
uint8_t pipe;
DISABLE_EINT;
// Loop until RX buffer(s) contain no more packets.
while (radio1.available(&pipe)) {
if (!packetBuffer.full()) {
NRF24_packet_t *p = packetBuffer.getFront();
p->timestamp = micros(); // Micros does not increase in interrupt, but it can be used.
p->packetsLost = lostPacketCount;
uint8_t packetLen = radio1.getPayloadSize();
if (packetLen > MAX_RF_PAYLOAD_SIZE)
packetLen = MAX_RF_PAYLOAD_SIZE;
radio1.read(p->packet, packetLen);
packetBuffer.pushFront(p);
lostPacketCount = 0;
}
else {
// Buffer full. Increase lost packet counter.
bool tx_ok, tx_fail, rx_ready;
if (lostPacketCount < 255)
lostPacketCount++;
// Call 'whatHappened' to reset interrupt status.
radio1.whatHappened(tx_ok, tx_fail, rx_ready);
// Flush buffer to drop the packet.
radio1.flush_rx();
}
}
ENABLE_EINT;
}
static void activateConf(void) {
//-----------------------------
radio1.setChannel(DEFAULT_RECV_CHANNEL);
radio1.setDataRate(DEFAULT_RF_DATARATE);
radio1.disableCRC();
radio1.setAutoAck(0x00);
radio1.setPayloadSize(MAX_RF_PAYLOAD_SIZE);
radio1.setAddressWidth(5);
radio1.openReadingPipe(1, DTU_RADIO_ID);
// We want only RX irqs
radio1.maskIRQ(true, true, false);
// Use lo PA level, as a higher level will disturb CH340 DEBUG_OUT usb adapter
radio1.setPALevel(RF24_PA_MAX);
radio1.startListening();
// Attach interrupt handler to NRF IRQ output. Overwrites any earlier handler.
attachInterrupt(digitalPinToInterrupt(RF1_IRQ_PIN), handleNrf1Irq, FALLING); // NRF24 Irq pin is active low.
// Initialize SerialHdr header's address member to promiscuous address.
uint64_t addr = DTU_RADIO_ID;
for (int8_t i = sizeof(SerialHdr.address) - 1; i >= 0; --i) {
SerialHdr.address[i] = addr;
addr >>= 8;
}
#ifndef ESP8266
DEBUG_OUT.println(F("\nRadio Config:"));
radio1.printPrettyDetails();
DEBUG_OUT.println();
#endif
tickMillis = millis() + 200;
}
void setup(void) {
//--------------
//Serial.begin(SER_BAUDRATE);
DEBUG_OUT.begin(SER_BAUDRATE);
DEBUG_OUT.flush();
DEBUG_OUT.println(F("-- Hoymiles DTU Simulation --"));
radio1.begin();
// Disable shockburst for receiving and decode payload manually
radio1.setAutoAck(false);
radio1.setRetries(0, 0);
// Configure nRF IRQ input
pinMode(RF1_IRQ_PIN, INPUT);
activateConf();
#ifdef ESP8266
setupWifi();
setupClock();
setupWebServer();
setupUpdateByOTA();
calcSunUpDown (getNow());
istTag = isDayTime();
DEBUG_OUT.print ("Es ist "); DEBUG_OUT.println (istTag?"Tag":"Nacht");
hmPackets.SetUnixTimeStamp (getNow());
#else
hmPackets.SetUnixTimeStamp(0x62456430);
#endif
}
uint8_t sendBuf[MAX_RF_PAYLOAD_SIZE];
void isTime2Send () {
//-----------------
// Second timer
if (millis() >= tickMillis) {
static uint8_t tel = 0;
tickMillis += 1000; //200;
//tickSec++;
hmPackets.UnixTimeStampTick();
/* if (++tickSec >= 5) { // 5
hmPackets.UnixTimeStampTick();
tickSec = 0;
} */
int32_t size = 0;
uint64_t dest = WR1_RADIO_ID;
if (tel > 5)
tel = 0;
if (tel == 0) {
#ifdef ESP8266
hmPackets.SetUnixTimeStamp (getNow());
#endif
size = hmPackets.GetTimePacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8);
}
else if (tel == 1)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x81);
else if (tel == 2)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x80);
else if (tel == 3) {
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x83);
//tel = 0;
}
else if (tel == 4)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x82);
else if (tel == 5)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x84);
SendPacket(dest, (uint8_t *)&sendBuf, size);
tel++;
/* for (uint8_t warte = 0; warte < 2; warte++) {
delay(1000);
hmPackets.UnixTimeStampTick();
}*/
}
}
void outputPacket(NRF24_packet_t *p, uint8_t payloadLen) {
//-----------------------------------------------------
// Write timestamp, packets lost, address and payload length
//printf(" %09lu ", SerialHdr.timestamp);
dumpData((uint8_t *)&SerialHdr.packetsLost, sizeof(SerialHdr.packetsLost));
dumpData((uint8_t *)&SerialHdr.address, sizeof(SerialHdr.address));
// Trailing bit?!?
dumpData(&p->packet[0], 2);
// Payload length from PCF
dumpData(&payloadLen, sizeof(payloadLen));
// Packet control field - PID Packet identification
uint8_t val = (p->packet[1] >> 1) & 0x03;
DEBUG_OUT.print(val);
DEBUG_OUT.print(F(" "));
if (payloadLen > 9) {
dumpData(&p->packet[2], 1);
dumpData(&p->packet[3], 4);
dumpData(&p->packet[7], 4);
uint16_t remain = payloadLen - 2 - 1 - 4 - 4 + 4;
if (remain < 32) {
dumpData(&p->packet[11], remain);
printf_P(PSTR("%04X "), crc);
if (((crc >> 8) != p->packet[payloadLen + 2]) || ((crc & 0xFF) != p->packet[payloadLen + 3]))
DEBUG_OUT.print(0);
else
DEBUG_OUT.print(1);
}
else {
DEBUG_OUT.print(F("Ill remain "));
DEBUG_OUT.print(remain);
}
}
else {
dumpData(&p->packet[2], payloadLen + 2);
printf_P(PSTR("%04X "), crc);
}
DEBUG_OUT.println();
}
void loop(void) {
//=============
while (!packetBuffer.empty()) {
timeLastPacket = millis();
// One or more records present
NRF24_packet_t *p = packetBuffer.getBack();
// Shift payload data due to 9-bit packet control field
for (int16_t j = sizeof(p->packet) - 1; j >= 0; j--) {
if (j > 0)
p->packet[j] = (byte)(p->packet[j] >> 7) | (byte)(p->packet[j - 1] << 1);
else
p->packet[j] = (byte)(p->packet[j] >> 7);
}
SerialHdr.timestamp = p->timestamp;
SerialHdr.packetsLost = p->packetsLost;
// Check CRC
crc = 0xFFFF;
crc = crc16((uint8_t *)&SerialHdr.address, sizeof(SerialHdr.address), crc, 0, BYTES_TO_BITS(sizeof(SerialHdr.address)));
// Payload length
uint8_t payloadLen = ((p->packet[0] & 0x01) << 5) | (p->packet[1] >> 3);
// Add one byte and one bit for 9-bit packet control field
crc = crc16((uint8_t *)&p->packet[0], sizeof(p->packet), crc, 7, BYTES_TO_BITS(payloadLen + 1) + 1);
if (CHECKCRC) {
// If CRC is invalid only show lost packets
if (((crc >> 8) != p->packet[payloadLen + 2]) || ((crc & 0xFF) != p->packet[payloadLen + 3])) {
if (p->packetsLost > 0) {
DEBUG_OUT.print(F(" Lost: "));
DEBUG_OUT.println(p->packetsLost);
}
packetBuffer.popBack();
continue;
}
// Dump a decoded packet only once
if (lastCRC == crc) {
packetBuffer.popBack();
continue;
}
lastCRC = crc;
}
// Don't dump mysterious ack packages
if (payloadLen == 0) {
packetBuffer.popBack();
continue;
}
#ifdef DEBUG
outputPacket (p, payloadLen);
#endif
uint8_t cmd = p->packet[11];
if (cmd == 0x02)
analyse02 (&p->packet[11]);
else if (cmd == 0x01)
analyse01 (&p->packet[11]);
//if (p->packet[11] == 0x83 || p->packet[11] == 0x82) analyse83 (&p->packet[11], payloadLen);
else if (cmd == 0x03) {
analyseWords (&p->packet[11]);
analyseLongs (&p->packet[11]);
}
else if (cmd == 0x81) // ???
;
else if (cmd == 0x83)
analyse83 (&p->packet[11]);
else {
DEBUG_OUT.print (F("---- neues cmd=")); DEBUG_OUT.println(cmd, HEX);
analyseWords (&p->packet[11]);
analyseLongs (&p->packet[11]);
}
if (p->packetsLost > 0) {
DEBUG_OUT.print(F(" Lost: "));
DEBUG_OUT.print(p->packetsLost);
}
DEBUG_OUT.println();
#ifndef ESP8266
for (uint8_t i = 0; i < ANZAHL_VALUES; i++) {
//outChannel(i);
Serial.print(getChannelName(i)); Serial.print(':'); Serial.print(VALUES[i]); Serial.println(BLANK); // Schnittstelle bei Arduino
}
DEBUG_OUT.println();
#endif
// Remove record as we're done with it.
packetBuffer.popBack();
}
if (istTag)
isTime2Send();
#ifdef ESP8266
checkWifi();
webserverHandle();
checkUpdateByOTA();
if (hour() == 0 && minute() == 0) {
calcSunUpDown(getNow());
}
if (minute() % 15 == 0 && second () == 0) { // alle 15 Minuten neu berechnen ob noch hell
istTag = isDayTime();
DEBUG_OUT.print ("Es ist "); DEBUG_OUT.println (istTag?"Tag":"Nacht");
}
#endif
/*
if (millis() > timeLastPacket + 60UL*SECOND) { // 60 Sekunden
channelIdx++;
if (channelIdx >= sizeof(channels)) channelIdx = 0;
DEFAULT_SEND_CHANNEL = channels[channelIdx];
DEBUG_OUT.print (F("\nneuer DEFAULT_SEND_CHANNEL: ")); DEBUG_OUT.println(DEFAULT_SEND_CHANNEL);
timeLastPacket = millis();
}
*/
}
static void SendPacket(uint64_t dest, uint8_t *buf, uint8_t len) {
//--------------------------------------------------------------
DISABLE_EINT;
radio1.stopListening();
#ifdef CHANNEL_HOP
static uint8_t hop = 0;
#if DEBUG_SEND
DEBUG_OUT.print(F("Send... CH"));
DEBUG_OUT.println(channels[hop]);
#endif
radio1.setChannel(channels[hop++]);
if (hop >= sizeof(channels) / sizeof(channels[0]))
hop = 0;
#else
radio1.setChannel(DEFAULT_SEND_CHANNEL);
#endif
radio1.openWritingPipe(dest);
radio1.setCRCLength(RF24_CRC_16);
radio1.enableDynamicPayloads();
radio1.setAutoAck(true);
radio1.setRetries(3, 15);
radio1.write(buf, len);
// Try to avoid zero payload acks (has no effect)
radio1.openWritingPipe(DUMMY_RADIO_ID);
radio1.setAutoAck(false);
radio1.setRetries(0, 0);
radio1.disableDynamicPayloads();
radio1.setCRCLength(RF24_CRC_DISABLED);
radio1.setChannel(DEFAULT_RECV_CHANNEL);
radio1.startListening();
ENABLE_EINT;
}

55
tools/NRF24_SendRcv/NRF24_sniff_types.h

@ -0,0 +1,55 @@
/*
This file is part of NRF24_Sniff.
Created by Ivo Pullens, Emmission, 2014 -- www.emmission.nl
NRF24_Sniff is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
NRF24_Sniff is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with NRF24_Sniff. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef NRF24_sniff_types_h
#define NRF24_sniff_types_h
typedef struct _NRF24_packet_t
{
uint32_t timestamp;
uint8_t packetsLost;
uint8_t packet[MAX_RF_PAYLOAD_SIZE];
} NRF24_packet_t;
typedef struct _Serial_header_t
{
unsigned long timestamp;
uint8_t packetsLost;
uint8_t address[RF_MAX_ADDR_WIDTH]; // MSB first, always RF_MAX_ADDR_WIDTH bytes.
} Serial_header_t;
typedef struct _Serial_config_t
{
uint8_t channel;
uint8_t rate; // rf24_datarate_e: 0 = 1Mb/s, 1 = 2Mb/s, 2 = 250Kb/s
uint8_t addressLen; // Number of bytes used in address, range [2..5]
uint8_t addressPromiscLen; // Number of bytes used in promiscuous address, range [2..5]. E.g. addressLen=5, addressPromiscLen=4 => 1 byte unique identifier.
uint64_t address; // Base address, LSB first.
uint8_t crcLength; // Length of active CRC, range [0..2]
uint8_t maxPayloadSize; // Maximum size of payload for nRF (including nRF header), range[4?..32]
} Serial_config_t;
#define MSG_TYPE_PACKET (0)
#define MSG_TYPE_CONFIG (1)
#define SET_MSG_TYPE(var,type) (((var) & 0x3F) | ((type) << 6))
#define GET_MSG_TYPE(var) ((var) >> 6)
#define GET_MSG_LEN(var) ((var) & 0x3F)
#endif // NRF24_sniff_types_h

82
tools/NRF24_SendRcv/Settings.h

@ -0,0 +1,82 @@
#ifndef __SETTINGS_H
#define __SETTINGS_H
// Ausgabe von Debug Infos auf der seriellen Console
#define DEBUG
#define SER_BAUDRATE (115200)
// Ausgabe was gesendet wird; 0 oder 1
#define DEBUG_SEND 0
// soll zwichen den Sendekanälen 23, 40, 61, 75 ständig gewechselt werden
#define CHANNEL_HOP
// mit OTA Support, also update der Firmware über WLan mittels IP/update
#define WITH_OTA
// Hardware configuration
#ifdef ESP8266
#define RF1_CE_PIN (D4)
#define RF1_CS_PIN (D8)
#define RF1_IRQ_PIN (D3)
#else
#define RF1_CE_PIN (9)
#define RF1_CS_PIN (10)
#define RF1_IRQ_PIN (2)
#endif
union longlongasbytes {
uint64_t ull;
uint8_t bytes[8];
};
uint64_t Serial2RadioID (uint64_t sn) {
//----------------------------------
longlongasbytes llsn;
longlongasbytes res;
llsn.ull = sn;
res.ull = 0;
res.bytes[4] = llsn.bytes[0];
res.bytes[3] = llsn.bytes[1];
res.bytes[2] = llsn.bytes[2];
res.bytes[1] = llsn.bytes[3];
res.bytes[0] = 0x01;
return res.ull;
}
// WR und DTU
#define DUMMY_RADIO_ID ((uint64_t)0xDEADBEEF01ULL)
#define SerialWR 0x114172607952ULL // <<<<<<<<<<<<<<<<<<<<<<< anpassen
uint64_t WR1_RADIO_ID = Serial2RadioID (SerialWR); // ((uint64_t)0x5279607201ULL);
#define DTU_RADIO_ID ((uint64_t)0x1234567801ULL)
// Webserver
#define WEBSERVER_PORT 80
// Time Server
//#define TIMESERVER_NAME "pool.ntp.org"
#define TIMESERVER_NAME "fritz.box"
#ifdef WITH_OTA
// OTA Einstellungen
#define UPDATESERVER_PORT WEBSERVER_PORT+1
#define UPDATESERVER_DIR "/update" // mittels IP:81/update kommt man dann auf die OTA-Seite
#define UPDATESERVER_USER "username_für_OTA" // <<<<<<<<<<<<<<<<<<<<<<< anpassen
#define UPDATESERVER_PW "passwort_für_OTA" // <<<<<<<<<<<<<<<<<<<<<<< anpassen
#endif
// internes WLan
// PREFIXE dienen dazu, die eigenen WLans (wenn mehrere) vonfremden zu unterscheiden
// gehe hier davon aus, dass alle WLans das gleiche Passwort haben. Wenn nicht, dann mehre Passwörter hinterlegen
#define SSID_PREFIX1 "wlan1-Prefix" // <<<<<<<<<<<<<<<<<<<<<<< anpassen
#define SSID_PREFIX2 "wlan2-Prefix" // <<<<<<<<<<<<<<<<<<<<<<< anpassen
#define SSID_PASSWORD "wlan-passwort" // <<<<<<<<<<<<<<<<<<<<<<< anpassen
// zur Berechnung von Sonnenauf- und -untergang
#define geoBreite 49.2866
#define geoLaenge 7.3416
#endif

55
tools/NRF24_SendRcv/Sonne.h

@ -0,0 +1,55 @@
#ifndef __SONNE_H
#define __SONNE_H
#include "Settings.h"
#include "Debug.h"
long SunDown, SunUp;
void calcSunUpDown (time_t date) {
//SunUpDown res = new SunUpDown();
boolean isSummerTime = false; // TODO TimeZone.getDefault().inDaylightTime(new Date(date));
//- Bogenma�
double brad = geoBreite / 180.0 * PI;
// - H�he Sonne -50 Bogenmin.
double h0 = -50.0 / 60.0 / 180.0 * PI;
//- Deklination dek, Tag des Jahres d0
int tage = 30 * month(date) - 30 + day(date);
double dek = 0.40954 * sin (0.0172 * (tage - 79.35));
double zh1 = sin (h0) - sin (brad) * sin(dek);
double zh2 = cos(brad) * cos(dek);
double zd = 12*acos (zh1/zh2) / PI;
double zgl = -0.1752 * sin (0.03343 * tage + 0.5474) - 0.134 * sin (0.018234 * tage - 0.1939);
//-Sonnenuntergang
double tsu = 12 + zd - zgl;
double su = (tsu + (15.0 - geoLaenge) / 15.0);
int std = (int)su;
int minute = (int) ((su - std)*60);
if (isSummerTime) std++;
SunDown = (100*std + minute) * 100;
//- Sonnenaufgang
double tsa = 12 - zd - zgl;
double sa = (tsa + (15.0 - geoLaenge) /15.0);
std = (int) sa;
minute = (int) ((sa - std)*60);
if (isSummerTime) std++;
SunUp = (100*std + minute) * 100;
DEBUG_OUT.print("Sonnenaufgang :"); DEBUG_OUT.println(SunUp);
DEBUG_OUT.print("Sonnenuntergang:"); DEBUG_OUT.println(SunDown);
}
boolean isDayTime() {
//-----------------
// 900 = 15 Minuten, vor Sonnenaufgang und nach -untergang
const int offset=60*15;
time_t no = getNow();
long jetztMinuteU = (100 * hour(no+offset) + minute(no+offset)) * 100;
long jetztMinuteO = (100 * hour(no-offset) + minute(no-offset)) * 100;
return ((jetztMinuteU >= SunUp) &&(jetztMinuteO <= SunDown));
}
#endif

142
tools/NRF24_SendRcv/hm_crc.cpp

@ -0,0 +1,142 @@
#include <stdio.h>
#include <stdint.h>
#include "hm_crc.h"
//#define OUTPUT_DEBUG_INFO
/* Table of CRC values for high-order byte */
static const uint8_t auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40};
/* Table of CRC values for low-order byte */
static const uint8_t auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40};
uint16_t crc16_modbus(uint8_t *puchMsg, uint16_t usDataLen)
{
uint8_t uchCRCHi = 0xFF; /* high byte of CRC initialized */
uint8_t uchCRCLo = 0xFF; /* low byte of CRC initialized */
uint16_t uIndex; /* will index into CRC lookup table */
while (usDataLen--) /* pass through message buffer */
{
uIndex = uchCRCLo ^ *puchMsg++; /* calculate the CRC */
uchCRCLo = uchCRCHi ^ auchCRCHi[uIndex];
uchCRCHi = auchCRCLo[uIndex];
}
return (uchCRCHi << 8 | uchCRCLo);
}
// Hoymiles CRC8 calculation with poly 0x01, Initial value 0x00 and final XOR 0x00
uint8_t crc8(uint8_t *buf, const uint16_t bufLen)
{
uint32_t crc;
uint16_t i, bit;
crc = 0x00;
for (i = 0; i < bufLen; i++)
{
crc ^= buf[i];
for (bit = 0; bit < 8; bit++)
{
if ((crc & 0x80) != 0)
{
crc <<= 1;
crc ^= 0x01;
}
else
{
crc <<= 1;
}
}
}
return (crc & 0xFF);
}
// NRF24 CRC16 calculation with poly 0x1021 = (1) 0001 0000 0010 0001 = x^16+x^12+x^5+1
uint16_t crc16(uint8_t *buf, const uint16_t bufLen, const uint16_t startCRC, const uint16_t startBit, const uint16_t len_bits)
{
uint16_t crc = startCRC;
if ((len_bits > 0) && (len_bits <= BYTES_TO_BITS(bufLen)))
{
// The length of the data might not be a multiple of full bytes.
// Therefore we proceed over the data bit-by-bit (like the NRF24 does) to
// calculate the CRC.
uint16_t data;
uint8_t byte, shift;
uint16_t bitoffs = startBit;
// Get a new byte for the next 8 bits.
byte = buf[bitoffs >> 3];
#ifdef OUTPUT_DEBUG_INFO
printf("\nStart CRC %04X, %u bits:", startCRC, len_bits);
printf("\nbyte %02X:", byte);
#endif
while (bitoffs < len_bits + startBit)
{
shift = bitoffs & 7;
// Shift the active bit to the position of bit 15
data = ((uint16_t)byte) << (8 + shift);
#ifdef OUTPUT_DEBUG_INFO
printf(" bit %u %u,", shift, data & 0x8000 ? 1 : 0);
#endif
// Assure all other bits are 0
data &= 0x8000;
crc ^= data;
if (crc & 0x8000)
{
crc = (crc << 1) ^ 0x1021; // 0x1021 = (1) 0001 0000 0010 0001 = x^16+x^12+x^5+1
}
else
{
crc = (crc << 1);
}
++bitoffs;
if (0 == (bitoffs & 7))
{
// Get a new byte for the next 8 bits.
byte = buf[bitoffs >> 3];
#ifdef OUTPUT_DEBUG_INFO
printf("crc %04X:", crc);
if (bitoffs < len_bits + startBit)
printf("\nbyte %02X:", byte);
#endif
}
}
}
return crc;
}

8
tools/NRF24_SendRcv/hm_crc.h

@ -0,0 +1,8 @@
#define BITS_TO_BYTES(x) (((x)+7)>>3)
#define BYTES_TO_BITS(x) ((x)<<3)
extern uint16_t crc16_modbus(uint8_t *puchMsg, uint16_t usDataLen);
extern uint8_t crc8(uint8_t *buf, const uint16_t bufLen);
extern uint16_t crc16(uint8_t* buf, const uint16_t bufLen, const uint16_t startCRC, const uint16_t startBit, const uint16_t len_bits);

74
tools/NRF24_SendRcv/hm_packets.cpp

@ -0,0 +1,74 @@
#include "Arduino.h"
#include "hm_crc.h"
#include "hm_packets.h"
void HM_Packets::SetUnixTimeStamp(uint32_t ts)
{
unixTimeStamp = ts;
}
void HM_Packets::UnixTimeStampTick()
{
unixTimeStamp++;
}
void HM_Packets::prepareBuffer(uint8_t *buf)
{
// minimal buffer size of 32 bytes is assumed
memset(buf, 0x00, 32);
}
void HM_Packets::copyToBuffer(uint8_t *buf, uint32_t val)
{
buf[0]= (uint8_t)(val >> 24);
buf[1]= (uint8_t)(val >> 16);
buf[2]= (uint8_t)(val >> 8);
buf[3]= (uint8_t)(val & 0xFF);
}
void HM_Packets::copyToBufferBE(uint8_t *buf, uint32_t val)
{
memcpy(buf, &val, sizeof(uint32_t));
}
int32_t HM_Packets::GetTimePacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr)
{
prepareBuffer(buf);
buf[0] = 0x15;
copyToBufferBE(&buf[1], wrAdr);
copyToBufferBE(&buf[5], dtuAdr);
buf[9] = 0x80;
buf[10] = 0x0B; // cid
buf[11] = 0x00;
copyToBuffer(&buf[12], unixTimeStamp);
buf[19] = 0x05;
// CRC16
uint16_t crc16 = crc16_modbus(&buf[10], 14);
buf[24] = crc16 >> 8;
buf[25] = crc16 & 0xFF;
// crc8
buf[26] = crc8(&buf[0], 26);
return 27;
}
int32_t HM_Packets::GetCmdPacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr, uint8_t mid, uint8_t cmd)
{
buf[0] = mid;
copyToBufferBE(&buf[1], wrAdr);
copyToBufferBE(&buf[5], dtuAdr);
buf[9] = cmd;
// crc8
buf[10] = crc8(&buf[0], 10);
return 11;
}

18
tools/NRF24_SendRcv/hm_packets.h

@ -0,0 +1,18 @@
class HM_Packets
{
private:
uint32_t unixTimeStamp;
void prepareBuffer(uint8_t *buf);
void copyToBuffer(uint8_t *buf, uint32_t val);
void copyToBufferBE(uint8_t *buf, uint32_t val);
public:
void SetUnixTimeStamp(uint32_t ts);
void UnixTimeStampTick();
int32_t GetTimePacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr);
int32_t GetCmdPacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr, uint8_t mid, uint8_t cmd);
};

345
tools/NRF24_SendRcv/wifi.h

@ -0,0 +1,345 @@
#ifndef __WIFI_H
#define __WIFI_H
#include "Settings.h"
#include "Debug.h"
#include <ESP8266WiFi.h>
#include <Pinger.h> // von url=https://www.technologytourist.com
String SSID = ""; // bestes WLan
// Prototypes
time_t getNow ();
boolean setupWifi ();
boolean checkWifi();
String findWifi () {
//----------------
String ssid;
int32_t rssi;
uint8_t encryptionType;
uint8_t* bssid;
int32_t channel;
bool hidden;
int scanResult;
String best_ssid = "";
int32_t best_rssi = -100;
DEBUG_OUT.println(F("Starting WiFi scan..."));
scanResult = WiFi.scanNetworks(/*async=*/false, /*hidden=*/true);
if (scanResult == 0) {
DEBUG_OUT.println(F("keine WLans"));
} else if (scanResult > 0) {
DEBUG_OUT.printf(PSTR("%d WLans gefunden:\n"), scanResult);
// Print unsorted scan results
for (int8_t i = 0; i < scanResult; i++) {
WiFi.getNetworkInfo(i, ssid, encryptionType, rssi, bssid, channel, hidden);
DEBUG_OUT.printf(PSTR(" %02d: [CH %02d] [%02X:%02X:%02X:%02X:%02X:%02X] %ddBm %c %c %s\n"),
i,
channel,
bssid[0], bssid[1], bssid[2],
bssid[3], bssid[4], bssid[5],
rssi,
(encryptionType == ENC_TYPE_NONE) ? ' ' : '*',
hidden ? 'H' : 'V',
ssid.c_str());
delay(1);
boolean check;
#ifdef SSID_PREFIX1
check = ssid.substring(0,strlen(SSID_PREFIX1)).equals(SSID_PREFIX1);
#else
check = true;
#endif
#ifdef SSID_PREFIX2
check = check || ssid.substring(0,strlen(SSID_PREFIX2)).equals(SSID_PREFIX2);
#endif
if (check) {
if (rssi > best_rssi) {
best_rssi = rssi;
best_ssid = ssid;
}
}
}
} else {
DEBUG_OUT.printf(PSTR("WiFi scan error %d"), scanResult);
}
if (! best_ssid.equals("")) {
SSID = best_ssid;
DEBUG_OUT.printf ("Bestes Wifi unter: %s\n", SSID.c_str());
return SSID;
}
else
return "";
}
void IP2string (IPAddress IP, char * buf) {
sprintf (buf, "%d.%d.%d.%d", IP[0], IP[1], IP[2], IP[3]);
}
void connectWifi() {
//------------------
// if (SSID.equals(""))
String s = findWifi();
if (!SSID.equals("")) {
DEBUG_OUT.print("versuche zu verbinden mit "); DEBUG_OUT.println(SSID);
//while (WiFi.status() != WL_CONNECTED) {
WiFi.begin (SSID, SSID_PASSWORD);
int versuche = 20;
while (WiFi.status() != WL_CONNECTED && versuche > 0) {
delay(1000);
versuche--;
DEBUG_OUT.print(versuche); DEBUG_OUT.print(' ');
}
//}
if (WiFi.status() == WL_CONNECTED) {
char buffer[30];
IP2string (WiFi.localIP(), buffer);
String out = "\n[WiFi]Verbunden; meine IP:" + String (buffer);
DEBUG_OUT.println (out);
}
else
DEBUG_OUT.print("\nkeine Verbindung mit SSID "); DEBUG_OUT.println(SSID);
}
}
boolean setupWifi () {
//------------------
int count=5;
while (count-- && WiFi.status() != WL_CONNECTED)
connectWifi();
return (WiFi.status() == WL_CONNECTED);
}
Pinger pinger;
IPAddress ROUTER = IPAddress(192,168,1,1);
boolean checkWifi() {
//---------------
boolean NotConnected = (WiFi.status() != WL_CONNECTED) || !pinger.Ping(ROUTER);
if (NotConnected) {
setupWifi();
if (WiFi.status() == WL_CONNECTED)
getNow();
}
return (WiFi.status() == WL_CONNECTED);
}
// ################ Clock #################
#include <WiFiUdp.h>
#include <TimeLib.h>
IPAddress timeServer;
unsigned int localPort = 8888;
const int NTP_PACKET_SIZE= 48; // NTP time stamp is in the first 48 bytes of the message
byte packetBuf[NTP_PACKET_SIZE]; // Buffer to hold incoming and outgoing packets
const int timeZone = 1; // Central European Time = +1
long SYNCINTERVALL = 0;
WiFiUDP Udp; // A UDP instance to let us send and receive packets over UDP
// prototypes
time_t getNtpTime ();
void sendNTPpacket (IPAddress &address);
time_t getNow ();
char* getDateTimeStr (time_t no = getNow());
time_t offsetDayLightSaving (uint32_t local_t);
bool isDayofDaylightChange (time_t local_t);
void _setSyncInterval (long intervall) {
//----------------------------------------
SYNCINTERVALL = intervall;
setSyncInterval (intervall);
}
void setupClock() {
//-----------------
WiFi.hostByName (TIMESERVER_NAME,timeServer); // at this point the function works
Udp.begin(localPort);
getNtpTime();
setSyncProvider (getNtpTime);
while(timeStatus()== timeNotSet)
delay(1); //
_setSyncInterval (SECS_PER_DAY / 2); // Set seconds between re-sync
//lastClock = now();
//Serial.print("[NTP] get time from NTP server ");
getNow();
//char buf[20];
DEBUG_OUT.print ("[NTP] get time from NTP server ");
DEBUG_OUT.print (timeServer);
//sprintf (buf, ": %02d:%02d:%02d", hour(no), minute(no), second(no));
DEBUG_OUT.print (": got ");
DEBUG_OUT.println (getDateTimeStr());
}
//*-------- NTP code ----------*/
time_t getNtpTime() {
//-------------------
sendNTPpacket(timeServer); // send an NTP packet to a time server
//uint32_t beginWait = millis();
//while (millis() - beginWait < 1500) {
int versuch = 0;
while (versuch < 5) {
int wait = 150; // results in max 1500 ms waitTime
while (wait--) {
int size = Udp.parsePacket();
if (size >= NTP_PACKET_SIZE) {
//Serial.println("Receive NTP Response");
Udp.read(packetBuf, NTP_PACKET_SIZE); // read packet into the buffer
unsigned long secsSince1900;
// convert four bytes starting at location 40 to a long integer
secsSince1900 = (unsigned long)packetBuf[40] << 24;
secsSince1900 |= (unsigned long)packetBuf[41] << 16;
secsSince1900 |= (unsigned long)packetBuf[42] << 8;
secsSince1900 |= (unsigned long)packetBuf[43];
// time_t now = secsSince1900 - 2208988800UL + timeZone * SECS_PER_HOUR;
time_t utc = secsSince1900 - 2208988800UL;
time_t now = utc + (timeZone +offsetDayLightSaving(utc)) * SECS_PER_HOUR;
if (isDayofDaylightChange (utc) && hour(utc) <= 4)
_setSyncInterval (SECS_PER_HOUR);
else
_setSyncInterval (SECS_PER_DAY / 2);
return now;
}
else
delay(10);
}
versuch++;
}
return 0;
}
// send an NTP request to the time server at the given address
void sendNTPpacket(IPAddress& address) {
//------------------------------------
memset(packetBuf, 0, NTP_PACKET_SIZE); // set all bytes in the buffer to 0
// Initialize values needed to form NTP request
packetBuf[0] = B11100011; // LI, Version, Mode
packetBuf[1] = 0; // Stratum
packetBuf[2] = 6; // Max Interval between messages in seconds
packetBuf[3] = 0xEC; // Clock Precision
// bytes 4 - 11 are for Root Delay and Dispersion and were set to 0 by memset
packetBuf[12] = 49; // four-byte reference ID identifying
packetBuf[13] = 0x4E;
packetBuf[14] = 49;
packetBuf[15] = 52;
// send the packet requesting a timestamp:
Udp.beginPacket(address, 123); //NTP requests are to port 123
Udp.write(packetBuf,NTP_PACKET_SIZE);
Udp.endPacket();
}
int getTimeTrials = 0;
bool isValidDateTime (time_t no) {
return (year(no) > 2020 && year(no) < 2038);
}
bool isDayofDaylightChange (time_t local_t) {
//-----------------------------------------
int jahr = year (local_t);
int monat = month (local_t);
int tag = day (local_t);
bool ret = ( (monat ==3 && tag == (31 - (5 * jahr /4 + 4) % 7)) ||
(monat==10 && tag == (31 - (5 * jahr /4 + 1) % 7)));
DEBUG_OUT.print ("isDayofDaylightChange="); DEBUG_OUT.println (ret);
return ret;
}
// calculates the daylight saving time for middle Europe. Input: Unixtime in UTC (!)
// übernommen von Jurs, see : https://forum.arduino.cc/index.php?topic=172044.msg1278536#msg1278536
time_t offsetDayLightSaving (uint32_t local_t) {
//--------------------------------------------
int monat = month (local_t);
if (monat < 3 || monat > 10) return 0; // no DSL in Jan, Feb, Nov, Dez
if (monat > 3 && monat < 10) return 1; // DSL in Apr, May, Jun, Jul, Aug, Sep
int jahr = year (local_t);
int std = hour (local_t);
//int tag = day (local_t);
int stundenBisHeute = (std + 24 * day(local_t));
if ( (monat == 3 && stundenBisHeute >= (1 + timeZone + 24 * (31 - (5 * jahr /4 + 4) % 7))) ||
(monat == 10 && stundenBisHeute < (1 + timeZone + 24 * (31 - (5 * jahr /4 + 1) % 7))) )
return 1;
else
return 0;
/*
int stundenBisWechsel = (1 + 24 * (31 - (5 * year(local_t) / 4 + 4) % 7));
if (monat == 3 && stundenBisHeute >= stundenBisWechsel || monat == 10 && stundenBisHeute < stundenBisWechsel)
return 1;
else
return 0;
*/
}
time_t getNow () {
//---------------
time_t jetzt = now();
while (!isValidDateTime(jetzt) && getTimeTrials < 10) { // ungültig, max 10x probieren
if (getTimeTrials) {
//Serial.print (getTimeTrials);
//Serial.println(". Versuch für getNtpTime");
}
jetzt = getNtpTime ();
if (isValidDateTime(jetzt)) {
setTime (jetzt);
getTimeTrials = 0;
}
else
getTimeTrials++;
}
//return jetzt + offsetDayLightSaving(jetzt)*SECS_PER_HOUR;
return jetzt;
}
char _timestr[24];
char* getNowStr (time_t no = getNow()) {
//------------------------------------
sprintf (_timestr, "%02d:%02d:%02d", hour(no), minute(no), second(no));
return _timestr;
}
char* getTimeStr (time_t no = getNow()) {
//------------------------------------
return getNowStr (no);
}
char* getDateTimeStr (time_t no) {
//------------------------------
sprintf (_timestr, "%04d-%02d-%02d+%02d:%02d:%02d", year(no), month(no), day(no), hour(no), minute(no), second(no));
return _timestr;
}
char* getDateStr (time_t no) {
//------------------------------
sprintf (_timestr, "%04d-%02d-%02d", year(no), month(no), day(no));
return _timestr;
}
#endif

283
tools/esp8266/CircularBuffer.h

@ -1,21 +1,21 @@
/*
CircularBuffer - An Arduino circular buffering library for arbitrary types.
Created by Ivo Pullens, Emmission, 2014 -- www.emmission.nl
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
CircularBuffer - An Arduino circular buffering library for arbitrary types.
Created by Ivo Pullens, Emmission, 2014 -- www.emmission.nl
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef CircularBuffer_h
@ -26,133 +26,136 @@
#define RESTORE_IRQ interrupts()
#else
#define DISABLE_IRQ \
uint8_t sreg = SREG; \
cli();
uint8_t sreg = SREG; \
cli();
#define RESTORE_IRQ \
SREG = sreg;
SREG = sreg;
#endif
template <class T> class CircularBuffer
{
public:
/** Constructor
* @param buffer Preallocated buffer of at least size records.
* @param size Number of records available in the buffer.
*/
CircularBuffer(T* buffer, const uint8_t size )
: m_size(size), m_buff(buffer)
{
clear();
}
/** Clear all entries in the circular buffer. */
void clear(void)
{
m_front = 0;
m_fill = 0;
}
/** Test if the circular buffer is empty */
inline bool empty(void) const
{
return !m_fill;
}
/** Return the number of records stored in the buffer */
inline uint8_t available(void) const
{
return m_fill;
}
/** Test if the circular buffer is full */
inline bool full(void) const
{
return m_fill == m_size;
}
/** Aquire record on front of the buffer, for writing.
* After filling the record, it has to be pushed to actually
* add it to the buffer.
* @return Pointer to record, or NULL when buffer is full.
*/
T* getFront(void) const
{
DISABLE_IRQ;
T* f = NULL;
if (!full())
f = get(m_front);
RESTORE_IRQ;
return f;
}
/** Push record to front of the buffer
* @param record Record to push. If record was aquired previously (using getFront) its
* data will not be copied as it is already present in the buffer.
* @return True, when record was pushed successfully.
*/
bool pushFront(T* record)
{
bool ok = false;
DISABLE_IRQ;
if (!full())
{
T* f = get(m_front);
if (f != record)
*f = *record;
m_front = (m_front+1) % m_size;
m_fill++;
ok = true;
}
RESTORE_IRQ;
return ok;
}
/** Aquire record on back of the buffer, for reading.
* After reading the record, it has to be pop'ed to actually
* remove it from the buffer.
* @return Pointer to record, or NULL when buffer is empty.
*/
T* getBack(void) const
{
T* b = NULL;
DISABLE_IRQ;
if (!empty())
b = get(back());
RESTORE_IRQ;
return b;
}
/** Remove record from back of the buffer.
* @return True, when record was pop'ed successfully.
*/
bool popBack(void)
{
bool ok = false;
DISABLE_IRQ;
if (!empty())
{
m_fill--;
ok = true;
}
RESTORE_IRQ;
return ok;
}
protected:
inline T * get(const uint8_t idx) const
{
return &(m_buff[idx]);
}
inline uint8_t back(void) const
{
return (m_front - m_fill + m_size) % m_size;
}
const uint8_t m_size; // Total number of records that can be stored in the buffer.
T* const m_buff; // Ptr to buffer holding all records.
volatile uint8_t m_front; // Index of front element (not pushed yet).
volatile uint8_t m_fill; // Amount of records currently pushed.
template <class BUFFERTYPE, uint8_t BUFFERSIZE>
class CircularBuffer {
typedef BUFFERTYPE BufferType;
BufferType Buffer[BUFFERSIZE];
public:
CircularBuffer() : m_buff(Buffer) {
m_size = BUFFERSIZE;
clear();
}
/** Clear all entries in the circular buffer. */
void clear(void)
{
m_front = 0;
m_fill = 0;
}
/** Test if the circular buffer is empty */
inline bool empty(void) const
{
return !m_fill;
}
/** Return the number of records stored in the buffer */
inline uint8_t available(void) const
{
return m_fill;
}
/** Test if the circular buffer is full */
inline bool full(void) const
{
return m_fill == m_size;
}
inline uint8_t getFill(void) const {
return m_fill;
}
/** Aquire record on front of the buffer, for writing.
* After filling the record, it has to be pushed to actually
* add it to the buffer.
* @return Pointer to record, or NULL when buffer is full.
*/
BUFFERTYPE* getFront(void) const
{
DISABLE_IRQ;
BUFFERTYPE* f = NULL;
if (!full())
f = get(m_front);
RESTORE_IRQ;
return f;
}
/** Push record to front of the buffer
* @param record Record to push. If record was aquired previously (using getFront) its
* data will not be copied as it is already present in the buffer.
* @return True, when record was pushed successfully.
*/
bool pushFront(BUFFERTYPE* record)
{
bool ok = false;
DISABLE_IRQ;
if (!full())
{
BUFFERTYPE* f = get(m_front);
if (f != record)
*f = *record;
m_front = (m_front+1) % m_size;
m_fill++;
ok = true;
}
RESTORE_IRQ;
return ok;
}
/** Aquire record on back of the buffer, for reading.
* After reading the record, it has to be pop'ed to actually
* remove it from the buffer.
* @return Pointer to record, or NULL when buffer is empty.
*/
BUFFERTYPE* getBack(void) const
{
BUFFERTYPE* b = NULL;
DISABLE_IRQ;
if (!empty())
b = get(back());
RESTORE_IRQ;
return b;
}
/** Remove record from back of the buffer.
* @return True, when record was pop'ed successfully.
*/
bool popBack(void)
{
bool ok = false;
DISABLE_IRQ;
if (!empty())
{
m_fill--;
ok = true;
}
RESTORE_IRQ;
return ok;
}
protected:
inline BUFFERTYPE * get(const uint8_t idx) const
{
return &(m_buff[idx]);
}
inline uint8_t back(void) const
{
return (m_front - m_fill + m_size) % m_size;
}
uint8_t m_size; // Total number of records that can be stored in the buffer.
BUFFERTYPE* const m_buff;
volatile uint8_t m_front; // Index of front element (not pushed yet).
volatile uint8_t m_fill; // Amount of records currently pushed.
};
#endif // CircularBuffer_h

37
tools/esp8266/README.md

@ -1,12 +1,9 @@
## OVERVIEW
This code was tested on a ESP8266 - ESP-07 module. Many parts of the code are based on 'Hubi's code, which can be found here: <https://www.mikrocontroller.net/topic/525778?page=3#7033371>
This code is intended to run on a Wemos D1mini or similar. The code is based on 'Hubi's code, which can be found here: <https://www.mikrocontroller.net/topic/525778?page=3#7033371>
The NRF24L01+ radio module is connected to the standard SPI pins. Additional there are 3 pins, which can be set individual:
- IRQ - Pin 4
- CE - Pin 5
- CS - Pin 15
The NRF24L01+ radio module is connected to the standard SPI pins. Additional there are 3 pins, which can be set individual: CS, CE and IRQ
These pins can be changed from the /setup URL
## Compile
@ -16,6 +13,13 @@ This code can be compiled using Arduino. The settings were:
- Board: Generic ESP8266 Module
- Flash-Size: 1MB (FS: none, OTA: 502kB)
### Optional Configuration before compilation
- number of supported inverters (set to 3 by default) `defines.h`
- enable channel hopping `hmRadio.h`
- DTU radio id `hmRadio.h`
- unformated list in webbrowser `/livedata` `defines.h`, `LIVEDATA_VISUALIZED`
## Flash ESP with firmware
@ -24,22 +28,33 @@ This code can be compiled using Arduino. The settings were:
3. the ESP will start as access point (AP) if there is no network config stored in its eeprom
4. connect to the AP, you will be forwarded to the setup page
5. configure your WiFi settings, save, repower
6. check your router for the IP address of the module
6. check your router or serial console for the IP address of the module. You can try ping the configured device name as well.
## Usage
Connect the ESP to power and to your serial console. The webinterface is currently only used for OTA and config.
The serial console will print all information which is send and received.
Connect the ESP to power and to your serial console (optional). The webinterface has the following abilities:
- OTA Update (over the air update)
- Configuration (Wifi, inverter(s), Pinout, MQTT)
- visual display of the connected inverters / modules
- some statistics about communication (debug)
The serial console will print the converted values which were read out of the inverter(s)
## Known Issues
## Compatiblity
- only command 0x81 is received
For now the following inverters should work out of the box:
- HM400
- HM600
- HM800
- HM1200
## USED LIBRARIES
- `Time`
- `RF24`
- `PubSubClient`

704
tools/esp8266/app.cpp

@ -1,20 +1,31 @@
#include "app.h"
#include "html/h/index_html.h"
extern String setup_html;
#include "html/h/setup_html.h"
#include "html/h/hoymiles_html.h"
//-----------------------------------------------------------------------------
app::app() : Main() {
mHoymiles = new hoymiles();
mSendTicker = 0xffff;
mSendInterval = 0;
mMqttTicker = 0xffff;
mMqttInterval = 0;
mSerialTicker = 0xffff;
mSerialInterval = 0;
mMqttActive = false;
mTicker = 0;
mRxTicker = 0;
mBufCtrl = new CircularBuffer(mBuffer, PACKET_BUFFER_SIZE);
mShowRebootRequest = false;
mSendCnt = 0;
mSendTicker = new Ticker();
mFlagSend = false;
mSerialValues = true;
mSerialDebug = false;
memset(mCmds, 0, sizeof(uint32_t));
memset(mChannelStat, 0, sizeof(uint32_t));
memset(mPacketIds, 0, sizeof(uint32_t)*DBG_CMD_LIST_LEN);
mSys = new HmSystemType();
}
@ -25,26 +36,96 @@ app::~app(void) {
//-----------------------------------------------------------------------------
void app::setup(const char *ssid, const char *pwd, uint32_t timeout) {
Main::setup(ssid, pwd, timeout);
mWeb->on("/", std::bind(&app::showIndex, this));
mWeb->on("/setup", std::bind(&app::showSetup, this));
mWeb->on("/save", std::bind(&app::showSave, this));
mWeb->on("/cmdstat", std::bind(&app::showCmdStatistics, this));
if(mSettingsValid)
mEep->read(ADDR_HOY_ADDR, mHoymiles->mAddrBytes, HOY_ADDR_LEN);
else
memset(mHoymiles->mAddrBytes, 0, 6);
mHoymiles->serial2RadioId();
void app::setup(uint32_t timeout) {
Main::setup(timeout);
mWeb->on("/", std::bind(&app::showIndex, this));
mWeb->on("/setup", std::bind(&app::showSetup, this));
mWeb->on("/save", std::bind(&app::showSave, this));
mWeb->on("/erase", std::bind(&app::showErase, this));
mWeb->on("/cmdstat", std::bind(&app::showStatistics, this));
mWeb->on("/hoymiles", std::bind(&app::showHoymiles, this));
mWeb->on("/livedata", std::bind(&app::showLiveData, this));
if(mSettingsValid) {
uint64_t invSerial;
char invName[MAX_NAME_LENGTH + 1] = {0};
uint8_t invType;
// inverter
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) {
mEep->read(ADDR_INV_ADDR + (i * 8), &invSerial);
mEep->read(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), invName, MAX_NAME_LENGTH);
mEep->read(ADDR_INV_TYPE + i, &invType);
if(0ULL != invSerial) {
mSys->addInverter(invName, invSerial, invType);
DPRINTLN("add inverter: " + String(invName) + ", SN: " + String(invSerial, HEX) + ", type: " + String(invType));
}
}
mEep->read(ADDR_INV_INTERVAL, &mSendInterval);
if(mSendInterval < 5)
mSendInterval = 5;
// pinout
mEep->read(ADDR_PINOUT, &mSys->Radio.pinCs);
mEep->read(ADDR_PINOUT+1, &mSys->Radio.pinCe);
mEep->read(ADDR_PINOUT+2, &mSys->Radio.pinIrq);
// nrf24 amplifier power
mEep->read(ADDR_RF24_AMP_PWR, &mSys->Radio.AmplifierPower);
// serial console
uint8_t tmp;
mEep->read(ADDR_SER_INTERVAL, &mSerialInterval);
mEep->read(ADDR_SER_ENABLE, &tmp);
mSerialValues = (tmp == 0x01);
mEep->read(ADDR_SER_DEBUG, &tmp);
mSerialDebug = (tmp == 0x01);
if(mSerialInterval < 1)
mSerialInterval = 1;
// mqtt
uint8_t mqttAddr[MQTT_ADDR_LEN];
uint16_t mqttPort;
char mqttUser[MQTT_USER_LEN];
char mqttPwd[MQTT_PWD_LEN];
char mqttTopic[MQTT_TOPIC_LEN];
mEep->read(ADDR_MQTT_ADDR, mqttAddr, MQTT_ADDR_LEN);
mEep->read(ADDR_MQTT_USER, mqttUser, MQTT_USER_LEN);
mEep->read(ADDR_MQTT_PWD, mqttPwd, MQTT_PWD_LEN);
mEep->read(ADDR_MQTT_TOPIC, mqttTopic, MQTT_TOPIC_LEN);
mEep->read(ADDR_MQTT_INTERVAL, &mMqttInterval);
mEep->read(ADDR_MQTT_PORT, &mqttPort);
char addr[16] = {0};
sprintf(addr, "%d.%d.%d.%d", mqttAddr[0], mqttAddr[1], mqttAddr[2], mqttAddr[3]);
mMqttActive = (mqttAddr[0] > 0);
if(mMqttInterval < 1)
mMqttInterval = 1;
mMqtt.setup(addr, mqttTopic, mqttUser, mqttPwd, mqttPort);
mMqttTicker = 0;
mSerialTicker = 0;
mMqtt.sendMsg("version", mVersion);
}
initRadio();
mSys->setup();
if(mSettingsValid)
mSendTicker->attach_ms(1000, std::bind(&app::sendTicker, this));
else
Serial.println("Warn: your settings are not valid! check [IP]/setup");
if(!mWifiSettingsValid)
DPRINTLN("Warn: your settings are not valid! check [IP]/setup");
else {
DPRINTLN("\n\n----------------------------------------");
DPRINTLN("Welcome to AHOY!");
DPRINT("\npoint your browser to http://");
DPRINTLN(WiFi.localIP());
DPRINTLN("to configure your device");
DPRINTLN("----------------------------------------\n");
}
}
@ -52,219 +133,371 @@ void app::setup(const char *ssid, const char *pwd, uint32_t timeout) {
void app::loop(void) {
Main::loop();
if(!mBufCtrl->empty()) {
uint8_t len, rptCnt;
NRF24_packet_t *p = mBufCtrl->getBack();
//mHoymiles->dumpBuf("RAW ", p->packet, PACKET_BUFFER_SIZE);
if(mHoymiles->checkCrc(p->packet, &len, &rptCnt)) {
// process buffer only on first occurrence
if((0 != len) && (0 == rptCnt)) {
Serial.println("CMD " + String(p->packet[11], HEX));
mHoymiles->dumpBuf("Payload ", p->packet, len);
// @TODO: do analysis here
if(p->packet[11] == 0x01) mCmds[0]++;
else if(p->packet[11] == 0x02) mCmds[1]++;
else if(p->packet[11] == 0x03) mCmds[2]++;
else if(p->packet[11] == 0x81) mCmds[3]++;
else if(p->packet[11] == 0x84) mCmds[4]++;
else mCmds[5]++;
if(p->sendCh == 23) mChannelStat[0]++;
else if(p->sendCh == 40) mChannelStat[1]++;
else if(p->sendCh == 61) mChannelStat[2]++;
else mChannelStat[3]++;
if(checkTicker(&mRxTicker, 5)) {
mSys->Radio.switchRxCh();
if(!mSys->BufCtrl.empty()) {
uint8_t len, rptCnt;
packet_t *p = mSys->BufCtrl.getBack();
//if(mSerialDebug)
// mSys->Radio.dumpBuf("RAW ", p->packet, MAX_RF_PAYLOAD_SIZE);
if(mSys->Radio.checkPaketCrc(p->packet, &len, &rptCnt, p->rxCh)) {
// process buffer only on first occurrence
if((0 != len) && (0 == rptCnt)) {
uint8_t *packetId = &p->packet[9];
//DPRINTLN("CMD " + String(*packetId, HEX));
if(mSerialDebug)
mSys->Radio.dumpBuf("Payload ", p->packet, len);
Inverter<> *iv = mSys->findInverter(&p->packet[1]);
if(NULL != iv) {
for(uint8_t i = 0; i < iv->listLen; i++) {
if(iv->assign[i].cmdId == *packetId)
iv->addValue(i, &p->packet[9]);
}
iv->doCalculations();
//memcpy(mPayload[(*packetId & 0x7F) - 1], &p->packet[9], MAX_RF_PAYLOAD_SIZE - 11);
}
if(*packetId == 0x01) mPacketIds[0]++;
else if(*packetId == 0x02) mPacketIds[1]++;
else if(*packetId == 0x03) mPacketIds[2]++;
else if(*packetId == 0x81) mPacketIds[3]++;
else if(*packetId == 0x82) mPacketIds[4]++;
else if(*packetId == 0x83) mPacketIds[5]++;
else if(*packetId == 0x84) mPacketIds[6]++;
else mPacketIds[7]++;
}
}
mSys->BufCtrl.popBack();
}
mBufCtrl->popBack();
}
if(mFlagSend) {
mFlagSend = false;
uint8_t size = 0;
if((mSendCnt % 6) == 0)
size = mHoymiles->getTimePacket(mSendBuf, mTimestamp);
else if((mSendCnt % 6) == 1)
size = mHoymiles->getCmdPacket(mSendBuf, 0x15, 0x81);
else if((mSendCnt % 6) == 2)
size = mHoymiles->getCmdPacket(mSendBuf, 0x15, 0x80);
else if((mSendCnt % 6) == 3)
size = mHoymiles->getCmdPacket(mSendBuf, 0x15, 0x83);
else if((mSendCnt % 6) == 4)
size = mHoymiles->getCmdPacket(mSendBuf, 0x15, 0x82);
else if((mSendCnt % 6) == 5)
size = mHoymiles->getCmdPacket(mSendBuf, 0x15, 0x84);
//Serial.println("sent packet: #" + String(mSendCnt));
//dumpBuf(mSendBuf, size);
sendPacket(mSendBuf, size);
mSendCnt++;
}
}
if(checkTicker(&mTicker, 1000)) {
if(mMqttActive) {
mMqtt.loop();
if(++mMqttTicker >= mMqttInterval) {
mMqttTicker = 0;
mMqtt.isConnected(true);
char topic[30], val[10];
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
for(uint8_t i = 0; i < iv->listLen; i++) {
if(0.0f != iv->getValue(i)) {
snprintf(topic, 30, "%s/ch%d/%s", iv->name, iv->assign[i].ch, fields[iv->assign[i].fieldId]);
snprintf(val, 10, "%.3f", iv->getValue(i));
mMqtt.sendMsg(topic, val);
yield();
}
}
}
}
}
}
//-----------------------------------------------------------------------------
void app::handleIntr(void) {
uint8_t lostCnt = 0, pipe, len;
NRF24_packet_t *p;
DISABLE_IRQ;
while(mRadio->available(&pipe)) {
if(!mBufCtrl->full()) {
p = mBufCtrl->getFront();
memset(p->packet, 0xcc, MAX_RF_PAYLOAD_SIZE);
p->sendCh = mSendChannel;
len = mRadio->getPayloadSize();
if(len > MAX_RF_PAYLOAD_SIZE)
len = MAX_RF_PAYLOAD_SIZE;
mRadio->read(p->packet, len);
mBufCtrl->pushFront(p);
lostCnt = 0;
if(mSerialValues) {
if(++mSerialTicker >= mSerialInterval) {
mSerialTicker = 0;
char topic[30], val[10];
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
for(uint8_t i = 0; i < iv->listLen; i++) {
if(0.0f != iv->getValue(i)) {
snprintf(topic, 30, "%s/ch%d/%s", iv->name, iv->assign[i].ch, iv->getFieldName(i));
snprintf(val, 10, "%.3f %s", iv->getValue(i), iv->getUnit(i));
DPRINTLN(String(topic) + ": " + String(val));
}
yield();
}
}
}
}
}
else {
bool tx_ok, tx_fail, rx_ready;
if(lostCnt < 255)
lostCnt++;
mRadio->whatHappened(tx_ok, tx_fail, rx_ready); // reset interrupt status
mRadio->flush_rx(); // drop the packet
if(++mSendTicker >= mSendInterval) {
mSendTicker = 0;
if(!mSys->BufCtrl.empty())
DPRINTLN("recbuf not empty! #" + String(mSys->BufCtrl.getFill()));
Inverter<> *inv;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) {
inv = mSys->getInverterByPos(i);
if(NULL != inv) {
yield();
mSys->Radio.sendTimePacket(inv->radioId.u64, mTimestamp);
mRxTicker = 0;
}
}
}
}
RESTORE_IRQ;
}
//-----------------------------------------------------------------------------
void app::initRadio(void) {
mRadio = new RF24(RF24_CE_PIN, RF24_CS_PIN);
mRadio->begin();
mRadio->setAutoAck(false);
mRadio->setRetries(0, 0);
mRadio->setChannel(DEFAULT_RECV_CHANNEL);
mRadio->setDataRate(RF24_250KBPS);
mRadio->disableCRC();
mRadio->setAutoAck(false);
mRadio->setPayloadSize(MAX_RF_PAYLOAD_SIZE);
mRadio->setAddressWidth(5);
mRadio->openReadingPipe(1, DTU_RADIO_ID);
// enable only receiving interrupts
mRadio->maskIRQ(true, true, false);
// Use lo PA level, as a higher level will disturb CH340 serial usb adapter
mRadio->setPALevel(RF24_PA_MAX);
mRadio->startListening();
void app::handleIntr(void) {
mSys->Radio.handleIntr();
}
Serial.println("Radio Config:");
mRadio->printPrettyDetails();
mSendChannel = mHoymiles->getDefaultChannel();
//-----------------------------------------------------------------------------
void app::showIndex(void) {
String html = FPSTR(index_html);
html.replace("{DEVICE}", mDeviceName);
html.replace("{VERSION}", mVersion);
mWeb->send(200, "text/html", html);
}
//-----------------------------------------------------------------------------
void app::sendPacket(uint8_t buf[], uint8_t len) {
DISABLE_IRQ;
mRadio->stopListening();
void app::showSetup(void) {
// overrides same method in main.cpp
uint16_t interval;
#ifdef CHANNEL_HOP
if(mSendCnt % 6 == 0)
mSendChannel = mHoymiles->getNxtChannel();
String html = FPSTR(setup_html);
html.replace("{SSID}", mStationSsid);
// PWD will be left at the default value (for protection)
// -> the PWD will only be changed if it does not match the placeholder "{PWD}"
html.replace("{DEVICE}", String(mDeviceName));
html.replace("{VERSION}", String(mVersion));
if(mApActive)
html.replace("{IP}", String("http://192.168.1.1"));
else
mSendChannel = mHoymiles->getLastChannel();
#else
mSendChannel = mHoymiles->getDefaultChannel();
#endif
mRadio->setChannel(mSendChannel);
//Serial.println("CH: " + String(mSendChannel));
html.replace("{IP}", ("http://" + String(WiFi.localIP().toString())));
String inv;
uint64_t invSerial;
char invName[MAX_NAME_LENGTH + 1] = {0};
uint8_t invType;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) {
mEep->read(ADDR_INV_ADDR + (i * 8), &invSerial);
mEep->read(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), invName, MAX_NAME_LENGTH);
mEep->read(ADDR_INV_TYPE + i, &invType);
inv += "<p class=\"subdes\">Inverter "+ String(i) + "</p>";
inv += "<label for=\"inv" + String(i) + "Addr\">Address</label>";
inv += "<input type=\"text\" class=\"text\" name=\"inv" + String(i) + "Addr\" value=\"";
if(0ULL != invSerial)
inv += String(invSerial, HEX);
inv += "\"/ maxlength=\"12\">";
inv += "<label for=\"inv" + String(i) + "Name\">Name</label>";
inv += "<input type=\"text\" class=\"text\" name=\"inv" + String(i) + "Name\" value=\"";
inv += String(invName);
inv += "\"/ maxlength=\"" + String(MAX_NAME_LENGTH) + "\">";
inv += "<label for=\"inv" + String(i) + "Type\">Type</label>";
inv += "<select name=\"inv" + String(i) + "Type\">";
for(uint8_t t = 0; t < NUM_INVERTER_TYPES; t++) {
inv += "<option value=\"" + String(t) + "\"";
if(invType == t)
inv += " selected";
inv += ">" + String(invTypes[t]) + "</option>";
}
inv += "</select>";
}
html.replace("{INVERTERS}", String(inv));
// pinout
String pinout;
for(uint8_t i = 0; i < 3; i++) {
pinout += "<label for=\"" + String(pinArgNames[i]) + "\">" + String(pinNames[i]) + "</label>";
pinout += "<select name=\"" + String(pinArgNames[i]) + "\">";
for(uint8_t j = 0; j <= 16; j++) {
pinout += "<option value=\"" + String(j) + "\"";
switch(i) {
default: if(j == mSys->Radio.pinCs) pinout += " selected"; break;
case 1: if(j == mSys->Radio.pinCe) pinout += " selected"; break;
case 2: if(j == mSys->Radio.pinIrq) pinout += " selected"; break;
}
pinout += ">" + String(wemosPins[j]) + "</option>";
}
pinout += "</select>";
}
html.replace("{PINOUT}", String(pinout));
mRadio->openWritingPipe(mHoymiles->mRadioId);
mRadio->setCRCLength(RF24_CRC_16);
mRadio->enableDynamicPayloads();
mRadio->setAutoAck(true);
mRadio->setRetries(3, 15);
mRadio->write(buf, len);
// nrf24l01+
String rf24;
for(uint8_t i = 0; i <= 3; i++) {
rf24 += "<option value=\"" + String(i) + "\"";
if(i == mSys->Radio.AmplifierPower)
rf24 += " selected";
rf24 += ">" + String(rf24AmpPower[i]) + "</option>";
}
html.replace("{RF24}", String(rf24));
if(mSettingsValid) {
mEep->read(ADDR_INV_INTERVAL, &interval);
html.replace("{INV_INTVL}", String(interval));
uint8_t tmp;
mEep->read(ADDR_SER_INTERVAL, &interval);
mEep->read(ADDR_SER_ENABLE, &tmp);
html.replace("{SER_INTVL}", String(interval));
html.replace("{SER_VAL_CB}", (tmp == 0x01) ? "checked" : "");
mEep->read(ADDR_SER_DEBUG, &tmp);
html.replace("{SER_DBG_CB}", (tmp == 0x01) ? "checked" : "");
uint8_t mqttAddr[MQTT_ADDR_LEN] = {0};
uint16_t mqttPort;
mEep->read(ADDR_MQTT_ADDR, mqttAddr, MQTT_ADDR_LEN);
mEep->read(ADDR_MQTT_INTERVAL, &interval);
mEep->read(ADDR_MQTT_PORT, &mqttPort);
char addr[16] = {0};
sprintf(addr, "%d.%d.%d.%d", mqttAddr[0], mqttAddr[1], mqttAddr[2], mqttAddr[3]);
html.replace("{MQTT_ADDR}", String(addr));
html.replace("{MQTT_PORT}", String(mqttPort));
html.replace("{MQTT_USER}", String(mMqtt.getUser()));
html.replace("{MQTT_PWD}", String(mMqtt.getPwd()));
html.replace("{MQTT_TOPIC}", String(mMqtt.getTopic()));
html.replace("{MQTT_INTVL}", String(interval));
}
else {
html.replace("{INV_INTVL}", "5");
// Try to avoid zero payload acks (has no effect)
mRadio->openWritingPipe(DUMMY_RADIO_ID); // TODO: why dummy radio id?
html.replace("{SER_VAL_CB}", "checked");
html.replace("{SER_DBG_CB}", "");
html.replace("{SER_INTVL}", "10");
mRadio->setAutoAck(false);
mRadio->setRetries(0, 0);
mRadio->disableDynamicPayloads();
mRadio->setCRCLength(RF24_CRC_DISABLED);
html.replace("{MQTT_ADDR}", "");
html.replace("{MQTT_PORT}", "1883");
html.replace("{MQTT_USER}", "");
html.replace("{MQTT_PWD}", "");
html.replace("{MQTT_TOPIC}", "/inverter");
html.replace("{MQTT_INTVL}", "10");
mRadio->setChannel(DEFAULT_RECV_CHANNEL);
mRadio->startListening();
html.replace("{SER_INTVL}", "10");
}
RESTORE_IRQ;
mWeb->send(200, "text/html", html);
}
//-----------------------------------------------------------------------------
void app::sendTicker(void) {
mFlagSend = true;
void app::showSave(void) {
saveValues(true);
}
//-----------------------------------------------------------------------------
void app::showIndex(void) {
String html = index_html;
html.replace("{DEVICE}", mDeviceName);
html.replace("{VERSION}", mVersion);
mWeb->send(200, "text/html", html);
void app::showErase() {
eraseSettings();
showReboot();
}
//-----------------------------------------------------------------------------
void app::showSetup(void) {
// overrides same method in main.cpp
void app::showStatistics(void) {
String content = "Packets:\n";
for(uint8_t i = 0; i < DBG_CMD_LIST_LEN; i ++) {
content += String("0x") + String(dbgCmds[i], HEX) + String(": ") + String(mPacketIds[i]) + String("\n");
}
content += String("other: ") + String(mPacketIds[DBG_CMD_LIST_LEN]) + String("\n\n");
String html = setup_html;
html.replace("{SSID}", mStationSsid);
// PWD will be left at the default value (for protection)
// -> the PWD will only be changed if it does not match the placeholder "{PWD}"
content += "Send Cnt: " + String(mSys->Radio.mSendCnt) + String("\n\n");
char addr[20] = {0};
sprintf(addr, "%02X:%02X:%02X:%02X:%02X:%02X", mHoymiles->mAddrBytes[0], mHoymiles->mAddrBytes[1], mHoymiles->mAddrBytes[2], mHoymiles->mAddrBytes[3], mHoymiles->mAddrBytes[4], mHoymiles->mAddrBytes[5]);
html.replace("{HOY_ADDR}", String(addr));
if(!mSys->Radio.isChipConnected())
content += "WARNING! your NRF24 module can't be reached, check the wiring and pinout (<a href=\"/setup\">setup</a>)\n";
html.replace("{DEVICE}", String(mDeviceName));
html.replace("{VERSION}", String(mVersion));
if(mShowRebootRequest)
content += "INFO: reboot your ESP to apply all your configuration changes!\n";
mWeb->send(200, "text/html", html);
if(!mSettingsValid)
content += "INFO: your settings are invalid, please switch to <a href=\"/setup\">setup</a> to correct this.\n";
content += "MQTT: ";
if(!mMqtt.isConnected())
content += "not ";
content += "connected\n";
mWeb->send(200, "text/plain", content);
}
//-----------------------------------------------------------------------------
void app::showSave(void) {
saveValues(true);
void app::showHoymiles(void) {
String html = FPSTR(hoymiles_html);
html.replace("{DEVICE}", mDeviceName);
html.replace("{VERSION}", mVersion);
mWeb->send(200, "text/html", html);
}
//-----------------------------------------------------------------------------
void app::showCmdStatistics(void) {
String content = "CMDs:\n";
content += String("0x01: ") + String(mCmds[0]) + String("\n");
content += String("0x02: ") + String(mCmds[1]) + String("\n");
content += String("0x03: ") + String(mCmds[2]) + String("\n");
content += String("0x81: ") + String(mCmds[3]) + String("\n");
content += String("0x84: ") + String(mCmds[4]) + String("\n");
content += String("other: ") + String(mCmds[5]) + String("\n");
content += "\nCHANNELs:\n";
content += String("23: ") + String(mChannelStat[0]) + String("\n");
content += String("40: ") + String(mChannelStat[1]) + String("\n");
content += String("61: ") + String(mChannelStat[2]) + String("\n");
content += String("75: ") + String(mChannelStat[3]) + String("\n");
mWeb->send(200, "text/plain", content);
void app::showLiveData(void) {
String modHtml;
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
#ifdef LIVEDATA_VISUALIZED
uint8_t modNum, pos;
switch(iv->type) {
default: modNum = 1; break;
case INV_TYPE_HM600:
case INV_TYPE_HM800: modNum = 2; break;
case INV_TYPE_HM1200: modNum = 4; break;
}
modHtml += "<div class=\"iv\">";
modHtml += "<div class=\"ch-iv\"><span class=\"head\">" + String(iv->name) + "</span>";
uint8_t list[8] = {FLD_UAC, FLD_IAC, FLD_PAC, FLD_F, FLD_PCT, FLD_T, FLD_YT, FLD_YD};
for(uint8_t fld = 0; fld < 8; fld++) {
pos = (iv->getPosByChFld(CH0, list[fld]));
if(0xff != pos) {
modHtml += "<div class=\"subgrp\">";
modHtml += "<span class=\"value\">" + String(iv->getValue(pos));
modHtml += "<span class=\"unit\">" + String(iv->getUnit(pos)) + "</span></span>";
modHtml += "<span class=\"info\">" + String(iv->getFieldName(pos)) + "</span>";
modHtml += "</div>";
}
}
modHtml += "</div>";
for(uint8_t ch = 1; ch <= modNum; ch ++) {
modHtml += "<div class=\"ch\"><span class=\"head\">CHANNEL " + String(ch) + "</span>";
for(uint8_t j = 0; j < 5; j++) {
switch(j) {
default: pos = (iv->getPosByChFld(ch, FLD_UDC)); break;
case 1: pos = (iv->getPosByChFld(ch, FLD_IDC)); break;
case 2: pos = (iv->getPosByChFld(ch, FLD_PDC)); break;
case 3: pos = (iv->getPosByChFld(ch, FLD_YD)); break;
case 4: pos = (iv->getPosByChFld(ch, FLD_YT)); break;
}
if(0xff != pos) {
modHtml += "<span class=\"value\">" + String(iv->getValue(pos));
modHtml += "<span class=\"unit\">" + String(iv->getUnit(pos)) + "</span></span>";
modHtml += "<span class=\"info\">" + String(iv->getFieldName(pos)) + "</span>";
}
}
modHtml += "</div>";
}
modHtml += "</div>";
#else
// dump all data to web frontend
modHtml = "<pre>";
char topic[30], val[10];
for(uint8_t i = 0; i < iv->listLen; i++) {
snprintf(topic, 30, "%s/ch%d/%s", iv->name, iv->assign[i].ch, iv->getFieldName(i));
snprintf(val, 10, "%.3f %s", iv->getValue(i), iv->getUnit(i));
modHtml += String(topic) + ": " + String(val) + "\n";
}
modHtml += "</pre>";
#endif
}
}
mWeb->send(200, "text/html", modHtml);
}
@ -274,25 +507,86 @@ void app::saveValues(bool webSend = true) {
if(mWeb->args() > 0) {
char *p;
char addr[20] = {0};
char buf[20] = {0};
uint8_t i = 0;
uint16_t interval;
// inverter
serial_u addr;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) {
// address
mWeb->arg("inv" + String(i) + "Addr").toCharArray(buf, 20);
if(strlen(buf) == 0)
snprintf(buf, 20, "\0");
addr.u64 = Serial2u64(buf);
mEep->write(ADDR_INV_ADDR + (i * 8), addr.u64);
// name
mWeb->arg("inv" + String(i) + "Name").toCharArray(buf, 20);
mEep->write(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), buf, MAX_NAME_LENGTH);
// type
mWeb->arg("inv" + String(i) + "Type").toCharArray(buf, 20);
uint8_t type = atoi(buf);
mEep->write(ADDR_INV_TYPE + i, type);
}
memset(mHoymiles->mAddrBytes, 0, 6);
mWeb->arg("hoy_addr").toCharArray(addr, 20);
interval = mWeb->arg("invInterval").toInt();
mEep->write(ADDR_INV_INTERVAL, interval);
p = strtok(addr, ":");
while(NULL != p) {
mHoymiles->mAddrBytes[i++] = strtol(p, NULL, 16);
p = strtok(NULL, ":");
// pinout
for(uint8_t i = 0; i < 3; i ++) {
uint8_t pin = mWeb->arg(String(pinArgNames[i])).toInt();
mEep->write(ADDR_PINOUT + i, pin);
}
mEep->write(ADDR_HOY_ADDR, mHoymiles->mAddrBytes, HOY_ADDR_LEN);
// nrf24 amplifier power
mSys->Radio.AmplifierPower = mWeb->arg("rf24Power").toInt() & 0x03;
mEep->write(ADDR_RF24_AMP_PWR, mSys->Radio.AmplifierPower);
// mqtt
uint8_t mqttAddr[MQTT_ADDR_LEN] = {0};
uint16_t mqttPort;
char mqttUser[MQTT_USER_LEN];
char mqttPwd[MQTT_PWD_LEN];
char mqttTopic[MQTT_TOPIC_LEN];
mWeb->arg("mqttAddr").toCharArray(buf, 20);
i = 0;
p = strtok(buf, ".");
while(NULL != p) {
mqttAddr[i++] = atoi(p);
p = strtok(NULL, ".");
}
mWeb->arg("mqttUser").toCharArray(mqttUser, MQTT_USER_LEN);
mWeb->arg("mqttPwd").toCharArray(mqttPwd, MQTT_PWD_LEN);
mWeb->arg("mqttTopic").toCharArray(mqttTopic, MQTT_TOPIC_LEN);
interval = mWeb->arg("mqttIntvl").toInt();
mqttPort = mWeb->arg("mqttPort").toInt();
mEep->write(ADDR_MQTT_ADDR, mqttAddr, MQTT_ADDR_LEN);
mEep->write(ADDR_MQTT_PORT, mqttPort);
mEep->write(ADDR_MQTT_USER, mqttUser, MQTT_USER_LEN);
mEep->write(ADDR_MQTT_PWD, mqttPwd, MQTT_PWD_LEN);
mEep->write(ADDR_MQTT_TOPIC, mqttTopic, MQTT_TOPIC_LEN);
mEep->write(ADDR_MQTT_INTERVAL, interval);
// serial console
bool tmp;
interval = mWeb->arg("serIntvl").toInt();
mEep->write(ADDR_SER_INTERVAL, interval);
tmp = (mWeb->arg("serEn") == "on");
mEep->write(ADDR_SER_ENABLE, (uint8_t)((tmp) ? 0x01 : 0x00));
tmp = (mWeb->arg("serDbg") == "on");
mEep->write(ADDR_SER_DEBUG, (uint8_t)((tmp) ? 0x01 : 0x00));
updateCrc();
if((mWeb->arg("reboot") == "on"))
showReboot();
else {
mWeb->send(200, "text/html", "<!doctype html><html><head><title>Setup saved</title><meta http-equiv=\"refresh\" content=\"0; URL=/setup\"></head><body>"
mShowRebootRequest = true;
mWeb->send(200, "text/html", "<!doctype html><html><head><title>Setup saved</title><meta http-equiv=\"refresh\" content=\"3; URL=/setup\"></head><body>"
"<p>saved</p></body></html>");
}
}
@ -304,11 +598,11 @@ void app::saveValues(bool webSend = true) {
//-----------------------------------------------------------------------------
void app::dumpBuf(uint8_t buf[], uint8_t len) {
for(uint8_t i = 0; i < len; i ++) {
if((i % 8 == 0) && (i != 0))
Serial.println();
Serial.print(String(buf[i], HEX) + " ");
}
Serial.println();
void app::updateCrc(void) {
Main::updateCrc();
uint16_t crc;
crc = buildEEpCrc(ADDR_START_SETTINGS, (ADDR_NEXT - ADDR_START_SETTINGS));
//DPRINTLN("new CRC: " + String(crc, HEX));
mEep->write(ADDR_SETTINGS_CRC, crc);
}

93
tools/esp8266/app.h

@ -8,49 +8,88 @@
#include "main.h"
#include "CircularBuffer.h"
#include "hoymiles.h"
#include "hmSystem.h"
#include "mqtt.h"
typedef CircularBuffer<packet_t, PACKET_BUFFER_SIZE> BufferType;
typedef HmRadio<RF24_CE_PIN, RF24_CS_PIN, RF24_IRQ_PIN, BufferType> RadioType;
typedef Inverter<float> InverterType;
typedef HmSystem<RadioType, BufferType, MAX_NUM_INVERTERS, InverterType> HmSystemType;
const char* const wemosPins[] = {"D3 (GPIO0)", "TX (GPIO1)", "D4 (GPIO2)", "RX (GPIO3)",
"D2 (GPIO4)", "D1 (GPIO5)", "GPIO6", "GPIO7", "GPIO8",
"GPIO9", "GPIO10", "GPIO11", "D6 (GPIO12)", "D7 (GPIO13)",
"D5 (GPIO14)", "D8 (GPIO15)", "D0 (GPIO16)"};
const char* const pinNames[] = {"CS", "CE", "IRQ"};
const char* const pinArgNames[] = {"pinCs", "pinCe", "pinIrq"};
const uint8_t dbgCmds[] = {0x01, 0x02, 0x03, 0x81, 0x82, 0x83, 0x84};
#define DBG_CMD_LIST_LEN 7
class app : public Main {
public:
app();
~app();
void setup(const char *ssid, const char *pwd, uint32_t timeout);
void setup(uint32_t timeout);
void loop(void);
void handleIntr(void);
private:
void initRadio(void);
void sendPacket(uint8_t data[], uint8_t length);
void sendTicker(void);
uint8_t getIrqPin(void) {
return mSys->Radio.pinIrq;
}
private:
void showIndex(void);
void showSetup(void);
void showSave(void);
void showCmdStatistics(void);
void showErase(void);
void showStatistics(void);
void showHoymiles(void);
void showLiveData(void);
void saveValues(bool webSend);
void dumpBuf(uint8_t buf[], uint8_t len);
uint8_t mState;
bool mKeyPressed;
RF24 *mRadio;
hoymiles *mHoymiles;
CircularBuffer<NRF24_packet_t> *mBufCtrl;
NRF24_packet_t mBuffer[PACKET_BUFFER_SIZE];
Ticker *mSendTicker;
uint32_t mSendCnt;
uint8_t mSendBuf[MAX_RF_PAYLOAD_SIZE];
bool mFlagSend;
uint8_t mSendChannel;
uint32_t mCmds[6];
uint32_t mChannelStat[4];
void updateCrc(void);
uint64_t Serial2u64(const char *val) {
char tmp[3] = {0};
uint64_t ret = 0ULL;
uint64_t u64;
for(uint8_t i = 0; i < 6; i++) {
tmp[0] = val[i*2];
tmp[1] = val[i*2 + 1];
if((tmp[0] == '\0') || (tmp[1] == '\0'))
break;
u64 = strtol(tmp, NULL, 16);
ret |= (u64 << ((5-i) << 3));
}
return ret;
}
bool mShowRebootRequest;
HmSystemType *mSys;
uint16_t mSendTicker;
uint16_t mSendInterval;
uint32_t mPacketIds[DBG_CMD_LIST_LEN+1];
uint32_t mRecCnt;
// timer
uint32_t mTicker;
bool mSerialValues;
bool mSerialDebug;
uint32_t mRxTicker;
// mqtt
mqtt mMqtt;
uint16_t mMqttTicker;
uint16_t mMqttInterval;
bool mMqttActive;
uint16_t mSerialTicker;
uint16_t mSerialInterval;
};
#endif /*__APP_H__*/

44
tools/esp8266/config.h

@ -0,0 +1,44 @@
#ifndef __CONFIG_H__
#define __CONFIG_H__
// fallback WiFi info
#define FB_WIFI_SSID "YOUR_WIFI_SSID"
#define FB_WIFI_PWD "YOUR_WIFI_PWD"
// access point info
#define WIFI_AP_SSID "AHOY DTU"
#define WIFI_AP_PWD "esp_8266"
// stay in access point mode all the time
//#define AP_ONLY
//-------------------------------------
// CONFIGURATION - COMPILE TIME
//-------------------------------------
// time in seconds how long the station info (ssid + pwd) will be tried
#define WIFI_TRY_CONNECT_TIME 30
// time during the ESP will act as access point on connection failure (to
// station) in seconds
#define WIFI_AP_ACTIVE_TIME 3*60
// default device name
#define DEF_DEVICE_NAME "ESP-DTU"
// number of packets hold in buffer
#define PACKET_BUFFER_SIZE 30
// number of configurable inverters
#define MAX_NUM_INVERTERS 3
// maximum human readable inverter name length
#define MAX_NAME_LENGTH 16
// maximum buffer length of packet received / sent to RF24 module
#define MAX_RF_PAYLOAD_SIZE 32
// changes the style of "/setup" page, visualized = nicer
#define LIVEDATA_VISUALIZED
#endif /*__CONFIG_H__*/

39
tools/esp8266/debug.h

@ -0,0 +1,39 @@
#ifndef __DEBUG_H__
#define __DEBUG_H__
#ifdef NDEBUG
#define DPRINT(str)
#define DPRINTLN(str)
#else
#ifndef DSERIAL
#define DSERIAL Serial
#endif
template <class T>
inline void DPRINT(T str) { DSERIAL.print(str); }
template <class T>
inline void DPRINTLN(T str) { DPRINT(str); DPRINT(F("\r\n")); }
inline void DHEX(uint8_t b) {
if( b<0x10 ) DSERIAL.print('0');
DSERIAL.print(b,HEX);
}
inline void DHEX(uint16_t b) {
if( b<0x10 ) DSERIAL.print(F("000"));
else if( b<0x100 ) DSERIAL.print(F("00"));
else if( b<0x1000 ) DSERIAL.print(F("0"));
DSERIAL.print(b,HEX);
}
inline void DHEX(uint32_t b) {
if( b<0x10 ) DSERIAL.print(F("0000000"));
else if( b<0x100 ) DSERIAL.print(F("000000"));
else if( b<0x1000 ) DSERIAL.print(F("00000"));
else if( b<0x10000 ) DSERIAL.print(F("0000"));
else if( b<0x100000 ) DSERIAL.print(F("000"));
else if( b<0x1000000 ) DSERIAL.print(F("00"));
else if( b<0x10000000 ) DSERIAL.print(F("0"));
DSERIAL.print(b,HEX);
}
#endif
#endif /*__DEBUG_H__*/

73
tools/esp8266/defines.h

@ -1,41 +1,92 @@
#ifndef __DEFINES_H__
#define __DEFINES_H__
#include "config.h"
//-------------------------------------
// PINOUT
// PINOUT (Default, can be changed in setup)
//-------------------------------------
#define RF24_IRQ_PIN 4
#define RF24_CE_PIN 5
#define RF24_CS_PIN 15
#define RF24_CE_PIN 2
#define RF24_IRQ_PIN 0
//-------------------------------------
// VERSION
//-------------------------------------
#define VERSION_MAJOR 0
#define VERSION_MINOR 1
#define VERSION_MINOR 3
#define VERSION_PATCH 9
//-------------------------------------
typedef struct {
uint8_t rxCh;
uint8_t packet[MAX_RF_PAYLOAD_SIZE];
} packet_t;
//-------------------------------------
// EEPROM
//-------------------------------------
#define SSID_LEN 32
#define PWD_LEN 64
#define DEVNAME_LEN 32
#define CRC_LEN 2
#define PWD_LEN 63
#define DEVNAME_LEN 16
#define CRC_LEN 2 // uint16_t
#define INV_ADDR_LEN MAX_NUM_INVERTERS * 8 // uint64_t
#define INV_NAME_LEN MAX_NUM_INVERTERS * MAX_NAME_LENGTH // char[]
#define INV_TYPE_LEN MAX_NUM_INVERTERS * 1 // uint8_t
#define INV_INTERVAL_LEN 2 // uint16_t
#define PINOUT_LEN 3 // 3 pins: CS, CE, IRQ
#define RF24_AMP_PWR_LEN 1
#define MQTT_ADDR_LEN 4 // IP
#define MQTT_USER_LEN 16
#define MQTT_PWD_LEN 32
#define MQTT_TOPIC_LEN 32
#define MQTT_INTERVAL_LEN 2 // uint16_t
#define MQTT_PORT_LEN 2 // uint16_t
#define SER_ENABLE_LEN 1 // uint8_t
#define SER_DEBUG_LEN 1 // uint8_t
#define SER_INTERVAL_LEN 2 // uint16_t
#define HOY_ADDR_LEN 6
#define ADDR_START 0
#define ADDR_SSID ADDR_START
#define ADDR_PWD ADDR_SSID + SSID_LEN
#define ADDR_DEVNAME ADDR_PWD + PWD_LEN
#define ADDR_HOY_ADDR ADDR_DEVNAME + DEVNAME_LEN
#define ADDR_WIFI_CRC ADDR_DEVNAME + DEVNAME_LEN
#define ADDR_START_SETTINGS ADDR_WIFI_CRC + CRC_LEN
#define ADDR_PINOUT ADDR_START_SETTINGS
#define ADDR_RF24_AMP_PWR ADDR_PINOUT + PINOUT_LEN
#define ADDR_INV_ADDR ADDR_RF24_AMP_PWR + RF24_AMP_PWR_LEN
#define ADDR_INV_NAME ADDR_INV_ADDR + INV_ADDR_LEN
#define ADDR_INV_TYPE ADDR_INV_NAME + INV_NAME_LEN
#define ADDR_INV_INTERVAL ADDR_INV_TYPE + INV_TYPE_LEN
#define ADDR_MQTT_ADDR ADDR_INV_INTERVAL + INV_INTERVAL_LEN
#define ADDR_MQTT_USER ADDR_MQTT_ADDR + MQTT_ADDR_LEN
#define ADDR_MQTT_PWD ADDR_MQTT_USER + MQTT_USER_LEN
#define ADDR_MQTT_TOPIC ADDR_MQTT_PWD + MQTT_PWD_LEN
#define ADDR_MQTT_INTERVAL ADDR_MQTT_TOPIC + MQTT_TOPIC_LEN
#define ADDR_MQTT_PORT ADDR_MQTT_INTERVAL + MQTT_INTERVAL_LEN
#define ADDR_SER_ENABLE ADDR_MQTT_PORT + MQTT_PORT_LEN
#define ADDR_SER_DEBUG ADDR_SER_ENABLE + SER_ENABLE_LEN
#define ADDR_SER_INTERVAL ADDR_SER_DEBUG + SER_DEBUG_LEN
#define ADDR_NEXT ADDR_SER_INTERVAL + SER_INTERVAL_LEN
#define ADDR_NEXT ADDR_HOY_ADDR + HOY_ADDR_LEN
#define ADDR_SETTINGS_CRC 400
#define ADDR_SETTINGS_CRC 200
#if(ADDR_SETTINGS_CRC <= ADDR_NEXT)
#error address overlap!
#endif
#endif /*__DEFINES_H__*/

130
tools/esp8266/eep.cpp

@ -1,130 +0,0 @@
#include "eep.h"
#include <EEPROM.h>
//-----------------------------------------------------------------------------
eep::eep() {
EEPROM.begin(500);
}
//-----------------------------------------------------------------------------
eep::~eep() {
EEPROM.end();
}
//-----------------------------------------------------------------------------
void eep::read(uint32_t addr, char *str, uint8_t length) {
for(uint8_t i = 0; i < length; i ++) {
*(str++) = (char)EEPROM.read(addr++);
}
}
//-----------------------------------------------------------------------------
void eep::read(uint32_t addr, float *value) {
uint8_t *p = (uint8_t*)value;
for(uint8_t i = 0; i < 4; i ++) {
*(p++) = (uint8_t)EEPROM.read(addr++);
}
}
//-----------------------------------------------------------------------------
void eep::read(uint32_t addr, bool *value) {
uint8_t intVal = 0x00;
intVal = EEPROM.read(addr++);
*value = (intVal == 0x01);
}
//-----------------------------------------------------------------------------
void eep::read(uint32_t addr, uint8_t *value) {
*value = (EEPROM.read(addr++));
}
//-----------------------------------------------------------------------------
void eep::read(uint32_t addr, uint8_t data[], uint8_t length) {
for(uint8_t i = 0; i < length; i ++) {
*(data++) = EEPROM.read(addr++);
}
}
//-----------------------------------------------------------------------------
void eep::read(uint32_t addr, uint16_t *value) {
*value = (EEPROM.read(addr++) << 8);
*value |= (EEPROM.read(addr++));
}
//-----------------------------------------------------------------------------
void eep::read(uint32_t addr, uint32_t *value) {
*value = (EEPROM.read(addr++) << 24);
*value |= (EEPROM.read(addr++) << 16);
*value |= (EEPROM.read(addr++) << 8);
*value |= (EEPROM.read(addr++));
}
//-----------------------------------------------------------------------------
void eep::write(uint32_t addr, const char *str, uint8_t length) {
for(uint8_t i = 0; i < length; i ++) {
EEPROM.write(addr++, str[i]);
}
EEPROM.commit();
}
//-----------------------------------------------------------------------------
void eep::write(uint32_t addr, uint8_t data[], uint8_t length) {
for(uint8_t i = 0; i < length; i ++) {
EEPROM.write(addr++, data[i]);
}
EEPROM.commit();
}
//-----------------------------------------------------------------------------
void eep::write(uint32_t addr, float value) {
uint8_t *p = (uint8_t*)&value;
for(uint8_t i = 0; i < 4; i ++) {
EEPROM.write(addr++, p[i]);
}
EEPROM.commit();
}
//-----------------------------------------------------------------------------
void eep::write(uint32_t addr, bool value) {
uint8_t intVal = (value) ? 0x01 : 0x00;
EEPROM.write(addr++, intVal);
EEPROM.commit();
}
//-----------------------------------------------------------------------------
void eep::write(uint32_t addr, uint8_t value) {
EEPROM.write(addr++, value);
EEPROM.commit();
}
//-----------------------------------------------------------------------------
void eep::write(uint32_t addr, uint16_t value) {
EEPROM.write(addr++, (value >> 8) & 0xff);
EEPROM.write(addr++, (value ) & 0xff);
EEPROM.commit();
}
//-----------------------------------------------------------------------------
void eep::write(uint32_t addr, uint32_t value) {
EEPROM.write(addr++, (value >> 24) & 0xff);
EEPROM.write(addr++, (value >> 16) & 0xff);
EEPROM.write(addr++, (value >> 8) & 0xff);
EEPROM.write(addr++, (value ) & 0xff);
EEPROM.commit();
}

141
tools/esp8266/eep.h

@ -2,29 +2,132 @@
#define __EEP_H__
#include "Arduino.h"
#include <EEPROM.h>
class eep {
public:
eep();
~eep();
void read(uint32_t addr, char *str, uint8_t length);
void read(uint32_t addr, float *value);
void read(uint32_t addr, bool *value);
void read(uint32_t addr, uint8_t *value);
void read(uint32_t addr, uint8_t data[], uint8_t length);
void read(uint32_t addr, uint16_t *value);
void read(uint32_t addr, uint32_t *value);
void write(uint32_t addr, const char *str, uint8_t length);
void write(uint32_t addr, uint8_t data[], uint8_t length);
void write(uint32_t addr, float value);
void write(uint32_t addr, bool value);
void write(uint32_t addr, uint8_t value);
void write(uint32_t addr, uint16_t value);
void write(uint32_t addr, uint32_t value);
private:
eep() {
EEPROM.begin(500);
}
~eep() {
EEPROM.end();
}
void read(uint32_t addr, char *str, uint8_t length) {
for(uint8_t i = 0; i < length; i ++) {
*(str++) = (char)EEPROM.read(addr++);
}
}
void read(uint32_t addr, float *value) {
uint8_t *p = (uint8_t*)value;
for(uint8_t i = 0; i < 4; i ++) {
*(p++) = (uint8_t)EEPROM.read(addr++);
}
}
void read(uint32_t addr, bool *value) {
uint8_t intVal = 0x00;
intVal = EEPROM.read(addr++);
*value = (intVal == 0x01);
}
void read(uint32_t addr, uint8_t *value) {
*value = (EEPROM.read(addr++));
}
void read(uint32_t addr, uint8_t data[], uint16_t length) {
for(uint16_t i = 0; i < length; i ++) {
*(data++) = EEPROM.read(addr++);
}
}
void read(uint32_t addr, uint16_t *value) {
*value = (EEPROM.read(addr++) << 8);
*value |= (EEPROM.read(addr++));
}
void read(uint32_t addr, uint32_t *value) {
*value = (EEPROM.read(addr++) << 24);
*value |= (EEPROM.read(addr++) << 16);
*value |= (EEPROM.read(addr++) << 8);
*value |= (EEPROM.read(addr++));
}
void read(uint32_t addr, uint64_t *value) {
read(addr, (uint32_t *)value);
*value <<= 32;
uint32_t tmp;
read(addr+4, &tmp);
*value |= tmp;
/**value = (EEPROM.read(addr++) << 56);
*value |= (EEPROM.read(addr++) << 48);
*value |= (EEPROM.read(addr++) << 40);
*value |= (EEPROM.read(addr++) << 32);
*value |= (EEPROM.read(addr++) << 24);
*value |= (EEPROM.read(addr++) << 16);
*value |= (EEPROM.read(addr++) << 8);
*value |= (EEPROM.read(addr++));*/
}
void write(uint32_t addr, const char *str, uint8_t length) {
for(uint8_t i = 0; i < length; i ++) {
EEPROM.write(addr++, str[i]);
}
EEPROM.commit();
}
void write(uint32_t addr, uint8_t data[], uint16_t length) {
for(uint16_t i = 0; i < length; i ++) {
EEPROM.write(addr++, data[i]);
}
EEPROM.commit();
}
void write(uint32_t addr, float value) {
uint8_t *p = (uint8_t*)&value;
for(uint8_t i = 0; i < 4; i ++) {
EEPROM.write(addr++, p[i]);
}
EEPROM.commit();
}
void write(uint32_t addr, bool value) {
uint8_t intVal = (value) ? 0x01 : 0x00;
EEPROM.write(addr++, intVal);
EEPROM.commit();
}
void write(uint32_t addr, uint8_t value) {
EEPROM.write(addr++, value);
EEPROM.commit();
}
void write(uint32_t addr, uint16_t value) {
EEPROM.write(addr++, (value >> 8) & 0xff);
EEPROM.write(addr++, (value ) & 0xff);
EEPROM.commit();
}
void write(uint32_t addr, uint32_t value) {
EEPROM.write(addr++, (value >> 24) & 0xff);
EEPROM.write(addr++, (value >> 16) & 0xff);
EEPROM.write(addr++, (value >> 8) & 0xff);
EEPROM.write(addr++, (value ) & 0xff);
EEPROM.commit();
}
void write(uint64_t addr, uint64_t value) {
EEPROM.write(addr++, (value >> 56) & 0xff);
EEPROM.write(addr++, (value >> 48) & 0xff);
EEPROM.write(addr++, (value >> 40) & 0xff);
EEPROM.write(addr++, (value >> 32) & 0xff);
EEPROM.write(addr++, (value >> 24) & 0xff);
EEPROM.write(addr++, (value >> 16) & 0xff);
EEPROM.write(addr++, (value >> 8) & 0xff);
EEPROM.write(addr++, (value ) & 0xff);
EEPROM.commit();
}
};
#endif /*__EEP_H__*/

18
tools/esp8266/esp8266.ino

@ -1,14 +1,23 @@
#include "Arduino.h"
#include <ESP8266WiFi.h>
#include <DNSServer.h>
#include <ESP8266WebServer.h>
#include <Ticker.h>
#include <ESP8266HTTPUpdateServer.h>
#include "app.h"
#include "config.h"
app myApp;
//-----------------------------------------------------------------------------
void setup() {
pinMode(RF24_IRQ_PIN, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(RF24_IRQ_PIN), handleIntr, FALLING);
myApp.setup(WIFI_TRY_CONNECT_TIME);
// AP name, password, timeout
myApp.setup("ESP AHOY", "esp_8266", 15);
// TODO: move to HmRadio
attachInterrupt(digitalPinToInterrupt(myApp.getIrqPin()), handleIntr, FALLING);
}
@ -22,4 +31,3 @@ void loop() {
ICACHE_RAM_ATTR void handleIntr(void) {
myApp.handleIntr();
}

159
tools/esp8266/hmDefines.h

@ -0,0 +1,159 @@
#ifndef __HM_DEFINES_H__
#define __HM_DEFINES_H__
#include "debug.h"
#include <cstdint>
union serial_u {
uint64_t u64;
uint8_t b[8];
};
// units
enum {UNIT_V = 0, UNIT_A, UNIT_W, UNIT_WH, UNIT_KWH, UNIT_HZ, UNIT_C, UNIT_PCT};
const char* const units[] = {"V", "A", "W", "Wh", "kWh", "Hz", "°C", "%"};
// field types
enum {FLD_UDC = 0, FLD_IDC, FLD_PDC, FLD_YD, FLD_YW, FLD_YT,
FLD_UAC, FLD_IAC, FLD_PAC, FLD_F, FLD_T, FLD_PCT};
const char* const fields[] = {"U_DC", "I_DC", "P_DC", "YieldDay", "YieldWeek", "YieldTotal",
"U_AC", "I_AC", "P_AC", "Freq", "Temp", "Pct"};
// indices to calculation functions, defined in hmInverter.h
enum {CALC_YT_CH0 = 0, CALC_YD_CH0, CALC_UDC_CH};
// CH0 is default channel (freq, ac, temp)
enum {CH0 = 0, CH1, CH2, CH3, CH4};
// received command ids, special command CMDFF for calculations
enum {CMD01 = 0x01, CMD02, CMD03, CMD82 = 0x82, CMD83, CMD84, CMDFF=0xff};
enum {INV_TYPE_HM600 = 0, INV_TYPE_HM1200, INV_TYPE_HM400, INV_TYPE_HM800};
const char* const invTypes[] = {"HM600", "HM1200 / HM1500", "HM400", "HM800"};
#define NUM_INVERTER_TYPES 4
typedef struct {
uint8_t fieldId; // field id
uint8_t unitId; // uint id
uint8_t ch; // channel 0 - 3
uint8_t cmdId; // received command id
uint8_t start; // pos of first byte in buffer
uint8_t num; // number of bytes in buffer
uint16_t div; // divisor
} byteAssign_t;
/**
* indices are built for the buffer starting with cmd-id in first byte
* (complete payload in buffer)
* */
//-------------------------------------
// HM400 HM350?, HM300?
//-------------------------------------
const byteAssign_t hm400assignment[] = {
{ FLD_UDC, UNIT_V, CH1, CMD01, 3, 2, 10 },
{ FLD_IDC, UNIT_A, CH1, CMD01, 5, 2, 100 },
{ FLD_PDC, UNIT_W, CH1, CMD01, 7, 2, 10 },
{ FLD_YT, UNIT_KWH, CH1, CMD01, 9, 4, 1000 },
{ FLD_YD, UNIT_WH, CH1, CMD01, 13, 2, 1 },
{ FLD_UAC, UNIT_V, CH0, CMD01, 15, 2, 10 },
{ FLD_F, UNIT_HZ, CH0, CMD82, 1, 2, 100 },
{ FLD_PAC, UNIT_W, CH0, CMD82, 3, 2, 10 },
{ FLD_IAC, UNIT_A, CH0, CMD82, 7, 2, 100 },
{ FLD_T, UNIT_C, CH0, CMD82, 11, 2, 10 }
};
#define HM400_LIST_LEN (sizeof(hm400assignment) / sizeof(byteAssign_t))
//-------------------------------------
// HM600, HM700
//-------------------------------------
const byteAssign_t hm600assignment[] = {
{ FLD_UDC, UNIT_V, CH1, CMD01, 3, 2, 10 },
{ FLD_IDC, UNIT_A, CH1, CMD01, 5, 2, 100 },
{ FLD_PDC, UNIT_W, CH1, CMD01, 7, 2, 10 },
{ FLD_UDC, UNIT_V, CH2, CMD01, 9, 2, 10 },
{ FLD_IDC, UNIT_A, CH2, CMD01, 11, 2, 100 },
{ FLD_PDC, UNIT_W, CH2, CMD01, 13, 2, 10 },
{ FLD_YW, UNIT_WH, CH0, CMD02, 1, 2, 1 },
{ FLD_YT, UNIT_KWH, CH0, CMD02, 3, 4, 1000 },
{ FLD_YD, UNIT_WH, CH1, CMD02, 7, 2, 1 },
{ FLD_YD, UNIT_WH, CH2, CMD02, 9, 2, 1 },
{ FLD_UAC, UNIT_V, CH0, CMD02, 11, 2, 10 },
{ FLD_F, UNIT_HZ, CH0, CMD02, 13, 2, 100 },
{ FLD_PAC, UNIT_W, CH0, CMD02, 15, 2, 10 },
{ FLD_IAC, UNIT_A, CH0, CMD83, 3, 2, 100 },
{ FLD_T, UNIT_C, CH0, CMD83, 7, 2, 10 }
};
#define HM600_LIST_LEN (sizeof(hm600assignment) / sizeof(byteAssign_t))
//-------------------------------------
// HM800
//-------------------------------------
const byteAssign_t hm800assignment[] = {
{ FLD_UDC, UNIT_V, CH1, CMD01, 3, 2, 10 },
{ FLD_IDC, UNIT_A, CH1, CMD01, 5, 2, 100 },
{ FLD_PDC, UNIT_W, CH1, CMD01, 7, 2, 10 },
{ FLD_UDC, UNIT_V, CH2, CMD01, 9, 2, 10 },
{ FLD_IDC, UNIT_A, CH2, CMD01, 11, 2, 100 },
{ FLD_PDC, UNIT_W, CH2, CMD01, 13, 2, 10 },
{ FLD_YW, UNIT_WH, CH0, CMD02, 1, 2, 1 },
{ FLD_YT, UNIT_KWH, CH0, CMD02, 3, 4, 1000 },
{ FLD_YD, UNIT_WH, CH1, CMD02, 7, 2, 1 },
{ FLD_YD, UNIT_WH, CH2, CMD02, 9, 2, 1 },
{ FLD_UAC, UNIT_V, CH0, CMD02, 11, 2, 10 },
{ FLD_F, UNIT_HZ, CH0, CMD02, 13, 2, 100 },
{ FLD_PAC, UNIT_W, CH0, CMD02, 15, 2, 10 },
{ FLD_IAC, UNIT_A, CH0, CMD83, 3, 2, 100 },
{ FLD_T, UNIT_C, CH0, CMD83, 7, 2, 10 }
};
#define HM800_LIST_LEN (sizeof(hm800assignment) / sizeof(byteAssign_t))
//-------------------------------------
// HM1200, HM1500
//-------------------------------------
const byteAssign_t hm1200assignment[] = {
{ FLD_UDC, UNIT_V, CH1, CMD01, 3, 2, 10 },
{ FLD_IDC, UNIT_A, CH1, CMD01, 5, 2, 100 },
{ FLD_PDC, UNIT_W, CH1, CMD01, 9, 2, 10 },
{ FLD_YD, UNIT_WH, CH1, CMD02, 5, 2, 1 },
{ FLD_YT, UNIT_KWH, CH1, CMD01, 13, 4, 1000 },
{ FLD_UDC, UNIT_V, CH3, CMD02, 9, 2, 10 },
{ FLD_IDC, UNIT_A, CH2, CMD01, 7, 2, 100 },
{ FLD_PDC, UNIT_W, CH2, CMD01, 11, 2, 10 },
{ FLD_YD, UNIT_WH, CH2, CMD02, 7, 2, 1 },
{ FLD_YT, UNIT_KWH, CH2, CMD02, 1, 4, 1000 },
{ FLD_IDC, UNIT_A, CH3, CMD02, 11, 2, 100 },
{ FLD_PDC, UNIT_W, CH3, CMD02, 15, 2, 10 },
{ FLD_YD, UNIT_WH, CH3, CMD03, 11, 2, 1 },
{ FLD_YT, UNIT_KWH, CH3, CMD03, 3, 4, 1000 },
{ FLD_IDC, UNIT_A, CH4, CMD02, 13, 2, 100 },
{ FLD_PDC, UNIT_W, CH4, CMD03, 1, 2, 10 },
{ FLD_YD, UNIT_WH, CH4, CMD03, 13, 2, 1 },
{ FLD_YT, UNIT_KWH, CH4, CMD03, 7, 4, 1000 },
{ FLD_UAC, UNIT_V, CH0, CMD03, 15, 2, 10 },
{ FLD_IAC, UNIT_A, CH0, CMD84, 7, 2, 100 },
{ FLD_PAC, UNIT_W, CH0, CMD84, 3, 2, 10 },
{ FLD_F, UNIT_HZ, CH0, CMD84, 1, 2, 100 },
{ FLD_PCT, UNIT_PCT, CH0, CMD84, 9, 2, 10 },
{ FLD_T, UNIT_C, CH0, CMD84, 11, 2, 10 },
{ FLD_YD, UNIT_WH, CH0, CMDFF, CALC_YD_CH0, 0, 0 },
{ FLD_YT, UNIT_KWH, CH0, CMDFF, CALC_YT_CH0, 0, 0 },
{ FLD_UDC, UNIT_V, CH2, CMDFF, CALC_UDC_CH, CH1, 0 },
{ FLD_UDC, UNIT_V, CH4, CMDFF, CALC_UDC_CH, CH3, 0 }
};
#define HM1200_LIST_LEN (sizeof(hm1200assignment) / sizeof(byteAssign_t))
#endif /*__HM_DEFINES_H__*/

213
tools/esp8266/hmInverter.h

@ -0,0 +1,213 @@
#ifndef __HM_INVERTER_H__
#define __HM_INVERTER_H__
#include "hmDefines.h"
/**
* For values which are of interest and not transmitted by the inverter can be
* calculated automatically.
* A list of functions can be linked to the assignment and will be executed
* automatically. Their result does not differ from original read values.
* The special command 0xff (CMDFF) must be used.
*/
// forward declaration of class
template <class RECORDTYPE=float>
class Inverter;
// prototypes
template<class T=float>
static T calcYieldTotalCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcYieldDayCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcUdcCh(Inverter<> *iv, uint8_t arg0);
template<class T=float>
using func_t = T (Inverter<> *, uint8_t);
template<class T=float>
struct calcFunc_t {
uint8_t funcId; // unique id
func_t<T>* func; // function pointer
} ;
// list of all available functions, mapped in hmDefines.h
template<class T=float>
const calcFunc_t<T> calcFunctions[] = {
{ CALC_YT_CH0, &calcYieldTotalCh0 },
{ CALC_YD_CH0, &calcYieldDayCh0 },
{ CALC_UDC_CH, &calcUdcCh }
};
template <class RECORDTYPE>
class Inverter {
public:
uint8_t id; // unique id
char name[MAX_NAME_LENGTH]; // human readable name, eg. "HM-600.1"
uint8_t type; // integer which refers to inverter type
byteAssign_t* assign; // type of inverter
uint8_t listLen; // length of assignments
serial_u serial; // serial number as on barcode
serial_u radioId; // id converted to modbus
uint8_t channels; // number of PV channels (1-4)
RECORDTYPE *record; // pointer for values
Inverter() {
}
~Inverter() {
// TODO: cleanup
}
void init(void) {
getAssignment();
toRadioId();
record = new RECORDTYPE[listLen];
memset(name, 0, MAX_NAME_LENGTH);
memset(record, 0, sizeof(RECORDTYPE) * listLen);
}
uint8_t getPosByChFld(uint8_t channel, uint8_t fieldId) {
uint8_t pos = 0;
for(; pos < listLen; pos++) {
if((assign[pos].ch == channel) && (assign[pos].fieldId == fieldId))
break;
}
return (pos >= listLen) ? 0xff : pos;
}
const char *getFieldName(uint8_t pos) {
return fields[assign[pos].fieldId];
}
const char *getUnit(uint8_t pos) {
return units[assign[pos].unitId];
}
uint8_t getChannel(uint8_t pos) {
return assign[pos].ch;
}
uint8_t getCmdId(uint8_t pos) {
return assign[pos].cmdId;
}
void addValue(uint8_t pos, uint8_t buf[]) {
uint8_t ptr = assign[pos].start;
uint8_t end = ptr + assign[pos].num;
uint16_t div = assign[pos].div;
uint32_t val = 0;
do {
val <<= 8;
val |= buf[ptr];
} while(++ptr != end);
record[pos] = (RECORDTYPE)(val) / (RECORDTYPE)(div);
}
RECORDTYPE getValue(uint8_t pos) {
return record[pos];
}
void doCalculations(void) {
for(uint8_t i = 0; i < listLen; i++) {
if(CMDFF == assign[i].cmdId) {
record[i] = calcFunctions<RECORDTYPE>[assign[i].start].func(this, assign[i].num);
}
}
}
private:
void toRadioId(void) {
radioId.u64 = 0ULL;
radioId.b[4] = serial.b[0];
radioId.b[3] = serial.b[1];
radioId.b[2] = serial.b[2];
radioId.b[1] = serial.b[3];
radioId.b[0] = 0x01;
}
void getAssignment(void) {
if(INV_TYPE_HM400 == type) {
listLen = (uint8_t)(HM400_LIST_LEN);
assign = (byteAssign_t*)hm400assignment;
channels = 1;
}
else if(INV_TYPE_HM600 == type) {
listLen = (uint8_t)(HM600_LIST_LEN);
assign = (byteAssign_t*)hm600assignment;
channels = 2;
}
else if(INV_TYPE_HM800 == type) {
listLen = (uint8_t)(HM800_LIST_LEN);
assign = (byteAssign_t*)hm800assignment;
channels = 2;
}
else if(INV_TYPE_HM1200 == type) {
listLen = (uint8_t)(HM1200_LIST_LEN);
assign = (byteAssign_t*)hm1200assignment;
channels = 4;
}
else {
listLen = 0;
channels = 0;
assign = NULL;
}
}
};
/**
* To calculate values which are not transmitted by the unit there is a generic
* list of functions which can be linked to the assignment.
* The special command 0xff (CMDFF) must be used.
*/
template<class T=float>
static T calcYieldTotalCh0(Inverter<> *iv, uint8_t arg0) {
if(NULL != iv) {
T yield = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t pos = iv->getPosByChFld(i, FLD_YT);
yield += iv->getValue(pos);
}
return yield;
}
return 0.0;
}
template<class T=float>
static T calcYieldDayCh0(Inverter<> *iv, uint8_t arg0) {
if(NULL != iv) {
T yield = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t pos = iv->getPosByChFld(i, FLD_YD);
yield += iv->getValue(pos);
}
return yield;
}
return 0.0;
}
template<class T=float>
static T calcUdcCh(Inverter<> *iv, uint8_t arg0) {
// arg0 = channel of source
for(uint8_t i = 0; i < iv->listLen; i++) {
if((FLD_UDC == iv->assign[i].fieldId) && (arg0 == iv->assign[i].ch)) {
return iv->getValue(i);
}
}
return 0.0;
}
#endif /*__HM_INVERTER_H__*/

328
tools/esp8266/hmRadio.h

@ -0,0 +1,328 @@
#ifndef __RADIO_H__
#define __RADIO_H__
#include <RF24.h>
#include <RF24_config.h>
#include "crc.h"
//#define CHANNEL_HOP // switch between channels or use static channel to send
#define DEFAULT_RECV_CHANNEL 3
#define SPI_SPEED 1000000
#define DTU_RADIO_ID ((uint64_t)0x1234567801ULL)
#define DUMMY_RADIO_ID ((uint64_t)0xDEADBEEF01ULL)
#define RX_LOOP_CNT 400
const char* const rf24AmpPower[] = {"MIN", "LOW", "HIGH", "MAX"};
//-----------------------------------------------------------------------------
// MACROS
//-----------------------------------------------------------------------------
#define CP_U32_LittleEndian(buf, v) ({ \
uint8_t *b = buf; \
b[0] = ((v >> 24) & 0xff); \
b[1] = ((v >> 16) & 0xff); \
b[2] = ((v >> 8) & 0xff); \
b[3] = ((v ) & 0xff); \
})
#define CP_U32_BigEndian(buf, v) ({ \
uint8_t *b = buf; \
b[3] = ((v >> 24) & 0xff); \
b[2] = ((v >> 16) & 0xff); \
b[1] = ((v >> 8) & 0xff); \
b[0] = ((v ) & 0xff); \
})
#define BIT_CNT(x) ((x)<<3)
//-----------------------------------------------------------------------------
// HM Radio class
//-----------------------------------------------------------------------------
template <uint8_t CE_PIN, uint8_t CS_PIN, uint8_t IRQ_PIN, class BUFFER, uint64_t DTU_ID=DTU_RADIO_ID>
class HmRadio {
public:
HmRadio() : mNrf24(CE_PIN, CS_PIN, SPI_SPEED) {
mTxChLst[0] = 40;
//mTxChIdx = 1;
mRxChLst[0] = 3;
mRxChLst[1] = 23;
mRxChLst[2] = 61;
mRxChLst[3] = 75;
mRxChIdx = 0;
mRxLoopCnt = RX_LOOP_CNT;
//calcDtuCrc();
pinCs = CS_PIN;
pinCe = CE_PIN;
pinIrq = IRQ_PIN;
AmplifierPower = 1;
mSendCnt = 0;
}
~HmRadio() {}
void setup(BUFFER *ctrl) {
pinMode(pinIrq, INPUT_PULLUP);
mBufCtrl = ctrl;
mNrf24.begin(pinCe, pinCs);
mNrf24.setRetries(0, 0);
mNrf24.setChannel(DEFAULT_RECV_CHANNEL);
mNrf24.setDataRate(RF24_250KBPS);
mNrf24.disableCRC();
mNrf24.setAutoAck(false);
mNrf24.setPayloadSize(MAX_RF_PAYLOAD_SIZE);
mNrf24.setAddressWidth(5);
mNrf24.openReadingPipe(1, DTU_RADIO_ID);
// enable only receiving interrupts
mNrf24.maskIRQ(true, true, false);
DPRINTLN("RF24 Amp Pwr: RF24_PA_" + String(rf24AmpPower[AmplifierPower]));
mNrf24.setPALevel(AmplifierPower & 0x03);
mNrf24.startListening();
DPRINTLN("Radio Config:");
mNrf24.printPrettyDetails();
mTxCh = getDefaultChannel();
if(!mNrf24.isChipConnected()) {
DPRINTLN("WARNING! your NRF24 module can't be reached, check the wiring");
}
}
void handleIntr(void) {
uint8_t pipe, len;
packet_t *p;
DISABLE_IRQ;
while(mNrf24.available(&pipe)) {
if(!mBufCtrl->full()) {
p = mBufCtrl->getFront();
memset(p->packet, 0xcc, MAX_RF_PAYLOAD_SIZE);
p->rxCh = mRxChIdx;
len = mNrf24.getPayloadSize();
if(len > MAX_RF_PAYLOAD_SIZE)
len = MAX_RF_PAYLOAD_SIZE;
mNrf24.read(p->packet, len);
mBufCtrl->pushFront(p);
}
else {
bool tx_ok, tx_fail, rx_ready;
mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // reset interrupt status
mNrf24.flush_rx(); // drop the packet
}
}
RESTORE_IRQ;
}
uint8_t getDefaultChannel(void) {
return mTxChLst[0];
}
/*uint8_t getLastChannel(void) {
return mTxChLst[mTxChIdx];
}
uint8_t getNxtChannel(void) {
if(++mTxChIdx >= 4)
mTxChIdx = 0;
return mTxChLst[mTxChIdx];
}*/
void sendTimePacket(uint64_t invId, uint32_t ts) {
sendCmdPacket(invId, 0x15, 0x80, false);
mTxBuf[10] = 0x0b; // cid
mTxBuf[11] = 0x00;
CP_U32_LittleEndian(&mTxBuf[12], ts);
mTxBuf[19] = 0x05;
uint16_t crc = crc16(&mTxBuf[10], 14);
mTxBuf[24] = (crc >> 8) & 0xff;
mTxBuf[25] = (crc ) & 0xff;
mTxBuf[26] = crc8(mTxBuf, 26);
sendPacket(invId, mTxBuf, 27, true);
}
void sendCmdPacket(uint64_t invId, uint8_t mid, uint8_t cmd, bool calcCrc = true) {
memset(mTxBuf, 0, MAX_RF_PAYLOAD_SIZE);
mTxBuf[0] = mid; // message id
CP_U32_BigEndian(&mTxBuf[1], (invId >> 8));
CP_U32_BigEndian(&mTxBuf[5], (DTU_ID >> 8));
mTxBuf[9] = cmd;
if(calcCrc) {
mTxBuf[10] = crc8(mTxBuf, 10);
sendPacket(invId, mTxBuf, 11, false);
}
}
bool checkPaketCrc(uint8_t buf[], uint8_t *len, uint8_t *rptCnt, uint8_t rxCh) {
*len = (buf[0] >> 2);
if(*len > (MAX_RF_PAYLOAD_SIZE - 2))
*len = MAX_RF_PAYLOAD_SIZE - 2;
for(uint8_t i = 1; i < (*len + 1); i++) {
buf[i-1] = (buf[i] << 1) | (buf[i+1] >> 7);
}
uint8_t crc = crc8(buf, *len-1);
bool valid = (crc == buf[*len-1]);
if(valid) {
if(mLastCrc == crc)
*rptCnt = (++mRptCnt);
else {
mRptCnt = 0;
*rptCnt = 0;
mLastCrc = crc;
}
mRxStat[(buf[9] & 0x7F)-1]++;
mRxChStat[(buf[9] & 0x7F)-1][rxCh & 0x7]++;
}
/*else {
DPRINT("CRC wrong: ");
DHEX(crc);
DPRINT(" != ");
DHEX(buf[*len-1]);
DPRINTLN("");
}*/
return valid;
}
bool switchRxCh(uint8_t addLoop = 0) {
mRxLoopCnt += addLoop;
if(mRxLoopCnt != 0) {
mRxLoopCnt--;
DISABLE_IRQ;
mNrf24.stopListening();
mNrf24.setChannel(getRxNxtChannel());
mNrf24.startListening();
RESTORE_IRQ;
}
return (0 == mRxLoopCnt); // receive finished
}
void dumpBuf(const char *info, uint8_t buf[], uint8_t len) {
DPRINT(String(info));
for(uint8_t i = 0; i < len; i++) {
DHEX(buf[i]);
DPRINT(" ");
}
DPRINTLN("");
}
bool isChipConnected(void) {
return mNrf24.isChipConnected();
}
uint8_t pinCs;
uint8_t pinCe;
uint8_t pinIrq;
uint8_t AmplifierPower;
uint32_t mSendCnt;
private:
void sendPacket(uint64_t invId, uint8_t buf[], uint8_t len, bool clear=false) {
//DPRINTLN("sent packet: #" + String(mSendCnt));
//dumpBuf("SEN ", buf, len);
DISABLE_IRQ;
mNrf24.stopListening();
if(clear) {
uint8_t cnt = 4;
for(uint8_t i = 0; i < 4; i ++) {
DPRINT(String(mRxStat[i]) + " (");
for(uint8_t j = 0; j < 4; j++) {
DPRINT(String(mRxChStat[i][j]));
}
DPRINT(") ");
if(0 != mRxStat[i])
cnt--;
}
if(cnt == 0)
DPRINTLN(" -> all");
else
DPRINTLN(" -> missing: " + String(cnt));
memset(mRxStat, 0, 4);
memset(mRxChStat, 0, 4*8);
mRxLoopCnt = RX_LOOP_CNT;
}
mTxCh = getDefaultChannel();
mNrf24.setChannel(mTxCh);
mNrf24.openWritingPipe(invId); // TODO: deprecated
mNrf24.setCRCLength(RF24_CRC_16);
mNrf24.enableDynamicPayloads();
mNrf24.setAutoAck(true);
mNrf24.setRetries(3, 15); // 3*250us and 15 loops -> 11.25ms
mNrf24.write(buf, len);
// Try to avoid zero payload acks (has no effect)
mNrf24.openWritingPipe(DUMMY_RADIO_ID); // TODO: why dummy radio id?, deprecated
mNrf24.setAutoAck(false);
mNrf24.setRetries(0, 0);
mNrf24.disableDynamicPayloads();
mNrf24.setCRCLength(RF24_CRC_DISABLED);
mRxChIdx = 0;
mNrf24.setChannel(mRxChLst[mRxChIdx]);
mNrf24.startListening();
RESTORE_IRQ;
mSendCnt++;
}
uint8_t getRxNxtChannel(void) {
if(++mRxChIdx >= 4)
mRxChIdx = 0;
return mRxChLst[mRxChIdx];
}
/*void calcDtuCrc(void) {
uint64_t addr = DTU_RADIO_ID;
uint8_t tmp[5];
for(int8_t i = 4; i >= 0; i--) {
tmp[i] = addr;
addr >>= 8;
}
mDtuIdCrc = crc16nrf24(tmp, BIT_CNT(5));
}*/
uint8_t mTxCh;
uint8_t mTxChLst[1];
//uint8_t mTxChIdx;
uint8_t mRxChLst[4];
uint8_t mRxChIdx;
uint8_t mRxStat[4];
uint8_t mRxChStat[4][8];
uint16_t mRxLoopCnt;
//uint16_t mDtuIdCrc;
uint16_t mLastCrc;
uint8_t mRptCnt;
RF24 mNrf24;
BUFFER *mBufCtrl;
uint8_t mTxBuf[MAX_RF_PAYLOAD_SIZE];
};
#endif /*__RADIO_H__*/

82
tools/esp8266/hmSystem.h

@ -0,0 +1,82 @@
#ifndef __HM_SYSTEM_H__
#define __HM_SYSTEM_H__
#include "hmInverter.h"
#ifndef NO_RADIO
#include "hmRadio.h"
#endif
template <class RADIO, class BUFFER, uint8_t MAX_INVERTER=3, class INVERTERTYPE=Inverter<float>>
class HmSystem {
public:
typedef RADIO RadioType;
RadioType Radio;
typedef BUFFER BufferType;
BufferType BufCtrl;
HmSystem() {
mNumInv = 0;
}
~HmSystem() {
// TODO: cleanup
}
void setup() {
Radio.setup(&BufCtrl);
}
INVERTERTYPE *addInverter(const char *name, uint64_t serial, uint8_t type) {
if(MAX_INVERTER <= mNumInv) {
DPRINT("max number of inverters reached!");
return NULL;
}
INVERTERTYPE *p = &mInverter[mNumInv];
p->id = mNumInv;
p->serial.u64 = serial;
p->type = type;
p->init();
uint8_t len = (uint8_t)strlen(name);
strncpy(p->name, name, (len > MAX_NAME_LENGTH) ? MAX_NAME_LENGTH : len);
if(NULL == p->assign) {
DPRINT("no assignment for type found!");
return NULL;
}
else {
mNumInv ++;
return p;
}
}
INVERTERTYPE *findInverter(uint8_t buf[]) {
INVERTERTYPE *p;
for(uint8_t i = 0; i < mNumInv; i++) {
p = &mInverter[i];
if((p->serial.b[3] == buf[0])
&& (p->serial.b[2] == buf[1])
&& (p->serial.b[1] == buf[2])
&& (p->serial.b[0] == buf[3]))
return p;
}
return NULL;
}
INVERTERTYPE *getInverterByPos(uint8_t pos) {
if(mInverter[pos].serial.u64 != 0ULL)
return &mInverter[pos];
else
return NULL;
}
uint8_t getNumInverters(void) {
return mNumInv;
}
private:
INVERTERTYPE mInverter[MAX_INVERTER];
uint8_t mNumInv;
};
#endif /*__HM_SYSTEM_H__*/

178
tools/esp8266/hoymiles.h

@ -1,178 +0,0 @@
#ifndef __HOYMILES_H__
#define __HOYMILES_H__
#include <RF24.h>
#include <RF24_config.h>
#include "crc.h"
#define CHANNEL_HOP // switch between channels or use static channel to send
#define luint64_t long long unsigned int
#define DEFAULT_RECV_CHANNEL 3
#define MAX_RF_PAYLOAD_SIZE 32
#define DTU_RADIO_ID ((uint64_t)0x1234567801ULL)
#define DUMMY_RADIO_ID ((uint64_t)0xDEADBEEF01ULL)
#define PACKET_BUFFER_SIZE 30
//-----------------------------------------------------------------------------
// MACROS
#define CP_U32_LittleEndian(buf, v) ({ \
uint8_t *b = buf; \
b[0] = ((v >> 24) & 0xff); \
b[1] = ((v >> 16) & 0xff); \
b[2] = ((v >> 8) & 0xff); \
b[3] = ((v ) & 0xff); \
})
#define CP_U32_BigEndian(buf, v) ({ \
uint8_t *b = buf; \
b[3] = ((v >> 24) & 0xff); \
b[2] = ((v >> 16) & 0xff); \
b[1] = ((v >> 8) & 0xff); \
b[0] = ((v ) & 0xff); \
})
#define BIT_CNT(x) ((x)<<3)
//-----------------------------------------------------------------------------
union uint64Bytes {
uint64_t ull;
uint8_t bytes[8];
};
typedef struct {
uint8_t sendCh;
uint8_t packet[MAX_RF_PAYLOAD_SIZE];
} NRF24_packet_t;
//-----------------------------------------------------------------------------
class hoymiles {
public:
hoymiles() {
serial2RadioId();
calcDtuIdCrc();
mChannels[0] = 23;
mChannels[1] = 40;
mChannels[2] = 61;
mChannels[3] = 75;
mChanIdx = 1;
mLastCrc = 0x0000;
mRptCnt = 0;
}
~hoymiles() {}
uint8_t getDefaultChannel(void) {
return mChannels[2];
}
uint8_t getLastChannel(void) {
return mChannels[mChanIdx];
}
uint8_t getNxtChannel(void) {
if(++mChanIdx >= 4)
mChanIdx = 0;
return mChannels[mChanIdx];
}
void serial2RadioId(void) {
uint64Bytes id;
id.ull = 0ULL;
id.bytes[4] = mAddrBytes[5];
id.bytes[3] = mAddrBytes[4];
id.bytes[2] = mAddrBytes[3];
id.bytes[1] = mAddrBytes[2];
id.bytes[0] = 0x01;
mRadioId = id.ull;
}
uint8_t getTimePacket(uint8_t buf[], uint32_t ts) {
getCmdPacket(buf, 0x15, 0x80, false);
buf[10] = 0x0b; // cid
buf[11] = 0x00;
CP_U32_LittleEndian(&buf[12], ts);
buf[19] = 0x05;
uint16_t crc = crc16(&buf[10], 14);
buf[24] = (crc >> 8) & 0xff;
buf[25] = (crc ) & 0xff;
buf[26] = crc8(buf, 26);
return 27;
}
uint8_t getCmdPacket(uint8_t buf[], uint8_t mid, uint8_t cmd, bool calcCrc = true) {
memset(buf, 0, MAX_RF_PAYLOAD_SIZE);
buf[0] = mid; // message id
CP_U32_BigEndian(&buf[1], (mRadioId >> 8));
CP_U32_BigEndian(&buf[5], (DTU_RADIO_ID >> 8));
buf[9] = cmd;
if(calcCrc)
buf[10] = crc8(buf, 10);
return 11;
}
bool checkCrc(uint8_t buf[], uint8_t *len, uint8_t *rptCnt) {
*len = (buf[0] >> 2);
for (int16_t i = MAX_RF_PAYLOAD_SIZE - 1; i >= 0; i--) {
buf[i] = ((buf[i] >> 7) | ((i > 0) ? (buf[i-1] << 1) : 0x00));
}
uint16_t crc = crc16nrf24(buf, BIT_CNT(*len + 2), 7, mDtuIdCrc);
bool valid = (crc == ((buf[*len+2] << 8) | (buf[*len+3])));
if(valid) {
if(mLastCrc == crc)
*rptCnt = (++mRptCnt);
else {
mRptCnt = 0;
*rptCnt = 0;
mLastCrc = crc;
}
}
return valid;
}
void dumpBuf(const char *info, uint8_t buf[], uint8_t len) {
Serial.print(String(info));
for(uint8_t i = 0; i < len; i++) {
Serial.print(buf[i], HEX);
Serial.print(" ");
}
Serial.println();
}
uint8_t mAddrBytes[6];
luint64_t mRadioId;
private:
void calcDtuIdCrc(void) {
uint64_t addr = DTU_RADIO_ID;
uint8_t dtuAddr[5];
for(int8_t i = 4; i >= 0; i--) {
dtuAddr[i] = addr;
addr >>= 8;
}
mDtuIdCrc = crc16nrf24(dtuAddr, BIT_CNT(5));
}
uint8_t mChannels[4];
uint8_t mChanIdx;
uint16_t mDtuIdCrc;
uint16_t mLastCrc;
uint8_t mRptCnt;
};
#endif /*__HOYMILES_H__*/

4
tools/esp8266/html/conv.bat

@ -1,4 +0,0 @@
..\tools\fileConv.exe index.html h\index_html.h index_html
..\tools\fileConv.exe setup.html h\setup_html.h setup_html
..\tools\fileConv.exe style.css h\style_css.h style_css
pause

29
tools/esp8266/html/convert.py

@ -0,0 +1,29 @@
import re
def convert2Header(inFile):
outName = "h/" + inFile.replace(".", "_") + ".h"
fileType = inFile.split(".")[1]
f = open(inFile, "r")
data = f.read().replace('\n', '')
f.close()
if fileType == "html":
data = re.sub(r"\>\s+\<", '><', data) # whitespaces between xml tags
data = re.sub(r"(\;|\}|\>|\{)\s+", r'\1', data) # whitespaces inner javascript
data = re.sub(r"\"", '\\\"', data) # escape quotation marks
else:
data = re.sub(r"(\;|\}|\:|\{)\s+", r'\1', data) # whitespaces inner css
define = inFile.split(".")[0].upper()
define2 = inFile.split(".")[1].upper()
f = open(outName, "w")
f.write("#ifndef __{}_{}_H__\n".format(define, define2))
f.write("#define __{}_{}_H__\n".format(define, define2))
f.write("const char {}[] PROGMEM = \"{}\";\n".format(inFile.replace(".", "_"), data))
f.write("#endif /*__{}_{}_H__*/\n".format(define, define2))
f.close()
convert2Header("index.html")
convert2Header("setup.html")
convert2Header("hoymiles.html")
convert2Header("style.css")

4
tools/esp8266/html/h/hoymiles_html.h

@ -0,0 +1,4 @@
#ifndef __HOYMILES_HTML_H__
#define __HOYMILES_HTML_H__
const char hoymiles_html[] PROGMEM = "<!doctype html><html><head><title>Index - {DEVICE}</title><link rel=\"stylesheet\" type=\"text/css\" href=\"style.css\"/><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\"><script type=\"text/javascript\">getAjax('/livedata', 'livedata');window.setInterval(\"getAjax('/livedata', 'livedata')\", 10000);function getAjax(url, resid) {var http = null;http = new XMLHttpRequest();if(http != null) {http.open(\"GET\", url, true);http.onreadystatechange = print;http.send(null);}function print() {if(http.readyState == 4) {document.getElementById(resid).innerHTML = http.responseText;}}}</script><style type=\"text/css\"></style></head><body><h1>AHOY - {DEVICE}</h1><div id=\"content\" class=\"content\"><div id=\"livedata\"></div><p>Every 10 seconds the values are updated</p></div><div id=\"footer\"><p class=\"left\">&copy 2022</p><p class=\"left\"><a href=\"/\">Home</a></p><p class=\"right\">AHOY :: {VERSION}</p></div></body></html>";
#endif /*__HOYMILES_HTML_H__*/

5
tools/esp8266/html/h/index_html.h

@ -1 +1,4 @@
String index_html = "<!doctype html><html><head><title>Index - {DEVICE}</title><link rel=\"stylesheet\" type=\"text/css\" href=\"style.css\"/><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\"><script type=\"text/javascript\"> window.setInterval(\"getAjax('/uptime', 'uptime')\", 1000); window.setInterval(\"getAjax('/time', 'time')\", 1000); window.setInterval(\"getAjax('/cmdstat', 'cmds')\", 2000); function getAjax(url, resid) { var http = null; http = new XMLHttpRequest(); if(http != null) { http.open(\"GET\", url, true); http.onreadystatechange = print; http.send(null); } function print() { if(http.readyState == 4) { document.getElementById(resid).innerHTML = http.responseText; } } } </script></head><body><h1>AHOY - {DEVICE}</h1><div id=\"content\" class=\"content\"><p><a href=\"/update\">Update</a><br/><br/><a href=\"/setup\">Setup</a><br/><a href=\"/reboot\">Reboot</a></p><p><span class=\"des\">Uptime: </span><span id=\"uptime\"></span></p><p><span class=\"des\">Time: </span><span id=\"time\"></span></p><p><span class=\"des\">Statistics: </span><pre id=\"cmds\"></pre></p></div><div id=\"footer\"><p class=\"left\">&copy 2022</p><p class=\"right\">AHOY :: {VERSION}</p></div></body></html>";
#ifndef __INDEX_HTML_H__
#define __INDEX_HTML_H__
const char index_html[] PROGMEM = "<!doctype html><html><head><title>Index - {DEVICE}</title><link rel=\"stylesheet\" type=\"text/css\" href=\"style.css\"/><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\"><script type=\"text/javascript\">window.setInterval(\"getAjax('/uptime', 'uptime')\", 1000);window.setInterval(\"getAjax('/time', 'time')\", 1000);window.setInterval(\"getAjax('/cmdstat', 'cmds')\", 2000);function getAjax(url, resid) {var http = null;http = new XMLHttpRequest();if(http != null) {http.open(\"GET\", url, true);http.onreadystatechange = print;http.send(null);}function print() {if(http.readyState == 4) {document.getElementById(resid).innerHTML = http.responseText;}}}</script></head><body><h1>AHOY - {DEVICE}</h1><div id=\"content\" class=\"content\"><p><a href=\"/hoymiles\">Visualization</a><br/><br/><a href=\"/setup\">Setup</a><br/></p><p><span class=\"des\">Uptime: </span><span id=\"uptime\"></span></p><p><span class=\"des\">Time: </span><span id=\"time\"></span></p><p><span class=\"des\">Statistics: </span><pre id=\"cmds\"></pre></p><div id=\"note\">This project was started from <a href=\"https://www.mikrocontroller.net/topic/525778\" target=\"_blank\">this discussion. (Mikrocontroller.net)</a><br/>New updates can be found on Github: <a href=\"https://github.com/grindylow/ahoy\" target=\"_blank\">https://github.com/grindylow/ahoy</a><br/><br/>Please report issues using the feature provided by Github. </div></div><div id=\"footer\"><p class=\"left\">&copy 2022</p><p class=\"left\"><a href=\"/update\">Update Firmware</a></p><p class=\"right\">AHOY :: {VERSION}</p><p class=\"right\"><a href=\"/reboot\">Reboot</a></p></div></body></html>";
#endif /*__INDEX_HTML_H__*/

5
tools/esp8266/html/h/setup_html.h

@ -1 +1,4 @@
String setup_html = "<!doctype html><html><head><title>Setup - {DEVICE}</title><link rel=\"stylesheet\" type=\"text/css\" href=\"style.css\"/><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\"></head><body><h1>Setup</h1><div id=\"setup\" class=\"content\"><div id=\"content\"><p> Enter the credentials to your prefered WiFi station. After rebooting the device tries to connect with this information. </p><form method=\"post\" action=\"/save\"><p class=\"des\">WiFi</p><div class=\"inputWrp\"><input type=\"text\" class=\"inputText\" name=\"ssid\" value=\"{SSID}\" required/><span class=\"floating_label\">SSID</span></div><div class=\"inputWrp\"><input type=\"password\" class=\"inputText\" name=\"pwd\" value=\"{PWD}\" required/><span class=\"floating_label\">PASSWORD</span></div><p class=\"des\">Device Host Name</p><div class=\"inputWrp\"><input type=\"text\" class=\"inputText\" name=\"device\" value=\"{DEVICE}\" required/><span class=\"floating_label\">DEVICE NAME</span></div><p class=\"des\">General</p><div class=\"inputWrp\"><input type=\"text\" class=\"inputText\" name=\"hoy_addr\" value=\"{HOY_ADDR}\" required/><span class=\"floating_label\">HOYMILES ADDRESS (eg. 11:22:33:44:55:66)</span></div><input type=\"checkbox\" class=\"cb\" name=\"reboot\"/><label for=\"reboot\">Reboot device after successful save</label><input type=\"submit\" value=\"save\" class=\"button\" /></form></div></div><div id=\"footer\"><p class=\"left\"><a href=\"/\">Home</a></p><p class=\"left\"><a href=\"/update\">Update Firmware</a></p><p class=\"right\">AHOY - {VERSION}</p></div></body></html>";
#ifndef __SETUP_HTML_H__
#define __SETUP_HTML_H__
const char setup_html[] PROGMEM = "<!doctype html><html><head><title>Setup - {DEVICE}</title><link rel=\"stylesheet\" type=\"text/css\" href=\"style.css\"/><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\"></head><body><h1>Setup</h1><div id=\"setup\" class=\"content\"><div id=\"content\"><p>Enter the credentials to your prefered WiFi station. After rebooting the device tries to connect with this information. </p><form method=\"post\" action=\"{IP}/save\"><p class=\"des\">WiFi</p><label for=\"ssid\">SSID</label><input type=\"text\" class=\"text\" name=\"ssid\" value=\"{SSID}\"/><label for=\"pwd\">Password</label><input type=\"password\" class=\"text\" name=\"pwd\" value=\"{PWD}\"/><p class=\"des\">Device Host Name</p><label for=\"device\">Device Name</label><input type=\"text\" class=\"text\" name=\"device\" value=\"{DEVICE}\"/><a class=\"erase\" href=\"/erase\">ERASE SETTINGS (not WiFi)</a><p class=\"des\">Inverter</p>{INVERTERS}<br/><p class=\"subdes\">General</p><label for=\"invInterval\">Interval (s)</label><input type=\"text\" class=\"text\" name=\"invInterval\" value=\"{INV_INTVL}\"/><p class=\"des\">Pinout (Wemos)</p>{PINOUT}<p class=\"des\">Radio (NRF24L01+)</p><label for=\"rf24Power\">Amplifier Power Level</label><select name=\"rf24Power\">{RF24}</select><p class=\"des\">MQTT</p><label for=\"mqttAddr\">Broker / Server IP</label><input type=\"text\" class=\"text\" name=\"mqttAddr\" value=\"{MQTT_ADDR}\"/><label for=\"mqttPort\">Port</label><input type=\"text\" class=\"text\" name=\"mqttPort\" value=\"{MQTT_PORT}\"/><label for=\"mqttUser\">Username (optional)</label><input type=\"text\" class=\"text\" name=\"mqttUser\" value=\"{MQTT_USER}\"/><label for=\"mqttPwd\">Password (optional)</label><input type=\"text\" class=\"text\" name=\"mqttPwd\" value=\"{MQTT_PWD}\"/><label for=\"mqttTopic\">Topic</label><input type=\"text\" class=\"text\" name=\"mqttTopic\" value=\"{MQTT_TOPIC}\"/><label for=\"mqttIntvl\">Interval (s)</label><input type=\"text\" class=\"text\" name=\"mqttIntvl\" value=\"{MQTT_INTVL}\"/><p class=\"des\">Serial Console</p><label for=\"serEn\">print inverter data</label><input type=\"checkbox\" class=\"cb\" name=\"serEn\" {SER_VAL_CB}/><br/><label for=\"serDbg\">print RF24 debug</label><input type=\"checkbox\" class=\"cb\" name=\"serDbg\" {SER_DBG_CB}/><br/><label for=\"serIntvl\">Interval (s)</label><input type=\"text\" class=\"text\" name=\"serIntvl\" value=\"{SER_INTVL}\"/><p class=\"des\">&nbsp;</p><label for=\"reboot\">Reboot device after successful save</label><input type=\"checkbox\" class=\"cb\" name=\"reboot\"/><input type=\"submit\" value=\"save\" class=\"btn\" /></form></div></div><div id=\"footer\"><p class=\"left\"><a href=\"{IP}/\">Home</a></p><p class=\"left\"><a href=\"{IP}/update\">Update Firmware</a></p><p class=\"right\">AHOY - {VERSION}</p><p class=\"right\"><a href=\"{IP}/factory\">Factory Reset</a></p><p class=\"right\"><a href=\"{IP}/reboot\">Reboot</a></p></div></body></html>";
#endif /*__SETUP_HTML_H__*/

5
tools/esp8266/html/h/style_css.h

@ -1 +1,4 @@
String style_css = "h1 { margin: 0; padding: 20pt; font-size: 22pt; color: #fff; background-color: #006ec0; display: block; text-transform: uppercase; } html, body { font-family: Arial; margin: 0; padding: 0; } p { text-align: justify; font-size: 13pt; } .des { font-size: 14pt; color: #006ec0; padding-bottom: 0px !important; } .fw { width: 60px; display: block; float: left; } .color { width: 50px; height: 50px; border: 1px solid #ccc; } .range { width: 300px; } a:link, a:visited { text-decoration: none; font-size: 13pt; color: #006ec0; } a:hover, a:focus { color: #f00; } #content { padding: 15px 15px 60px 15px; } #footer { position: fixed; bottom: 0px; height: 45px; background-color: #006ec0; width: 100%; } #footer p { color: #fff; padding-left: 20px; padding-right: 20px; font-size: 10pt !important; } #footer a { color: #fff; } #footer a:hover { color: #f00; } div.content { background-color: #fff; padding-bottom: 65px; overflow: hidden; } span.warn { display: inline-block; padding-left: 20px; color: #ff9900; font-style: italic; } input { padding: 10px; font-size: 13pt; } input.button { background-color: #006ec0; color: #fff; border: 0px; float: right; text-transform: uppercase; } input.cb { margin-bottom: 20px; } label { font-size: 14pt; } .left { float: left; } .right { float: right; } .inputWrp { position: relative; } .inputWrp .inputText { height: 35px; width: 90%; margin-bottom: 20px; border: 1px solid #ccc; border-top: none; border-right: none; } .inputWrp .floating_label { position: absolute; pointer-events: none; top: 20px; left: 10px; transition: 0.2s ease all; } .inputWrp input:focus ~ .floating_label, .inputWrp input:not(:focus):valid ~ .floating_label { top: 0px; left: 20px; font-size: 10px; color: blue; opacity: 1; } ";
#ifndef __STYLE_CSS_H__
#define __STYLE_CSS_H__
const char style_css[] PROGMEM = "h1 {margin:0;padding:20pt;font-size:22pt;color:#fff;background-color:#006ec0;display:block;text-transform:uppercase;}html, body {font-family:Arial;margin:0;padding:0;}p {text-align:justify;font-size:13pt;}.des {margin-top:35px;font-size:13pt;color:#006ec0;}.subdes {font-size:12pt;color:#006ec0;margin-left:7px;}a:link, a:visited {text-decoration:none;font-size:13pt;color:#006ec0;}a:hover, a:focus {color:#f00;}a.erase {background-color:#006ec0;color:#fff;padding:7px;display:inline-block;margin-top:30px;float:right;}#content {padding:15px 15px 60px 15px;}#footer {position:fixed;bottom:0px;height:45px;background-color:#006ec0;width:100%;border-top:5px solid #fff;}#footer p, #footer a {color:#fff;padding:0 7px 0 7px;font-size:10pt !important;}div.content {background-color:#fff;padding-bottom:65px;overflow:auto;}input, select {padding:7px;font-size:13pt;}input.text, select {width:70%;box-sizing:border-box;margin-bottom:10px;border:1px solid #ccc;}input.btn {background-color:#006ec0;color:#fff;border:0px;float:right;margin:10px 0 30px;text-transform:uppercase;}input.cb {margin-bottom:20px;}label {width:20%;display:inline-block;font-size:12pt;padding-right:10px;margin-left:10px;}.left {float:left;}.right {float:right;}div.ch-iv {width:100%;background-color:#32b004;display:inline-block;margin-bottom:20px;padding-bottom:20px;overflow:auto;}div.ch {width:250px;min-height:420px;background-color:#006ec0;display:inline-block;margin-right:20px;margin-bottom:20px;overflow:auto;padding-bottom:20px;}div.ch .value, div.ch .info, div.ch .head, div.ch-iv .value, div.ch-iv .info, div.ch-iv .head {color:#fff;display:block;width:100%;text-align:center;}.subgrp {float:left;width:250px;}div.ch .unit, div.ch-iv .unit {font-size:19px;margin-left:10px;}div.ch .value, div.ch-iv .value {margin-top:20px;font-size:30px;}div.ch .info, div.ch-iv .info {margin-top:3px;font-size:10px;}div.ch .head {background-color:#003c80;padding:10px 0 10px 0;}div.ch-iv .head {background-color:#1c6800;padding:10px 0 10px 0;}div.iv {max-width:1060px;}div.ch:last-child {margin-right:0px !important;}#note {margin:50px 10px 10px 10px;padding-top:10px;width:100%;border-top:1px solid #bbb;}";
#endif /*__STYLE_CSS_H__*/

42
tools/esp8266/html/hoymiles.html

@ -0,0 +1,42 @@
<!doctype html>
<html>
<head>
<title>Index - {DEVICE}</title>
<link rel="stylesheet" type="text/css" href="style.css"/>
<meta name="viewport" content="width=device-width, initial-scale=1">
<script type="text/javascript">
getAjax('/livedata', 'livedata');
window.setInterval("getAjax('/livedata', 'livedata')", 10000);
function getAjax(url, resid) {
var http = null;
http = new XMLHttpRequest();
if(http != null) {
http.open("GET", url, true);
http.onreadystatechange = print;
http.send(null);
}
function print() {
if(http.readyState == 4) {
document.getElementById(resid).innerHTML = http.responseText;
}
}
}
</script>
<style type="text/css">
</style>
</head>
<body>
<h1>AHOY - {DEVICE}</h1>
<div id="content" class="content">
<div id="livedata"></div>
<p>Every 10 seconds the values are updated</p>
</div>
<div id="footer">
<p class="left">&copy 2022</p>
<p class="left"><a href="/">Home</a></p>
<p class="right">AHOY :: {VERSION}</p>
</div>
</body>
</html>

12
tools/esp8266/html/index.html

@ -30,18 +30,26 @@
<h1>AHOY - {DEVICE}</h1>
<div id="content" class="content">
<p>
<a href="/update">Update</a><br/>
<a href="/hoymiles">Visualization</a><br/>
<br/>
<a href="/setup">Setup</a><br/>
<a href="/reboot">Reboot</a>
</p>
<p><span class="des">Uptime: </span><span id="uptime"></span></p>
<p><span class="des">Time: </span><span id="time"></span></p>
<p><span class="des">Statistics: </span><pre id="cmds"></pre></p>
<div id="note">
This project was started from <a href="https://www.mikrocontroller.net/topic/525778" target="_blank">this discussion. (Mikrocontroller.net)</a><br/>
New updates can be found on Github: <a href="https://github.com/grindylow/ahoy" target="_blank">https://github.com/grindylow/ahoy</a><br/>
<br/>
Please report issues using the feature provided by Github.
</div>
</div>
<div id="footer">
<p class="left">&copy 2022</p>
<p class="left"><a href="/update">Update Firmware</a></p>
<p class="right">AHOY :: {VERSION}</p>
<p class="right"><a href="/reboot">Reboot</a></p>
</div>
</body>
</html>

74
tools/esp8266/html/setup.html

@ -12,40 +12,68 @@
<p>
Enter the credentials to your prefered WiFi station. After rebooting the device tries to connect with this information.
</p>
<form method="post" action="/save">
<form method="post" action="{IP}/save">
<p class="des">WiFi</p>
<div class="inputWrp">
<input type="text" class="inputText" name="ssid" value="{SSID}" required/>
<span class="floating_label">SSID</span>
</div>
<div class="inputWrp">
<input type="password" class="inputText" name="pwd" value="{PWD}" required/>
<span class="floating_label">PASSWORD</span>
</div>
<label for="ssid">SSID</label>
<input type="text" class="text" name="ssid" value="{SSID}"/>
<label for="pwd">Password</label>
<input type="password" class="text" name="pwd" value="{PWD}"/>
<p class="des">Device Host Name</p>
<div class="inputWrp">
<input type="text" class="inputText" name="device" value="{DEVICE}" required/>
<span class="floating_label">DEVICE NAME</span>
</div>
<label for="device">Device Name</label>
<input type="text" class="text" name="device" value="{DEVICE}"/>
<p class="des">General</p>
<div class="inputWrp">
<input type="text" class="inputText" name="hoy_addr" value="{HOY_ADDR}" required/>
<span class="floating_label">HOYMILES ADDRESS (eg. 11:22:33:44:55:66)</span>
</div>
<input type="checkbox" class="cb" name="reboot"/>
<label for="reboot">Reboot device after successful save</label>
<a class="erase" href="/erase">ERASE SETTINGS (not WiFi)</a>
<p class="des">Inverter</p>
{INVERTERS}<br/>
<p class="subdes">General</p>
<label for="invInterval">Interval (s)</label>
<input type="text" class="text" name="invInterval" value="{INV_INTVL}"/>
<p class="des">Pinout (Wemos)</p>
{PINOUT}
<p class="des">Radio (NRF24L01+)</p>
<label for="rf24Power">Amplifier Power Level</label>
<select name="rf24Power">{RF24}</select>
<input type="submit" value="save" class="button" />
<p class="des">MQTT</p>
<label for="mqttAddr">Broker / Server IP</label>
<input type="text" class="text" name="mqttAddr" value="{MQTT_ADDR}"/>
<label for="mqttPort">Port</label>
<input type="text" class="text" name="mqttPort" value="{MQTT_PORT}"/>
<label for="mqttUser">Username (optional)</label>
<input type="text" class="text" name="mqttUser" value="{MQTT_USER}"/>
<label for="mqttPwd">Password (optional)</label>
<input type="text" class="text" name="mqttPwd" value="{MQTT_PWD}"/>
<label for="mqttTopic">Topic</label>
<input type="text" class="text" name="mqttTopic" value="{MQTT_TOPIC}"/>
<label for="mqttIntvl">Interval (s)</label>
<input type="text" class="text" name="mqttIntvl" value="{MQTT_INTVL}"/>
<p class="des">Serial Console</p>
<label for="serEn">print inverter data</label>
<input type="checkbox" class="cb" name="serEn" {SER_VAL_CB}/><br/>
<label for="serDbg">print RF24 debug</label>
<input type="checkbox" class="cb" name="serDbg" {SER_DBG_CB}/><br/>
<label for="serIntvl">Interval (s)</label>
<input type="text" class="text" name="serIntvl" value="{SER_INTVL}"/>
<p class="des">&nbsp;</p>
<label for="reboot">Reboot device after successful save</label>
<input type="checkbox" class="cb" name="reboot"/>
<input type="submit" value="save" class="btn" />
</form>
</div>
</div>
<div id="footer">
<p class="left"><a href="/">Home</a></p>
<p class="left"><a href="/update">Update Firmware</a></p>
<p class="left"><a href="{IP}/">Home</a></p>
<p class="left"><a href="{IP}/update">Update Firmware</a></p>
<p class="right">AHOY - {VERSION}</p>
<p class="right"><a href="{IP}/factory">Factory Reset</a></p>
<p class="right"><a href="{IP}/reboot">Reboot</a></p>
</div>
</body>
</html>

155
tools/esp8266/html/style.css

@ -20,26 +20,17 @@ p {
}
.des {
font-size: 14pt;
margin-top: 35px;
font-size: 13pt;
color: #006ec0;
padding-bottom: 0px !important;
}
.fw {
width: 60px;
display: block;
float: left;
.subdes {
font-size: 12pt;
color: #006ec0;
margin-left: 7px;
}
.color {
width: 50px;
height: 50px;
border: 1px solid #ccc;
}
.range {
width: 300px;
}
a:link, a:visited {
text-decoration: none;
@ -51,6 +42,15 @@ a:hover, a:focus {
color: #f00;
}
a.erase {
background-color: #006ec0;
color: #fff;
padding: 7px;
display: inline-block;
margin-top: 30px;
float: right;
}
#content {
padding: 15px 15px 60px 15px;
}
@ -61,46 +61,39 @@ a:hover, a:focus {
height: 45px;
background-color: #006ec0;
width: 100%;
border-top: 5px solid #fff;
}
#footer p {
#footer p, #footer a {
color: #fff;
padding-left: 20px;
padding-right: 20px;
padding: 0 7px 0 7px;
font-size: 10pt !important;
}
#footer a {
color: #fff;
}
#footer a:hover {
color: #f00;
}
div.content {
background-color: #fff;
padding-bottom: 65px;
overflow: hidden;
overflow: auto;
}
span.warn {
display: inline-block;
padding-left: 20px;
color: #ff9900;
font-style: italic;
input, select {
padding: 7px;
font-size: 13pt;
}
input {
padding: 10px;
font-size: 13pt;
input.text, select {
width: 70%;
box-sizing: border-box;
margin-bottom: 10px;
border: 1px solid #ccc;
}
input.button {
input.btn {
background-color: #006ec0;
color: #fff;
border: 0px;
float: right;
margin: 10px 0 30px;
text-transform: uppercase;
}
@ -109,7 +102,11 @@ input.cb {
}
label {
font-size: 14pt;
width: 20%;
display: inline-block;
font-size: 12pt;
padding-right: 10px;
margin-left: 10px;
}
.left {
@ -120,32 +117,74 @@ label {
float: right;
}
.inputWrp {
position: relative;
div.ch-iv {
width: 100%;
background-color: #32b004;
display: inline-block;
margin-bottom: 20px;
padding-bottom: 20px;
overflow: auto;
}
.inputWrp .inputText {
height: 35px;
width: 90%;
div.ch {
width: 250px;
min-height: 420px;
background-color: #006ec0;
display: inline-block;
margin-right: 20px;
margin-bottom: 20px;
border: 1px solid #ccc;
border-top: none;
border-right: none;
overflow: auto;
padding-bottom: 20px;
}
div.ch .value, div.ch .info, div.ch .head, div.ch-iv .value, div.ch-iv .info, div.ch-iv .head {
color: #fff;
display: block;
width: 100%;
text-align: center;
}
.subgrp {
float: left;
width: 250px;
}
.inputWrp .floating_label {
position: absolute;
pointer-events: none;
top: 20px;
left: 10px;
transition: 0.2s ease all;
div.ch .unit, div.ch-iv .unit {
font-size: 19px;
margin-left: 10px;
}
.inputWrp input:focus ~ .floating_label,
.inputWrp input:not(:focus):valid ~ .floating_label {
top: 0px;
left: 20px;
font-size: 10px;
color: blue;
opacity: 1;
div.ch .value, div.ch-iv .value {
margin-top: 20px;
font-size: 30px;
}
div.ch .info, div.ch-iv .info {
margin-top: 3px;
font-size: 10px;
}
div.ch .head {
background-color: #003c80;
padding: 10px 0 10px 0;
}
div.ch-iv .head {
background-color: #1c6800;
padding: 10px 0 10px 0;
}
div.iv {
max-width: 1060px;
}
div.ch:last-child {
margin-right: 0px !important;
}
#note {
margin: 50px 10px 10px 10px;
padding-top: 10px;
width: 100%;
border-top: 1px solid #bbb;
}

180
tools/esp8266/main.cpp

@ -12,8 +12,13 @@ Main::Main(void) {
mUpdater = new ESP8266HTTPUpdateServer();
mUdp = new WiFiUDP();
mApActive = true;
mSettingsValid = false;
mApActive = true;
mWifiSettingsValid = false;
mSettingsValid = false;
mLimit = 10;
mNextTryTs = 0;
mApLastTick = 0;
snprintf(mVersion, 12, "%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH);
@ -22,82 +27,105 @@ Main::Main(void) {
mEep = new eep();
Serial.begin(115200);
mUptimeSecs = 0;
mUptimeTicker = new Ticker();
mUptimeTicker->attach(1, std::bind(&Main::uptimeTicker, this));
mUptimeSecs = 0;
mUptimeTicker = 0xffffffff;
mUptimeInterval = 1000;
}
//-----------------------------------------------------------------------------
void Main::setup(const char *ssid, const char *pwd, uint32_t timeout) {
void Main::setup(uint32_t timeout) {
bool startAp = mApActive;
mLimit = timeout;
mWeb->on("/setup", std::bind(&Main::showSetup, this));
mWeb->on("/save", std::bind(&Main::showSave, this));
mWeb->on("/uptime", std::bind(&Main::showUptime, this));
mWeb->on("/time", std::bind(&Main::showTime, this));
mWeb->on("/style.css", std::bind(&Main::showCss, this));
mWeb->on("/reboot", std::bind(&Main::showReboot, this));
mWeb->onNotFound (std::bind(&Main::showNotFound, this));
mWeb->on("/setup", std::bind(&Main::showSetup, this));
mWeb->on("/save", std::bind(&Main::showSave, this));
mWeb->on("/uptime", std::bind(&Main::showUptime, this));
mWeb->on("/time", std::bind(&Main::showTime, this));
mWeb->on("/style.css", std::bind(&Main::showCss, this));
mWeb->on("/reboot", std::bind(&Main::showReboot, this));
mWeb->on("/factory", std::bind(&Main::showFactoryRst, this));
mWeb->onNotFound ( std::bind(&Main::showNotFound, this));
startAp = getConfig();
if(String(mDeviceName) != "")
WiFi.hostname(mDeviceName);
#ifndef AP_ONLY
if(false == startAp)
startAp = setupStation(timeout);
if(true == startAp) {
if(strlen(pwd) < 8)
Serial.println("password must be at least 8 characters long");
setupAp(ssid, pwd);
#else
setupAp(WIFI_AP_SSID, WIFI_AP_PWD);
#endif
if(!startAp) {
delay(5000);
mTimestamp = getNtpTime();
DPRINTLN("[NTP]: " + getDateTimeStr(getNtpTime()));
}
mUpdater->setup(mWeb);
mApActive = startAp;
mTimestamp = getNtpTime();
//Serial.println("[NTP]: " + getDateTimeStr(getNtpTime()));
}
//-----------------------------------------------------------------------------
void Main::loop(void) {
if(mApActive)
if(mApActive) {
mDns->processNextRequest();
#ifndef AP_ONLY
if(checkTicker(&mNextTryTs, (WIFI_AP_ACTIVE_TIME * 1000))) {
mApLastTick = millis();
mApActive = setupStation(mLimit);
if(mApActive) {
if(strlen(WIFI_AP_PWD) < 8)
DPRINTLN("ERROR: password must be at least 8 characters long");
setupAp(WIFI_AP_SSID, WIFI_AP_PWD);
}
}
else {
if(millis() - mApLastTick > 10000) {
uint8_t cnt = WiFi.softAPgetStationNum();
if(cnt > 0) {
DPRINTLN(String(cnt) + " clients connected, resetting AP timeout");
mNextTryTs = (millis() + (WIFI_AP_ACTIVE_TIME * 1000));
}
mApLastTick = millis();
DPRINTLN("AP will be closed in " + String((mNextTryTs - mApLastTick) / 1000) + " seconds");
}
}
#endif
}
mWeb->handleClient();
if(checkTicker(&mUptimeTicker, mUptimeInterval)) {
mUptimeSecs++;
mTimestamp++;
}
}
//-----------------------------------------------------------------------------
bool Main::getConfig(void) {
bool mApActive = false;
uint16_t crcRd, crcCheck;
uint8_t buf[ADDR_NEXT-ADDR_START];
// check settings crc
mEep->read(ADDR_START, buf, (ADDR_NEXT-ADDR_START));
crcCheck = crc16(buf, (ADDR_NEXT-ADDR_START));
mEep->read(ADDR_SETTINGS_CRC, &crcRd);
if(crcCheck == crcRd)
mSettingsValid = true;
//else
// Serial.println("CRC RD: " + String(crcRd, HEX) + " CRC CHECK: " + String(crcCheck, HEX));
mWifiSettingsValid = checkEEpCrc(ADDR_START, ADDR_WIFI_CRC, ADDR_WIFI_CRC);
mSettingsValid = checkEEpCrc(ADDR_START_SETTINGS, (ADDR_NEXT-ADDR_START_SETTINGS), ADDR_SETTINGS_CRC);
if(mSettingsValid) {
if(mWifiSettingsValid) {
mEep->read(ADDR_SSID, mStationSsid, SSID_LEN);
mEep->read(ADDR_PWD, mStationPwd, PWD_LEN);
mEep->read(ADDR_DEVNAME, mDeviceName, DEVNAME_LEN);
}
else {
mApActive = true;
/*mApActive = true;
memset(mStationSsid, 0, SSID_LEN);
memset(mStationPwd, 0, PWD_LEN);
memset(mDeviceName, 0, DEVNAME_LEN);
// erase application settings except wifi settings
eraseSettings();*/
snprintf(mStationSsid, SSID_LEN, "%s", FB_WIFI_SSID);
snprintf(mStationPwd, PWD_LEN, "%s", FB_WIFI_PWD);
snprintf(mDeviceName, DEVNAME_LEN, "%s", DEF_DEVICE_NAME);
}
return mApActive;
@ -108,7 +136,12 @@ bool Main::getConfig(void) {
void Main::setupAp(const char *ssid, const char *pwd) {
IPAddress apIp(192, 168, 1, 1);
Serial.println("\n---------\nAP MODE\nSSDI: "+ String(ssid) + "\nPWD: " + String(pwd) + "\n---------\n");
DPRINTLN("\n---------\nAP MODE\nSSDI: "
+ String(ssid) + "\nPWD: "
+ String(pwd) + "\nActive for: "
+ String(WIFI_AP_ACTIVE_TIME) + " seconds"
+ "\n---------\n");
DPRINTLN("DBG: " + String(mNextTryTs));
WiFi.mode(WIFI_AP);
WiFi.softAPConfig(apIp, apIp, IPAddress(255, 255, 255, 0));
@ -127,14 +160,23 @@ void Main::setupAp(const char *ssid, const char *pwd) {
//-----------------------------------------------------------------------------
bool Main::setupStation(uint32_t timeout) {
int32_t cnt = timeout * 10;
int32_t cnt;
bool startAp = false;
if(timeout >= 3)
cnt = (timeout - 3) / 2 * 10;
else {
timeout = 1;
cnt = 1;
}
WiFi.mode(WIFI_STA);
WiFi.begin(mStationSsid, mStationPwd);
if(String(mDeviceName) != "")
WiFi.hostname(mDeviceName);
delay(5000);
Serial.println("wait for network");
delay(2000);
DPRINTLN("connect to network '" + String(mStationSsid) + "' ...");
while (WiFi.status() != WL_CONNECTED) {
delay(100);
if(cnt % 100 == 0)
@ -144,8 +186,10 @@ bool Main::setupStation(uint32_t timeout) {
if(timeout > 0) { // limit == 0 -> no limit
if(--cnt <= 0) {
startAp = true;
WiFi.disconnect();
if(WiFi.status() != WL_CONNECTED) {
startAp = true;
WiFi.disconnect();
}
delay(100);
break;
}
@ -165,12 +209,16 @@ bool Main::setupStation(uint32_t timeout) {
//-----------------------------------------------------------------------------
void Main::showSetup(void) {
String html = setup_html;
String html = FPSTR(setup_html);
html.replace("{SSID}", mStationSsid);
// PWD will be left at the default value (for protection)
// -> the PWD will only be changed if it does not match the default "{PWD}"
html.replace("{DEVICE}", String(mDeviceName));
html.replace("{VERSION}", String(mVersion));
if(mApActive)
html.replace("{IP}", String("http://192.168.1.1"));
else
html.replace("{IP}", ("http://" + String(WiFi.localIP().toString())));
mWeb->send(200, "text/html", html);
}
@ -178,7 +226,7 @@ void Main::showSetup(void) {
//-----------------------------------------------------------------------------
void Main::showCss(void) {
mWeb->send(200, "text/css", style_css);
mWeb->send(200, "text/css", FPSTR(style_css));
}
@ -212,7 +260,7 @@ void Main::saveValues(bool webSend = true) {
if(webSend) {
if(mWeb->arg("reboot") == "on")
showReboot();
else
else // TODO: add device name as redirect in AP-mode
mWeb->send(200, "text/html", "<!doctype html><html><head><title>Setup saved</title><meta http-equiv=\"refresh\" content=\"0; URL=/setup\"></head><body>"
"<p>saved</p></body></html>");
}
@ -223,12 +271,9 @@ void Main::saveValues(bool webSend = true) {
//-----------------------------------------------------------------------------
void Main::updateCrc(void) {
uint16_t crc;
uint8_t buf[ADDR_NEXT-ADDR_START];
mEep->read(ADDR_START, buf, (ADDR_NEXT-ADDR_START));
crc = crc16(buf, (ADDR_NEXT-ADDR_START));
crc = buildEEpCrc(ADDR_START, ADDR_WIFI_CRC);
//Serial.println("new CRC: " + String(crc, HEX));
mEep->write(ADDR_SETTINGS_CRC, crc);
mEep->write(ADDR_WIFI_CRC, crc);
}
@ -282,9 +327,30 @@ void Main::showReboot(void) {
//-----------------------------------------------------------------------------
void Main::uptimeTicker(void) {
mUptimeSecs++;
mTimestamp++;
void Main::showFactoryRst(void) {
String content = "";
int refresh = 3;
if(mWeb->args() > 0) {
if(mWeb->arg("reset").toInt() == 1) {
eraseSettings(true);
content = "factory reset: success\n\nrebooting ... ";
refresh = 10;
}
else {
content = "factory reset: aborted";
refresh = 3;
}
}
else {
content = "<h1>Factory Reset</h1>";
content += "<p><a href=\"/factory?reset=1\">RESET</a><br/><br/><a href=\"/factory?reset=0\">CANCEL</a><br/></p>";
refresh = 120;
}
mWeb->send(200, "text/html", "<!doctype html><html><head><title>Factory Reset</title><meta http-equiv=\"refresh\" content=\"" + String(refresh) + "; URL=/\"></head><body>" + content + "</body></html>");
if(refresh == 10) {
delay(1000);
ESP.restart();
}
}

56
tools/esp8266/main.h

@ -6,7 +6,6 @@
#include <ESP8266WiFi.h>
#include <DNSServer.h>
#include <ESP8266WebServer.h>
#include <Ticker.h>
#include <ESP8266HTTPUpdateServer.h>
@ -17,6 +16,7 @@
#include "eep.h"
#include "defines.h"
#include "crc.h"
#include "debug.h"
const byte mDnsPort = 53;
@ -30,7 +30,7 @@ const byte mDnsPort = 53;
class Main {
public:
Main(void);
virtual void setup(const char *ssid, const char *pwd, uint32_t timeout);
virtual void setup(uint32_t timeout);
virtual void loop();
String getDateTimeStr (time_t t);
@ -40,8 +40,50 @@ class Main {
virtual void saveValues(bool webSend);
virtual void updateCrc(void);
inline uint16_t buildEEpCrc(uint32_t start, uint32_t length) {
uint8_t buf[length];
mEep->read(start, buf, length);
return crc16(buf, length);
}
bool checkEEpCrc(uint32_t start, uint32_t length, uint32_t crcPos) {
uint16_t crcRd, crcCheck;
crcCheck = buildEEpCrc(start, length);
mEep->read(crcPos, &crcRd);
return (crcCheck == crcRd);
}
void eraseSettings(bool all = false) {
uint8_t buf[64] = {0};
uint16_t addr = (all) ? ADDR_START : ADDR_START_SETTINGS;
uint16_t end;
do {
end = addr + 64;
if(end > (ADDR_SETTINGS_CRC + 2))
end = (ADDR_SETTINGS_CRC + 2);
DPRINTLN("erase: 0x" + String(addr, HEX) + " - 0x" + String(end, HEX));
mEep->write(addr, buf, (end-addr));
addr = end;
} while(addr < (ADDR_SETTINGS_CRC + 2));
}
inline bool checkTicker(uint32_t *ticker, uint32_t interval) {
uint32_t mil = millis();
if(mil >= *ticker) {
*ticker = mil + interval;
return true;
}
else if(mil < (*ticker - interval)) {
*ticker = mil + interval;
return true;
}
return false;
}
char mStationSsid[SSID_LEN];
char mStationPwd[PWD_LEN];
bool mWifiSettingsValid;
bool mSettingsValid;
bool mApActive;
ESP8266WebServer *mWeb;
@ -49,7 +91,9 @@ class Main {
char mDeviceName[DEVNAME_LEN];
eep *mEep;
uint32_t mTimestamp;
uint32_t mLimit;
uint32_t mNextTryTs;
uint32_t mApLastTick;
private:
bool getConfig(void);
@ -62,14 +106,14 @@ class Main {
void showUptime(void);
void showTime(void);
void showCss(void);
void uptimeTicker(void);
void showFactoryRst(void);
time_t getNtpTime(void);
void sendNTPpacket(IPAddress& address);
time_t offsetDayLightSaving (uint32_t local_t);
Ticker *mUptimeTicker;
uint32_t mUptimeTicker;
uint16_t mUptimeInterval;
uint32_t mUptimeSecs;
DNSServer *mDns;

87
tools/esp8266/mqtt.h

@ -0,0 +1,87 @@
#ifndef __MQTT_H__
#define __MQTT_H__
#include <ESP8266WiFi.h>
#include <PubSubClient.h>
#include "defines.h"
class mqtt {
public:
mqtt() {
mClient = new PubSubClient(mEspClient);
mAddressSet = false;
memset(mUser, 0, MQTT_USER_LEN);
memset(mPwd, 0, MQTT_PWD_LEN);
memset(mTopic, 0, MQTT_TOPIC_LEN);
}
~mqtt() {
delete mClient;
}
void setup(const char *broker, const char *topic, const char *user, const char *pwd, uint16_t port) {
mAddressSet = true;
mClient->setServer(broker, port);
snprintf(mUser, MQTT_USER_LEN, "%s", user);
snprintf(mPwd, MQTT_PWD_LEN, "%s", pwd);
snprintf(mTopic, MQTT_TOPIC_LEN, "%s", topic);
}
void sendMsg(const char *topic, const char *msg) {
if(mAddressSet) {
char top[64];
snprintf(top, 64, "%s/%s", mTopic, topic);
if(!mClient->connected())
reconnect();
mClient->publish(top, msg);
}
}
bool isConnected(bool doRecon = false) {
if(doRecon)
reconnect();
return mClient->connected();
}
char *getUser(void) {
return mUser;
}
char *getPwd(void) {
return mPwd;
}
char *getTopic(void) {
return mTopic;
}
void loop() {
//if(!mClient->connected())
// reconnect();
mClient->loop();
}
private:
void reconnect(void) {
if(!mClient->connected()) {
String mqttId = "ESP-" + String(random(0xffff), HEX);
if((strlen(mUser) > 0) && (strlen(mPwd) > 0))
mClient->connect(mqttId.c_str(), mUser, mPwd);
else
mClient->connect(mqttId.c_str());
}
}
WiFiClient mEspClient;
PubSubClient *mClient;
bool mAddressSet;
char mUser[MQTT_USER_LEN];
char mPwd[MQTT_PWD_LEN];
char mTopic[MQTT_TOPIC_LEN];
};
#endif /*__MQTT_H_*/

31
tools/esp8266/test/hmClassTest/hmClassTest.sln

@ -0,0 +1,31 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio Version 16
VisualStudioVersion = 16.0.32002.261
MinimumVisualStudioVersion = 10.0.40219.1
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "hmClassTest", "hmClassTest\hmClassTest.vcxproj", "{4D899C12-DE0E-4CDB-B48C-FDFEC331F219}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Debug|x86 = Debug|x86
Release|x64 = Release|x64
Release|x86 = Release|x86
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{4D899C12-DE0E-4CDB-B48C-FDFEC331F219}.Debug|x64.ActiveCfg = Debug|x64
{4D899C12-DE0E-4CDB-B48C-FDFEC331F219}.Debug|x64.Build.0 = Debug|x64
{4D899C12-DE0E-4CDB-B48C-FDFEC331F219}.Debug|x86.ActiveCfg = Debug|Win32
{4D899C12-DE0E-4CDB-B48C-FDFEC331F219}.Debug|x86.Build.0 = Debug|Win32
{4D899C12-DE0E-4CDB-B48C-FDFEC331F219}.Release|x64.ActiveCfg = Release|x64
{4D899C12-DE0E-4CDB-B48C-FDFEC331F219}.Release|x64.Build.0 = Release|x64
{4D899C12-DE0E-4CDB-B48C-FDFEC331F219}.Release|x86.ActiveCfg = Release|Win32
{4D899C12-DE0E-4CDB-B48C-FDFEC331F219}.Release|x86.Build.0 = Release|Win32
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
GlobalSection(ExtensibilityGlobals) = postSolution
SolutionGuid = {7C291F74-09F6-4C84-99E1-6E7294062385}
EndGlobalSection
EndGlobal

147
tools/esp8266/test/hmClassTest/hmClassTest/hmClassTest.vcxproj

@ -0,0 +1,147 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
<Configuration>Debug</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">
<Configuration>Release</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\src\main.cpp" />
</ItemGroup>
<PropertyGroup Label="Globals">
<VCProjectVersion>16.0</VCProjectVersion>
<Keyword>Win32Proj</Keyword>
<ProjectGuid>{4d899c12-de0e-4cdb-b48c-fdfec331f219}</ProjectGuid>
<RootNamespace>hmClassTest</RootNamespace>
<WindowsTargetPlatformVersion>10.0</WindowsTargetPlatformVersion>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v142</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v142</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v142</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v142</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Label="Shared">
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

22
tools/esp8266/test/hmClassTest/hmClassTest/hmClassTest.vcxproj.filters

@ -0,0 +1,22 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<Filter Include="Quelldateien">
<UniqueIdentifier>{4FC737F1-C7A5-4376-A066-2A32D752A2FF}</UniqueIdentifier>
<Extensions>cpp;c;cc;cxx;c++;cppm;ixx;def;odl;idl;hpj;bat;asm;asmx</Extensions>
</Filter>
<Filter Include="Headerdateien">
<UniqueIdentifier>{93995380-89BD-4b04-88EB-625FBE52EBFB}</UniqueIdentifier>
<Extensions>h;hh;hpp;hxx;h++;hm;inl;inc;ipp;xsd</Extensions>
</Filter>
<Filter Include="Ressourcendateien">
<UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier>
<Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav;mfcribbon-ms</Extensions>
</Filter>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\src\main.cpp">
<Filter>Quelldateien</Filter>
</ClCompile>
</ItemGroup>
</Project>

4
tools/esp8266/test/hmClassTest/hmClassTest/hmClassTest.vcxproj.user

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="Current" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup />
</Project>

105
tools/esp8266/test/hmClassTest/src/main.cpp

@ -0,0 +1,105 @@
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
//-----------------------------------------------------------------------------
#define MAX_NUM_INVERTERS 3
#define MAX_NAME_LENGTH 16
#define NDEBUG
#define NO_RADIO
#include "../../../hmDefines.h"
#include "../../../hmInverter.h"
#include "../../../hmSystem.h"
//-----------------------------------------------------------------------------
typedef int RadioType;
typedef int BufferType;
typedef Inverter<float> InverterType;
typedef HmSystem<RadioType, BufferType, MAX_NUM_INVERTERS, InverterType> HmSystemType;
//-----------------------------------------------------------------------------
void valToBuf(InverterType *iv, uint8_t fld, uint8_t ch, float val, uint8_t bufPos);
//-----------------------------------------------------------------------------
int main(int argc, char* argv[]) {
HmSystemType sys;
InverterType *iv0, *iv1;
uint8_t buf[30] = { 0xcc };
iv0 = sys.addInverter("HM1200", 0x1122334455ULL, INV_TYPE_HM1200);
iv1 = sys.addInverter("HM600", 0x1234567891ULL, INV_TYPE_HM600);
valToBuf(iv0, FLD_UDC, CH1, 29.5, 3);
valToBuf(iv0, FLD_UDC, CH3, 30.6, 9);
valToBuf(iv0, FLD_YD, CH1, 1234, 5);
valToBuf(iv0, FLD_YD, CH2, 1199, 7);
valToBuf(iv0, FLD_YD, CH3, 899, 11);
valToBuf(iv0, FLD_YD, CH4, 932, 13);
valToBuf(iv0, FLD_YT, CH1, 40.123, 13);
valToBuf(iv0, FLD_YT, CH2, 57.231, 1);
valToBuf(iv0, FLD_YT, CH3, 59.372, 3);
valToBuf(iv0, FLD_YT, CH4, 43.966, 7);
iv0->doCalculations();
for(uint8_t i = 0; i < iv0->listLen; i ++) {
float val = iv0->getValue(i);
if(0.0 != val) {
printf("%10s [CH%d] = %.3f %s\n", iv0->getFieldName(i), iv0->getChannel(i), val, iv0->getUnit(i));
}
}
return 0;
}
//-----------------------------------------------------------------------------
void valToBuf(InverterType *iv, uint8_t fld, uint8_t ch, float val, uint8_t bufPos) {
uint8_t buf[30] = { 0xcc };
uint8_t len;
uint16_t factor;
switch(fld) {
default: len = 2; break;
case FLD_YT: len = 4; break;
}
switch(fld) {
case FLD_YD: factor = 1; break;
case FLD_UDC:
case FLD_PDC:
case FLD_UAC:
case FLD_PAC:
case FLD_PCT:
case FLD_T: factor = 10; break;
case FLD_IDC:
case FLD_IAC:
case FLD_F: factor = 100; break;
default: factor = 1000; break;
}
uint8_t *p = &buf[bufPos];
uint32_t intval = (uint32_t)(val * factor);
if(2 == len) {
p[0] = (intval >> 8) & 0xff;
p[1] = (intval ) & 0xff;
}
else {
p[0] = (intval >> 24) & 0xff;
p[1] = (intval >> 16) & 0xff;
p[2] = (intval >> 8) & 0xff;
p[3] = (intval ) & 0xff;
}
iv->addValue(iv->getPosByChFld(ch, fld), buf);
}

BIN
tools/esp8266/tools/fileConv.exe

Binary file not shown.

11
tools/rpi/.gitignore

@ -0,0 +1,11 @@
# Python
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# Virtual Environment
venv/
# vim leftovers
**.swp

67
tools/rpi/README.md

@ -40,7 +40,54 @@ contact the inverter every second on channel 40, and listen for replies.
Whenever it sees a reply, it will decoded and logged to the given log file.
$ sudo python3 ahoy.py | tee -a log2.log
$ sudo python3 -um hoymiles --log-transactions --verbose --config /home/dtu/ahoy.yml | tee -a log2.log
Python parameters
- `-u` enables python's unbuffered mode
- `-m hoymiles` tells python to load module 'hoymiles' as main app
The application describes itself
```
python -m hoymiles --help
usage: hoymiles [-h] -c [CONFIG_FILE] [--log-transactions] [--verbose]
Ahoy - Hoymiles solar inverter gateway
optional arguments:
-h, --help show this help message and exit
-c [CONFIG_FILE], --config-file [CONFIG_FILE]
configuration file
--log-transactions Enable transaction logging output
--verbose Enable debug output
```
Inject payloads via MQTT
------------------------
To enable mqtt payload injection, this must be configured per inverter
```yaml
...
inverters:
...
- serial: 1147112345
mqtt:
send_raw_enabled: true
...
```
This can be used to inject debug payloads
The message must be in hexlified format
Use of variables:
* tttttttt expands to current time like we know from our `80 0b` command
Example injects exactly the same as we normally use to poll data
$ mosquitto_pub -h broker -t inverter_topic/command -m 800b00tttttttt0000000500000000
This allows for even faster hacking during runtime
@ -49,12 +96,13 @@ Analysing the Logs
Use basic command line tools to get an idea what you recorded. For example:
$ cat log2.log | grep 'cmd=2'
$ cat log2.log
[...]
2022-03-28T17:36:53.018058Z MSG src=74608145, dst=74608145, cmd=2, u=235.0V, f=49.98Hz, p=2.5W, uk1=12851, uk2=0, uk3=14266, uk4=1663, uk5=1666
2022-03-28T17:38:07.309501Z MSG src=74608145, dst=74608145, cmd=2, u=234.7V, f=49.99Hz, p=2.3W, uk1=12851, uk2=0, uk3=14266, uk4=1663, uk5=1666
2022-03-28T17:38:24.378337Z MSG src=74608145, dst=74608145, cmd=2, u=234.7V, f=49.98Hz, p=2.2W, uk1=12851, uk2=0, uk3=14266, uk4=1663, uk5=1666
2022-03-28T17:38:34.417683Z MSG src=74608145, dst=74608145, cmd=2, u=234.8V, f=49.98Hz, p=2.2W, uk1=12851, uk2=0, uk3=14267, uk4=1663, uk5=1667
2022-05-02 16:41:16.044179 Transmit | 15 72 22 01 43 78 56 34 12 80 0b 00 62 3c 8e cf 00 00 00 05 00 00 00 00 35 a3 08
2022-05-02 17:01:41.844361 Received 27 bytes on channel 3: 95 72 22 01 43 72 22 01 43 01 00 01 01 44 00 4e 00 fe 01 46 00 4f 01 02 00 00 6b
2022-05-02 17:01:41.886796 Received 27 bytes on channel 75: 95 72 22 01 43 72 22 01 43 02 8f 82 00 00 86 7a 05 fe 06 0b 08 fc 13 8a 01 e9 15
2022-05-02 17:01:41.934667 Received 23 bytes on channel 75: 95 72 22 01 43 72 22 01 43 83 00 00 00 15 03 e8 00 df 03 83 d5 f3 91
2022-05-02 17:01:41.934667 Decoded: 44 string1= 32.4VDC 0.78A 25.4W 36738Wh 1534Wh/day string2= 32.6VDC 0.79A 25.8W 34426Wh 1547Wh/day phase1= 230.0VAC 2.1A 48.9W inverter=114171230143 50.02Hz 22.3°C
[...]
A brief example log is supplied in the `example-logs` folder.
@ -64,9 +112,9 @@ A brief example log is supplied in the `example-logs` folder.
Configuration
-------------
Nothing so far, I'm afraid. You can change the serial number of the inverter
that you are trying to talk to by changing the line that defines the
`inv_ser` variable towards the top of `ahoy.py`.
Local settings are read from ahoy.yml
An example is provided as ahoy.yml.example
Todo
@ -78,6 +126,7 @@ Todo
- configurable polling interval
- commands
- picture of setup!
- python module
- ...

11
tools/rpi/ahoy.conf.example

@ -1,11 +0,0 @@
[mqtt]
host = 192.168.84.2
port = 1883
user = bla
password = blub
[dtu]
serial = 99978563412
[inverter]
serial = 444473104619

345
tools/rpi/ahoy.py

@ -1,345 +0,0 @@
"""
First attempt at providing basic 'master' ('DTU') functionality
for Hoymiles micro inverters.
Based in particular on demostrated first contact by 'of22'.
"""
import sys
import argparse
import time
import struct
import crcmod
import json
from datetime import datetime
from RF24 import RF24, RF24_PA_LOW, RF24_PA_MAX, RF24_250KBPS
import paho.mqtt.client
from configparser import ConfigParser
cfg = ConfigParser()
cfg.read('ahoy.conf')
mqtt_host = cfg.get('mqtt', 'host', fallback='192.168.1.1')
mqtt_port = cfg.getint('mqtt', 'port', fallback=1883)
mqtt_user = cfg.get('mqtt', 'user', fallback='')
mqtt_password = cfg.get('mqtt', 'password', fallback='')
radio = RF24(22, 0, 1000000)
mqtt_client = paho.mqtt.client.Client()
mqtt_client.username_pw_set(mqtt_user, mqtt_password)
mqtt_client.connect(mqtt_host, mqtt_port)
mqtt_client.loop_start()
# Master Address ('DTU')
dtu_ser = cfg.get('dtu', 'serial', fallback='99978563412') # identical to fc22's
# inverter serial numbers
inv_ser = cfg.get('inverter', 'serial', fallback='444473104619') # my inverter
# all inverters
#...
f_crc_m = crcmod.predefined.mkPredefinedCrcFun('modbus')
f_crc8 = crcmod.mkCrcFun(0x101, initCrc=0, xorOut=0)
def ser_to_hm_addr(s):
"""
Calculate the 4 bytes that the HM devices use in their internal messages to
address each other.
"""
bcd = int(str(s)[-8:], base=16)
return struct.pack('>L', bcd)
def ser_to_esb_addr(s):
"""
Convert a Hoymiles inverter/DTU serial number into its
corresponding NRF24 'enhanced shockburst' address byte sequence (5 bytes).
The NRF library expects these in LSB to MSB order, even though the transceiver
itself will then output them in MSB-to-LSB order over the air.
The inverters use a BCD representation of the last 8
digits of their serial number, in reverse byte order,
followed by \x01.
"""
air_order = ser_to_hm_addr(s)[::-1] + b'\x01'
return air_order[::-1]
def compose_0x80_msg(dst_ser_no=72220200, src_ser_no=72220200, ts=None):
"""
Create a valid 0x80 request with the given parameters, and containing the
current system time.
"""
if not ts:
ts = 0x623C8ECF # identical to fc22's for testing # doc: 1644758171
# "framing"
p = b''
p = p + b'\x15'
p = p + ser_to_hm_addr(dst_ser_no)
p = p + ser_to_hm_addr(src_ser_no)
p = p + b'\x80'
# encapsulated payload
pp = b'\x0b\x00'
pp = pp + struct.pack('>L', ts) # big-endian: msb at low address
#pp = pp + b'\x00' * 8 # of22 adds a \x05 at position 19
pp = pp + b'\x00\x00\x00\x05\x00\x00\x00\x00'
# CRC_M
crc_m = f_crc_m(pp)
p = p + pp
p = p + struct.pack('>H', crc_m)
crc8 = f_crc8(p)
p = p + struct.pack('B', crc8)
return p
def print_addr(a):
print(f"ser# {a} ", end='')
print(f" -> HM {' '.join([f'{x:02x}' for x in ser_to_hm_addr(a)])}", end='')
print(f" -> ESB {' '.join([f'{x:02x}' for x in ser_to_esb_addr(a)])}")
# time of last transmission - to calculcate response time
t_last_tx = 0
def on_receive(p, ch_rx=None, ch_tx=None):
"""
Callback: get's invoked whenever a packet has been received.
:param p: Payload of the received packet.
"""
d = {}
t_now_ns = time.monotonic_ns()
ts = datetime.utcnow()
ts_unixtime = ts.timestamp()
d['ts_unixtime'] = ts_unixtime
d['isodate'] = ts.isoformat()
d['rawdata'] = " ".join([f"{b:02x}" for b in p])
print(ts.isoformat(), end='Z ')
# check crc8
crc8 = f_crc8(p[:-1])
d['crc8_valid'] = True if crc8==p[-1] else False
# interpret content
mid = p[0]
d['mid'] = mid
d['response_time_ns'] = t_now_ns-t_last_tx
d['ch_rx'] = ch_rx
d['ch_tx'] = ch_tx
d['src'] = 'src_unkn'
d['name'] = 'name_unkn'
if mid == 0x95:
src, dst, cmd = struct.unpack('>LLB', p[1:10])
d['src'] = f'{src:08x}'
d['dst'] = f'{dst:08x}'
d['cmd'] = cmd
print(f'MSG src={d["src"]}, dst={d["dst"]}, cmd={d["cmd"]}:')
if cmd==1:
d['name'] = 'dcdata'
unknown1, u1, i1, p1, u2, i2, p2, unknown2 = struct.unpack(
'>HHHHHHHH', p[10:26])
d['u1_V'] = u1/10
d['i1_A'] = i1/100
d['p1_W'] = p1/10
d['u2_V'] = u2/10
d['i2_A'] = i2/100
d['p2_W'] = p2/10
d['p_W'] = d['p1_W']+d['p2_W']
d['unknown1'] = unknown1
d['unknown2'] = unknown2
elif cmd==2:
d['name'] = 'acdata'
uk1, uk2, uk3, uk4, uk5, u, f, p = struct.unpack(
'>HHHHHHHH', p[10:26])
d['u_V'] = u/10
d['f_Hz'] = f/100
d['p_W'] = p/10
d['wtot1_Wh'] = uk1
d['wtot2_Wh'] = uk3
d['wday1_Wh'] = uk4
d['wday2_Wh'] = uk5
d['uk2'] = uk2
elif cmd==129:
d['name'] = 'error'
elif cmd==131: # 0x83
d['name'] = 'statedata'
uk1, l, uk3, t, uk5, uk6 = struct.unpack('>HHHHHH', p[10:22])
d['l_Pct'] = l
d['t_C'] = t/10
d['uk1'] = uk1
d['uk3'] = uk3
d['uk5'] = uk5
d['uk6'] = uk6
elif cmd==132: # 0x84
d['name'] = 'unknown0x84'
uk1, uk2, uk3, uk4, uk5, uk6, uk7, uk8 = struct.unpack(
'>HHHHHHHH', p[10:26])
d['uk1'] = uk1
d['uk2'] = uk2
d['uk3'] = uk3
d['uk4'] = uk4
d['uk5'] = uk5
d['uk6'] = uk6
d['uk7'] = uk7
d['uk8'] = uk8
else:
print(f'unknown cmd {cmd}')
else:
print(f'unknown frame id {p[0]}')
# output to stdout
if d:
print(json.dumps(d))
# output to MQTT
if d:
j = json.dumps(d)
mqtt_client.publish(f"ahoy/{d['src']}/{d['name']}", j)
if d['cmd']==2:
mqtt_client.publish(f'ahoy/{d["src"]}/emeter/0/voltage', d['u_V'])
mqtt_client.publish(f'ahoy/{d["src"]}/emeter/0/power', d['p_W'])
mqtt_client.publish(f'ahoy/{d["src"]}/emeter/0/total', d['wtot1_Wh'])
mqtt_client.publish(f'ahoy/{d["src"]}/frequency', d['f_Hz'])
if d['cmd']==1:
mqtt_client.publish(f'ahoy/{d["src"]}/emeter-dc/0/power', d['p1_W'])
mqtt_client.publish(f'ahoy/{d["src"]}/emeter-dc/0/voltage', d['u1_V'])
mqtt_client.publish(f'ahoy/{d["src"]}/emeter-dc/0/current', d['i1_A'])
mqtt_client.publish(f'ahoy/{d["src"]}/emeter-dc/1/power', d['p2_W'])
mqtt_client.publish(f'ahoy/{d["src"]}/emeter-dc/1/voltage', d['u2_V'])
mqtt_client.publish(f'ahoy/{d["src"]}/emeter-dc/1/current', d['i2_A'])
if d['cmd']==131:
mqtt_client.publish(f'ahoy/{d["src"]}/temperature', d['t_C'])
def main_loop():
"""
Keep receiving on channel 3. Every once in a while, transmit a request
to one of our inverters on channel 40.
"""
global t_last_tx
print_addr(inv_ser)
print_addr(dtu_ser)
ctr = 1
last_tx_message = ''
ts = int(time.time()) # see what happens if we always send one and the same (constant) time!
rx_channels = [3,23,61,75]
rx_channel_id = 0
rx_channel = rx_channels[rx_channel_id]
tx_channels = [40]
tx_channel_id = 0
tx_channel = tx_channels[tx_channel_id]
while True:
# Sweep receive start channel
rx_channel_id = ctr % len(rx_channels)
rx_channel = rx_channels[rx_channel_id]
radio.setChannel(rx_channel)
radio.enableDynamicPayloads()
radio.setAutoAck(False)
radio.setPALevel(RF24_PA_MAX)
radio.setDataRate(RF24_250KBPS)
radio.openWritingPipe(ser_to_esb_addr(inv_ser))
radio.flush_rx()
radio.flush_tx()
radio.openReadingPipe(1,ser_to_esb_addr(dtu_ser))
radio.startListening()
tx_channel_id = tx_channel_id + 1
if tx_channel_id >= len(tx_channels):
tx_channel_id = 0
tx_channel = tx_channels[tx_channel_id]
#
# TX
#
radio.stopListening() # put radio in TX mode
radio.setChannel(tx_channel)
radio.openWritingPipe(ser_to_esb_addr(inv_ser))
ts = int(time.time())
payload = compose_0x80_msg(src_ser_no=dtu_ser, dst_ser_no=inv_ser, ts=ts)
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
last_tx_message = f"{dt} Transmit {ctr:5d}: channel={tx_channel} len={len(payload)} | " + \
" ".join([f"{b:02x}" for b in payload]) + f" rx_ch: {rx_channel}"
print(last_tx_message)
# for i in range(0,3):
result = radio.write(payload) # will always yield 'True' because auto-ack is disabled
# time.sleep(.05)
t_last_tx = time.monotonic_ns()
ctr = ctr + 1
t_end = time.monotonic_ns()+5e9
tslots = [1000] #, 40, 50, 60, 70] # switch channel at these ms times since transmission
for tslot in tslots:
t_end = t_last_tx + tslot*1e6 # ms to ns
radio.stopListening()
radio.setChannel(rx_channel)
radio.startListening()
while time.monotonic_ns() < t_end:
has_payload, pipe_number = radio.available_pipe()
if has_payload:
size = radio.getDynamicPayloadSize()
payload = radio.read(size)
# print(last_tx_message, end='')
last_tx_message = ''
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
print(f"{dt} Received {size} bytes on channel {rx_channel} pipe {pipe_number}: " +
" ".join([f"{b:02x}" for b in payload]))
on_receive(payload, ch_rx=rx_channel, ch_tx=tx_channel)
else:
pass
# time.sleep(0.001)
rx_channel_id = rx_channel_id + 1
if rx_channel_id >= len(rx_channels):
rx_channel_id = 0
rx_channel = rx_channels[rx_channel_id]
print(flush=True, end='')
# time.sleep(2)
if __name__ == "__main__":
if not radio.begin():
raise RuntimeError("radio hardware is not responding")
radio.setPALevel(RF24_PA_LOW) # RF24_PA_MAX is default
# radio.printDetails(); # (smaller) function that prints raw register values
# radio.printPrettyDetails(); # (larger) function that prints human readable data
try:
main_loop()
except KeyboardInterrupt:
print(" Keyboard Interrupt detected. Exiting...")
radio.powerDown()
sys.exit()

27
tools/rpi/ahoy.yml.example

@ -0,0 +1,27 @@
---
ahoy:
interval: 0
sunset: true
# List of available NRF24 transceivers
nrf:
- ce_pin: 22
cs_pin: 0
mqtt:
disabled: false
host: example-broker.local
port: 1883
user: 'username'
password: 'password'
dtu:
serial: 99978563001
inverters:
- name: 'balkon'
serial: 114172220003
mqtt:
send_raw_enabled: false # allow inject debug data via mqtt
topic: 'hoymiles/114172221234' # defaults to 'hoymiles/{serial}'

4270
tools/rpi/example-logs/example.log

File diff suppressed because it is too large

661
tools/rpi/hoymiles/__init__.py

@ -0,0 +1,661 @@
import struct
import crcmod
import json
import time
import re
from datetime import datetime
from RF24 import RF24, RF24_PA_LOW, RF24_PA_MAX, RF24_250KBPS, RF24_CRC_DISABLED, RF24_CRC_8, RF24_CRC_16
from .decoders import *
f_crc_m = crcmod.predefined.mkPredefinedCrcFun('modbus')
f_crc8 = crcmod.mkCrcFun(0x101, initCrc=0, xorOut=0)
HOYMILES_TRANSACTION_LOGGING=False
HOYMILES_DEBUG_LOGGING=False
def ser_to_hm_addr(s):
"""
Calculate the 4 bytes that the HM devices use in their internal messages to
address each other.
:param str s: inverter serial
:return: inverter address
:rtype: bytes
"""
bcd = int(str(s)[-8:], base=16)
return struct.pack('>L', bcd)
def ser_to_esb_addr(s):
"""
Convert a Hoymiles inverter/DTU serial number into its
corresponding NRF24 'enhanced shockburst' address byte sequence (5 bytes).
The NRF library expects these in LSB to MSB order, even though the transceiver
itself will then output them in MSB-to-LSB order over the air.
The inverters use a BCD representation of the last 8
digits of their serial number, in reverse byte order,
followed by \x01.
:param str s: inverter serial
:return: ESB inverter address
:rtype: bytes
"""
air_order = ser_to_hm_addr(s)[::-1] + b'\x01'
return air_order[::-1]
def print_addr(a):
"""
Debug print addresses
:param str a: inverter serial
"""
print(f"ser# {a} ", end='')
print(f" -> HM {' '.join([f'{x:02x}' for x in ser_to_hm_addr(a)])}", end='')
print(f" -> ESB {' '.join([f'{x:02x}' for x in ser_to_esb_addr(a)])}")
# time of last transmission - to calculcate response time
t_last_tx = 0
class ResponseDecoderFactory:
"""
Prepare payload decoder
:param bytes response: ESB response frame to decode
:param request: ESB request frame
:type request: bytes
:param inverter_ser: inverter serial
:type inverter_ser: str
"""
model = None
request = None
response = None
def __init__(self, response, **params):
self.response = response
if 'request' in params:
self.request = params['request']
elif hasattr(response, 'request'):
self.request = response.request
if 'inverter_ser' in params:
self.inverter_ser = params['inverter_ser']
self.model = self.inverter_model
def unpack(self, fmt, base):
"""
Data unpack helper
:param str fmt: struct format string
:param int base: unpack base position from self.response bytes
:return: unpacked values
:rtype: tuple
"""
size = struct.calcsize(fmt)
return struct.unpack(fmt, self.response[base:base+size])
@property
def inverter_model(self):
"""
Find decoder for inverter model
:return: suitable decoder model string
:rtype: str
:raises ValueError: on invalid inverter serial
:raises NotImplementedError: if inverter model can not be determined
"""
if not self.inverter_ser:
raise ValueError('Inverter serial while decoding response')
ser_db = [
('HM300', r'^1121........'),
('HM600', r'^1141........'),
('HM1200', r'^1161........'),
]
ser_str = str(self.inverter_ser)
model = None
for m, r in ser_db:
if re.match(r, ser_str):
model = m
break
if len(model):
return model
raise NotImplementedError('Model lookup failed for serial {ser_str}')
@property
def request_command(self):
"""
Return requested command identifier byte
:return: hexlified command byte string
:rtype: str
"""
r_code = self.request[10]
return f'{r_code:02x}'
class ResponseDecoder(ResponseDecoderFactory):
"""
Base response
:param bytes response: ESB frame response
"""
def __init__(self, response, **params):
"""Initialize ResponseDecoder"""
ResponseDecoderFactory.__init__(self, response, **params)
def decode(self):
"""
Decode Payload
:return: payload decoder instance
:rtype: object
"""
model = self.inverter_model
command = self.request_command
model_decoders = __import__(f'hoymiles.decoders')
if hasattr(model_decoders, f'{model}_Decode{command.upper()}'):
device = getattr(model_decoders, f'{model}_Decode{command.upper()}')
else:
if HOYMILES_DEBUG_LOGGING:
device = getattr(model_decoders, f'DEBUG_DecodeAny')
return device(self.response)
class InverterPacketFragment:
"""ESB Frame"""
def __init__(self, time_rx=None, payload=None, ch_rx=None, ch_tx=None, **params):
"""
Callback: get's invoked whenever a Nordic ESB packet has been received.
:param time_rx: datetime when frame was received
:type time_rx: datetime
:param payload: payload bytes
:type payload: bytes
:param ch_rx: channel where packet was received
:type ch_rx: int
:param ch_tx: channel where request was sent
:type ch_tx: int
"""
if not time_rx:
time_rx = datetime.now()
self.time_rx = time_rx
self.frame = payload
# check crc8
if f_crc8(payload[:-1]) != payload[-1]:
raise BufferError('Frame kaputt')
self.ch_rx = ch_rx
self.ch_tx = ch_tx
@property
def mid(self):
"""Transaction counter"""
return self.frame[0]
@property
def src(self):
"""
Sender adddress
:return: sender address
:rtype: int
"""
src = struct.unpack('>L', self.frame[1:5])
return src[0]
@property
def dst(self):
"""
Receiver adddress
:return: receiver address
:rtype: int
"""
dst = struct.unpack('>L', self.frame[5:8])
return dst[0]
@property
def seq(self):
"""
Framne sequence number
:return: sequence number
:rtype: int
"""
result = struct.unpack('>B', self.frame[9:10])
return result[0]
@property
def data(self):
"""
Data without protocol framing
:return: payload chunk
:rtype: bytes
"""
return self.frame[10:-1]
def __str__(self):
"""
Represent received ESB frame
:return: log line received frame
:rtype: str
"""
dt = self.time_rx.strftime("%Y-%m-%d %H:%M:%S.%f")
size = len(self.frame)
channel = f' channel {self.ch_rx}' if self.ch_rx else ''
raw = " ".join([f"{b:02x}" for b in self.frame])
return f"{dt} Received {size} bytes{channel}: {raw}"
class HoymilesNRF:
"""Hoymiles NRF24 Interface"""
tx_channel_id = 0
tx_channel_list = [40]
rx_channel_id = 0
rx_channel_list = [3,23,40,61,75]
rx_channel_ack = False
rx_error = 0
def __init__(self, device):
"""
Claim radio device
:param NRF24 device: instance of NRF24
"""
self.radio = device
def transmit(self, packet):
"""
Transmit Packet
:param bytes packet: buffer to send
:return: if ACK received of ACK disabled
:rtype: bool
"""
inv_esb_addr = b'\01' + packet[1:5]
dtu_esb_addr = b'\01' + packet[5:9]
self.radio.stopListening() # put radio in TX mode
self.radio.setDataRate(RF24_250KBPS)
#self.radio.setPALevel(RF24_PA_LOW)
self.radio.openReadingPipe(1,dtu_esb_addr)
self.radio.openWritingPipe(inv_esb_addr)
self.radio.setChannel(self.tx_channel)
self.radio.setAutoAck(True)
self.radio.setRetries(3, 15)
self.radio.setCRCLength(RF24_CRC_16)
self.radio.enableDynamicPayloads()
return self.radio.write(packet)
def receive(self, timeout=None):
"""
Receive Packets
:param timeout: receive timeout in nanoseconds (default: 12e8)
:type timeout: int
:yields: fragment
"""
if not timeout:
timeout=12e8
self.radio.setChannel(self.rx_channel)
self.radio.setAutoAck(False)
self.radio.setRetries(0, 0)
self.radio.enableDynamicPayloads()
self.radio.setCRCLength(RF24_CRC_16)
self.radio.startListening()
fragments = []
# Receive: Loop
t_end = time.monotonic_ns()+timeout
while time.monotonic_ns() < t_end:
has_payload, pipe_number = self.radio.available_pipe()
if has_payload:
# Data in nRF24 buffer, read it
self.rx_error = 0
self.rx_channel_ack = True
t_end = time.monotonic_ns()+5e8
size = self.radio.getDynamicPayloadSize()
payload = self.radio.read(size)
fragment = InverterPacketFragment(
payload=payload,
ch_rx=self.rx_channel, ch_tx=self.tx_channel,
time_rx=datetime.now()
)
yield(fragment)
else:
# No data in nRF rx buffer, search and wait
# Channel lock in (not currently used)
self.rx_error = self.rx_error + 1
if self.rx_error > 1:
self.rx_channel_ack = False
# Channel hopping
if self.next_rx_channel():
self.radio.stopListening()
self.radio.setChannel(self.rx_channel)
self.radio.startListening()
time.sleep(0.005)
def next_rx_channel(self):
"""
Select next channel from hop list
- if hopping enabled
- if channel has no ack
:return: if new channel selected
:rtype: bool
"""
if not self.rx_channel_ack:
self.rx_channel_id = self.rx_channel_id + 1
if self.rx_channel_id >= len(self.rx_channel_list):
self.rx_channel_id = 0
return True
return False
@property
def tx_channel(self):
"""
Get current tx channel
:return: tx_channel
:rtype: int
"""
return self.tx_channel_list[self.tx_channel_id]
@property
def rx_channel(self):
"""
Get current rx channel
:return: rx_channel
:rtype: int
"""
return self.rx_channel_list[self.rx_channel_id]
def frame_payload(payload):
"""
Prepare payload for transmission, append Modbus CRC16
:param bytes payload: payload to be prepared
:return: payload + crc
:rtype: bytes
"""
payload_crc = f_crc_m(payload)
payload = payload + struct.pack('>H', payload_crc)
return payload
def compose_esb_fragment(fragment, seq=b'\80', src=99999999, dst=1, **params):
"""
Build standart ESB request fragment
:param bytes fragment: up to 16 bytes payload chunk
:param seq: frame sequence byte
:type seq: bytes
:param src: dtu address
:type src: int
:param dst: inverter address
:type dst: int
:return: esb frame fragment
:rtype: bytes
:raises ValueError: if fragment size larger 16 byte
"""
if len(fragment) > 17:
raise ValueError(f'ESB fragment exeeds mtu ({mtu}): Fragment size {len(fragment)} bytes')
p = b''
p = p + b'\x15'
p = p + ser_to_hm_addr(dst)
p = p + ser_to_hm_addr(src)
p = p + seq
p = p + fragment
crc8 = f_crc8(p)
p = p + struct.pack('B', crc8)
return p
def compose_esb_packet(packet, mtu=17, **params):
"""
Build ESB packet, chunk packet
:param bytes packet: payload data
:param mtu: maximum transmission unit per frame (default: 17)
:type mtu: int
:yields: fragment
"""
for i in range(0, len(packet), mtu):
fragment = compose_esb_fragment(packet[i:i+mtu], **params)
yield(fragment)
def compose_set_time_payload(timestamp=None):
"""
Build set time request packet
:param timestamp: time to set (default: int(time.time()) )
:type timestamp: int
:return: payload
:rtype: bytes
"""
if not timestamp:
timestamp = int(time.time())
payload = b'\x0b\x00'
payload = payload + struct.pack('>L', timestamp) # big-endian: msb at low address
payload = payload + b'\x00\x00\x00\x05\x00\x00\x00\x00'
return frame_payload(payload)
class InverterTransaction:
"""
Inverter transaction buffer, implements transport-layer functions while
communicating with Hoymiles inverters
"""
tx_queue = []
scratch = []
inverter_ser = None
inverter_addr = None
dtu_ser = None
req_type = None
radio = None
def __init__(self,
request_time=None,
inverter_ser=None,
dtu_ser=None,
radio=None,
**params):
"""
:param request: Transmit ESB packet
:type request: bytes
:param request_time: datetime of transmission
:type request_time: datetime
:param inverter_ser: inverter serial
:type inverter_ser: str
:param dtu_ser: DTU serial
:type dtu_ser: str
:param radio: HoymilesNRF instance to use
:type radio: HoymilesNRF or None
"""
if radio:
self.radio = radio
if not request_time:
request_time=datetime.now()
self.scratch = []
if 'scratch' in params:
self.scratch = params['scratch']
self.inverter_ser = inverter_ser
if inverter_ser:
self.inverter_addr = ser_to_hm_addr(inverter_ser)
self.dtu_ser = dtu_ser
if dtu_ser:
self.dtu_addr = ser_to_hm_addr(dtu_ser)
self.request = None
if 'request' in params:
self.request = params['request']
self.queue_tx(self.request)
self.inverter_addr, self.dtu_addr, seq, self.req_type = struct.unpack('>LLBB', params['request'][1:11])
self.request_time = request_time
def rxtx(self):
"""
Transmit next packet from tx_queue if available
and wait for responses
:return: if we got contact
:rtype: bool
"""
if not self.radio:
return False
if not len(self.tx_queue):
return False
packet = self.tx_queue.pop(0)
if HOYMILES_TRANSACTION_LOGGING:
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
print(f'{dt} Transmit {len(packet)} | {hexify_payload(packet)}')
self.radio.transmit(packet)
wait = False
try:
for response in self.radio.receive():
if HOYMILES_TRANSACTION_LOGGING:
print(response)
self.frame_append(response)
wait = True
except TimeoutError:
pass
return wait
def frame_append(self, frame):
"""
Append received raw frame to local scratch buffer
:param bytes frame: Received ESB frame
:return None
"""
self.scratch.append(frame)
def queue_tx(self, frame):
"""
Enqueue packet for transmission if radio is available
:param bytes frame: ESB frame for transmit
:return: if radio is available and frame scheduled
:rtype: bool
"""
if not self.radio:
return False
self.tx_queue.append(frame)
return True
def get_payload(self, src=None):
"""
Reconstruct Hoymiles payload from scratch buffer
:param src: filter frames by inverter hm_address (default self.inverter_address)
:type src: bytes
:return: payload
:rtype: bytes
:raises BufferError: if one or more frames are missing
:raises ValueError: if assambled payload fails CRC check
"""
if not src:
src = self.inverter_addr
# Collect all frames from source_address src
frames = [frame for frame in self.scratch if frame.src == src]
tr_len = 0
# Find end frame and extract message frame count
try:
end_frame = next(frame for frame in frames if frame.seq > 0x80)
self.time_rx = end_frame.time_rx
tr_len = end_frame.seq - 0x80
except StopIteration:
raise BufferError(f'Missing packet: Last packet {len(self.scratch)}')
# Rebuild payload from unordered frames
payload = b''
for frame_id in range(1, tr_len):
try:
data_frame = next(item for item in frames if item.seq == frame_id)
payload = payload + data_frame.data
except StopIteration:
self.__retransmit_frame(frame_id)
raise BufferError(f'Frame {frame_id} missing: Request Retransmit')
payload = payload + end_frame.data
# check crc
pcrc = struct.unpack('>H', payload[-2:])[0]
if f_crc_m(payload[:-2]) != pcrc:
raise ValueError('Payload failed CRC check.')
return payload
def __retransmit_frame(self, frame_id):
"""
Build and queue retransmit request
:param int frame_id: frame id to re-schedule
:return: if successful scheduled
:rtype: bool
"""
packet = compose_esb_fragment(b'',
seq=int(0x80 + frame_id).to_bytes(1, 'big'),
src=self.dtu_ser,
dst=self.inverter_ser)
return self.queue_tx(packet)
def __str__(self):
"""
Represent transmit payload
:return: log line of payload for transmission
:rtype: str
"""
dt = self.request_time.strftime("%Y-%m-%d %H:%M:%S.%f")
size = len(self.request)
return f'{dt} Transmit | {hexify_payload(self.request)}'
def hexify_payload(byte_var):
"""
Represent bytes
:param bytes byte_var: bytes to be hexlified
:return: two-byte while-space padded byte representation
:rtype: str
"""
return ' '.join([f"{b:02x}" for b in byte_var])

261
tools/rpi/hoymiles/__main__.py

@ -0,0 +1,261 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import sys
import struct
import re
import time
from datetime import datetime
import argparse
import hoymiles
from RF24 import RF24, RF24_PA_LOW, RF24_PA_MAX, RF24_250KBPS, RF24_CRC_DISABLED, RF24_CRC_8, RF24_CRC_16
import paho.mqtt.client
import yaml
from yaml.loader import SafeLoader
def main_loop():
"""Main loop"""
inverters = [
inverter for inverter in ahoy_config.get('inverters', [])
if not inverter.get('disabled', False)]
for inverter in inverters:
if hoymiles.HOYMILES_DEBUG_LOGGING:
print(f'Poll inverter {inverter["serial"]}')
poll_inverter(inverter)
def poll_inverter(inverter, retries=4):
"""
Send/Receive command_queue, initiate status poll on inverter
:param str inverter: inverter serial
:param retries: tx retry count if no inverter contact
:type retries: int
"""
inverter_ser = inverter.get('serial')
dtu_ser = ahoy_config.get('dtu', {}).get('serial')
# Queue at least status data request
command_queue[str(inverter_ser)].append(hoymiles.compose_set_time_payload())
# Putt all queued commands for current inverter on air
while len(command_queue[str(inverter_ser)]) > 0:
payload = command_queue[str(inverter_ser)].pop(0)
# Send payload {ttl}-times until we get at least one reponse
payload_ttl = retries
while payload_ttl > 0:
payload_ttl = payload_ttl - 1
com = hoymiles.InverterTransaction(
radio=hmradio,
dtu_ser=dtu_ser,
inverter_ser=inverter_ser,
request=next(hoymiles.compose_esb_packet(
payload,
seq=b'\x80',
src=dtu_ser,
dst=inverter_ser
)))
response = None
while com.rxtx():
try:
response = com.get_payload()
payload_ttl = 0
except Exception as e:
print(f'Error while retrieving data: {e}')
pass
# Handle the response data if any
if response:
dt = datetime.now()
print(f'{dt} Payload: ' + hoymiles.hexify_payload(response))
decoder = hoymiles.ResponseDecoder(response,
request=com.request,
inverter_ser=inverter_ser
)
result = decoder.decode()
if isinstance(result, hoymiles.decoders.StatusResponse):
data = result.__dict__()
if hoymiles.HOYMILES_DEBUG_LOGGING:
print(f'{dt} Decoded: {data["temperature"]}', end='')
phase_id = 0
for phase in data['phases']:
print(f' phase{phase_id}=voltage:{phase["voltage"]}, current:{phase["current"]}, power:{phase["power"]}, frequency:{data["frequency"]}', end='')
phase_id = phase_id + 1
string_id = 0
for string in data['strings']:
print(f' string{string_id}=voltage:{string["voltage"]}, current:{string["current"]}, power:{string["power"]}, total:{string["energy_total"]/1000}, daily:{string["energy_daily"]}', end='')
string_id = string_id + 1
print()
if mqtt_client:
mqtt_send_status(mqtt_client, inverter_ser, data,
topic=inverter.get('mqtt', {}).get('topic', None))
def mqtt_send_status(broker, inverter_ser, data, topic=None):
"""
Publish StatusResponse object
:param paho.mqtt.client.Client broker: mqtt-client instance
:param str inverter_ser: inverter serial
:param hoymiles.StatusResponse data: decoded inverter StatusResponse
:param topic: custom mqtt topic prefix (default: hoymiles/{inverter_ser})
:type topic: str
"""
if not topic:
topic = f'hoymiles/{inverter_ser}'
# AC Data
phase_id = 0
for phase in data['phases']:
broker.publish(f'{topic}/emeter/{phase_id}/power', phase['power'])
broker.publish(f'{topic}/emeter/{phase_id}/voltage', phase['voltage'])
broker.publish(f'{topic}/emeter/{phase_id}/current', phase['current'])
phase_id = phase_id + 1
# DC Data
string_id = 0
for string in data['strings']:
broker.publish(f'{topic}/emeter-dc/{string_id}/total', string['energy_total']/1000)
broker.publish(f'{topic}/emeter-dc/{string_id}/power', string['power'])
broker.publish(f'{topic}/emeter-dc/{string_id}/voltage', string['voltage'])
broker.publish(f'{topic}/emeter-dc/{string_id}/current', string['current'])
string_id = string_id + 1
# Global
broker.publish(f'{topic}/frequency', data['frequency'])
broker.publish(f'{topic}/temperature', data['temperature'])
def mqtt_on_command(client, userdata, message):
"""
Handle commands to topic
hoymiles/{inverter_ser}/command
frame a payload and put onto command_queue
Inverters must have mqtt.send_raw_enabled: true configured
This can be used to inject debug payloads
The message must be in hexlified format
Use of variables:
tttttttt gets expanded to a current int(time)
Example injects exactly the same as we normally use to poll data:
mosquitto -h broker -t inverter_topic/command -m 800b00tttttttt0000000500000000
This allows for even faster hacking during runtime
:param paho.mqtt.client.Client client: mqtt-client instance
:param dict userdata: Userdata
:param dict message: mqtt-client message object
"""
try:
inverter_ser = next(
item[0] for item in mqtt_command_topic_subs if item[1] == message.topic)
except StopIteration:
print('Unexpedtedly received mqtt message for {message.topic}')
if inverter_ser:
p_message = message.payload.decode('utf-8').lower()
# Expand tttttttt to current time for use in hexlified payload
expand_time = ''.join(f'{b:02x}' for b in struct.pack('>L', int(time.time())))
p_message = p_message.replace('tttttttt', expand_time)
if (len(p_message) < 2048 \
and len(p_message) % 2 == 0 \
and re.match(r'^[a-f0-9]+$', p_message)):
payload = bytes.fromhex(p_message)
# commands must start with \x80
if payload[0] == 0x80:
command_queue[str(inverter_ser)].append(
hoymiles.frame_payload(payload[1:]))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Ahoy - Hoymiles solar inverter gateway', prog="hoymiles")
parser.add_argument("-c", "--config-file", nargs="?", required=True,
help="configuration file")
parser.add_argument("--log-transactions", action="store_true", default=False,
help="Enable transaction logging output")
parser.add_argument("--verbose", action="store_true", default=False,
help="Enable debug output")
global_config = parser.parse_args()
# Load ahoy.yml config file
try:
if isinstance(global_config.config_file, str) == True:
with open(global_config.config_file, 'r') as yf:
cfg = yaml.load(yf, Loader=SafeLoader)
else:
with open('ahoy.yml', 'r') as yf:
cfg = yaml.load(yf, Loader=SafeLoader)
except FileNotFoundError:
print("Could not load config file. Try --help")
sys.exit(2)
except yaml.YAMLError as ye:
print('Failed to load config frile {global_config.config_file}: {ye}')
sys.exit(1)
ahoy_config = dict(cfg.get('ahoy', {}))
# Prepare for multiple transceivers, makes them configurable (currently
# only one supported)
for radio_config in ahoy_config.get('nrf', [{}]):
radio = RF24(
radio_config.get('ce_pin', 22),
radio_config.get('cs_pin', 0),
radio_config.get('spispeed', 1000000))
hmradio = hoymiles.HoymilesNRF(device=radio)
mqtt_client = None
command_queue = {}
mqtt_command_topic_subs = []
if global_config.log_transactions:
hoymiles.HOYMILES_TRANSACTION_LOGGING=True
if global_config.verbose:
hoymiles.HOYMILES_DEBUG_LOGGING=True
mqtt_config = ahoy_config.get('mqtt', [])
if not mqtt_config.get('disabled', False):
mqtt_client = paho.mqtt.client.Client()
mqtt_client.username_pw_set(mqtt_config.get('user', None), mqtt_config.get('password', None))
mqtt_client.connect(mqtt_config.get('host', '127.0.0.1'), mqtt_config.get('port', 1883))
mqtt_client.loop_start()
mqtt_client.on_message = mqtt_on_command
if not radio.begin():
raise RuntimeError('Can\'t open radio')
inverters = [inverter.get('serial') for inverter in ahoy_config.get('inverters', [])]
for inverter in ahoy_config.get('inverters', []):
inverter_ser = inverter.get('serial')
command_queue[str(inverter_ser)] = []
#
# Enables and subscribe inverter to mqtt /command-Topic
#
if mqtt_client and inverter.get('mqtt', {}).get('send_raw_enabled', False):
topic_item = (
str(inverter_ser),
inverter.get('mqtt', {}).get('topic', f'hoymiles/{inverter_ser}') + '/command'
)
mqtt_client.subscribe(topic_item[1])
mqtt_command_topic_subs.append(topic_item)
loop_interval = ahoy_config.get('interval', 1)
try:
while True:
t_loop_start = time.time()
main_loop()
print('', end='', flush=True)
if loop_interval > 0 and (time.time() - t_loop_start) < loop_interval:
time.sleep(time.time() % loop_interval)
except KeyboardInterrupt:
radio.powerDown()
sys.exit()

587
tools/rpi/hoymiles/decoders/__init__.py

@ -0,0 +1,587 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import struct
import crcmod
from datetime import timedelta
f_crc_m = crcmod.predefined.mkPredefinedCrcFun('modbus')
class StatusResponse:
"""Inverter StatusResponse object"""
e_keys = ['voltage','current','power','energy_total','energy_daily']
def unpack(self, fmt, base):
"""
Data unpack helper
:param str fmt: struct format string
:param int base: unpack base position from self.response bytes
:return: unpacked values
:rtype: tuple
"""
size = struct.calcsize(fmt)
return struct.unpack(fmt, self.response[base:base+size])
@property
def phases(self):
"""
AC power data
:retrun: list of dict's
:rtype: list
"""
phases = []
p_exists = True
while p_exists:
p_exists = False
phase_id = len(phases)
phase = {}
for key in self.e_keys:
prop = f'ac_{key}_{phase_id}'
if hasattr(self, prop):
p_exists = True
phase[key] = getattr(self, prop)
if p_exists:
phases.append(phase)
return phases
@property
def strings(self):
"""
DC PV-string data
:retrun: list of dict's
:rtype: list
"""
strings = []
s_exists = True
while s_exists:
s_exists = False
string_id = len(strings)
string = {}
for key in self.e_keys:
prop = f'dc_{key}_{string_id}'
if hasattr(self, prop):
s_exists = True
string[key] = getattr(self, prop)
if s_exists:
strings.append(string)
return strings
def __dict__(self):
"""
Get all known data
:return: dict of properties
:rtype: dict
"""
data = {}
data['phases'] = self.phases
data['strings'] = self.strings
data['temperature'] = self.temperature
data['frequency'] = self.frequency
return data
class UnknownResponse:
"""
Debugging helper for unknown payload format
"""
@property
def hex_ascii(self):
"""
Generate white-space separated byte representation
:return: hexlifierd byte string
:rtype: str
"""
return ' '.join([f'{b:02x}' for b in self.response])
@property
def valid_crc(self):
"""
Checks if self.response has valid Modbus CRC
:return: if crc is available and correct
:rtype: bool
"""
# check crc
pcrc = struct.unpack('>H', self.response[-2:])[0]
return f_crc_m(self.response[:-2]) == pcrc
@property
def dump_longs(self):
"""Get all data, interpreted as long"""
if len(self.response) < 5:
return None
res = self.response
r = len(res) % 16
res = res[:r*-1]
vals = None
if len(res) % 16 == 0:
n = len(res)/4
vals = struct.unpack(f'>{int(n)}L', res)
return vals
@property
def dump_longs_pad1(self):
"""Get all data, interpreted as long"""
if len(self.response) < 7:
return None
res = self.response[2:]
r = len(res) % 16
res = res[:r*-1]
vals = None
if len(res) % 16 == 0:
n = len(res)/4
vals = struct.unpack(f'>{int(n)}L', res)
return vals
@property
def dump_longs_pad2(self):
"""Get all data, interpreted as long"""
if len(self.response) < 9:
return None
res = self.response[4:]
r = len(res) % 16
res = res[:r*-1]
vals = None
if len(res) % 16 == 0:
n = len(res)/4
vals = struct.unpack(f'>{int(n)}L', res)
return vals
@property
def dump_longs_pad3(self):
"""Get all data, interpreted as long"""
if len(self.response) < 11:
return None
res = self.response[6:]
r = len(res) % 16
res = res[:r*-1]
vals = None
if len(res) % 16 == 0:
n = len(res)/4
vals = struct.unpack(f'>{int(n)}L', res)
return vals
@property
def dump_shorts(self):
"""Get all data, interpreted as short"""
if len(self.response) < 5:
return None
res = self.response
r = len(res) % 4
res = res[:r*-1]
vals = None
if len(res) % 4 == 0:
n = len(res)/2
vals = struct.unpack(f'>{int(n)}H', res)
return vals
@property
def dump_shorts_pad1(self):
"""Get all data, interpreted as short"""
if len(self.response) < 6:
return None
res = self.response[1:]
r = len(res) % 4
res = res[:r*-1]
vals = None
if len(res) % 4 == 0:
n = len(res)/2
vals = struct.unpack(f'>{int(n)}H', res)
return vals
class EventsResponse(UnknownResponse):
alarm_codes = {
1: 'Inverter start',
2: 'Producing power',
121: 'Over temperature protection',
125: 'Grid configuration parameter error',
126: 'Software error code 126',
127: 'Firmware error',
128: 'Software error code 128',
129: 'Software error code 129',
130: 'Offline',
141: 'Grid overvoltage',
142: 'Average grid overvoltage',
143: 'Grid undervoltage',
144: 'Grid overfrequency',
145: 'Grid underfrequency',
146: 'Rapid grid frequency change',
147: 'Power grid outage',
148: 'Grid disconnection',
149: 'Island detected',
205: 'Input port 1 & 2 overvoltage',
206: 'Input port 3 & 4 overvoltage',
207: 'Input port 1 & 2 undervoltage',
208: 'Input port 3 & 4 undervoltage',
209: 'Port 1 no input',
210: 'Port 2 no input',
211: 'Port 3 no input',
212: 'Port 4 no input',
213: 'PV-1 & PV-2 abnormal wiring',
214: 'PV-3 & PV-4 abnormal wiring',
215: 'PV-1 Input overvoltage',
216: 'PV-1 Input undervoltage',
217: 'PV-2 Input overvoltage',
218: 'PV-2 Input undervoltage',
219: 'PV-3 Input overvoltage',
220: 'PV-3 Input undervoltage',
221: 'PV-4 Input overvoltage',
222: 'PV-4 Input undervoltage',
301: 'Hardware error code 301',
302: 'Hardware error code 302',
303: 'Hardware error code 303',
304: 'Hardware error code 304',
305: 'Hardware error code 305',
306: 'Hardware error code 306',
307: 'Hardware error code 307',
308: 'Hardware error code 308',
309: 'Hardware error code 309',
310: 'Hardware error code 310',
311: 'Hardware error code 311',
312: 'Hardware error code 312',
313: 'Hardware error code 313',
314: 'Hardware error code 314',
5041: 'Error code-04 Port 1',
5042: 'Error code-04 Port 2',
5043: 'Error code-04 Port 3',
5044: 'Error code-04 Port 4',
5051: 'PV Input 1 Overvoltage/Undervoltage',
5052: 'PV Input 2 Overvoltage/Undervoltage',
5053: 'PV Input 3 Overvoltage/Undervoltage',
5054: 'PV Input 4 Overvoltage/Undervoltage',
5060: 'Abnormal bias',
5070: 'Over temperature protection',
5080: 'Grid Overvoltage/Undervoltage',
5090: 'Grid Overfrequency/Underfrequency',
5100: 'Island detected',
5120: 'EEPROM reading and writing error',
5150: '10 min value grid overvoltage',
5200: 'Firmware error',
8310: 'Shut down',
9000: 'Microinverter is suspected of being stolen'
}
def __init__(self, response):
self.response = response
crc_valid = self.valid_crc
if crc_valid:
print(' payload has valid modbus crc')
self.response = response[:-2]
status = self.response[:2]
chunk_size = 12
for c in range(2, len(self.response), chunk_size):
chunk = self.response[c:c+chunk_size]
print(' '.join([f'{b:02x}' for b in chunk]) + ': ')
opcode, a_code, a_count, uptime_sec = struct.unpack('>BBHH', chunk[0:6])
a_text = self.alarm_codes.get(a_code, 'N/A')
print(f' uptime={timedelta(seconds=uptime_sec)} a_count={a_count} opcode={opcode} a_code={a_code} a_text={a_text}')
for fmt in ['BBHHHHH']:
print(f' {fmt:7}: ' + str(struct.unpack('>' + fmt, chunk)))
print(end='', flush=True)
class DEBUG_DecodeAny(UnknownResponse):
"""Default decoder"""
def __init__(self, response):
"""
Try interpret and print unknown response data
:param bytes response: response payload bytes
"""
self.response = response
crc_valid = self.valid_crc
if crc_valid:
print(' payload has valid modbus crc')
self.response = response[:-2]
l_payload = len(self.response)
print(f' payload has {l_payload} bytes')
longs = self.dump_longs
if not longs:
print(' type long : unable to decode (len or not mod 4)')
else:
print(' type long : ' + str(longs))
longs = self.dump_longs_pad1
if not longs:
print(' type long pad1 : unable to decode (len or not mod 4)')
else:
print(' type long pad1 : ' + str(longs))
longs = self.dump_longs_pad2
if not longs:
print(' type long pad2 : unable to decode (len or not mod 4)')
else:
print(' type long pad2 : ' + str(longs))
longs = self.dump_longs_pad3
if not longs:
print(' type long pad3 : unable to decode (len or not mod 4)')
else:
print(' type long pad3 : ' + str(longs))
shorts = self.dump_shorts
if not shorts:
print(' type short : unable to decode (len or not mod 2)')
else:
print(' type short : ' + str(shorts))
shorts = self.dump_shorts_pad1
if not shorts:
print(' type short pad1: unable to decode (len or not mod 2)')
else:
print(' type short pad1: ' + str(shorts))
try:
if len(self.response) > 2:
print(' type utf-8 : ' + self.response.decode('utf-8'))
except UnicodeDecodeError:
print(' type utf-8 : utf-8 decode error')
try:
if len(self.response) > 2:
print(' type ascii : ' + self.response.decode('ascii'))
except UnicodeDecodeError:
print(' type ascii : ascii decode error')
# 1121-Series Intervers, 1 MPPT, 1 Phase
class HM300_Decode0B(StatusResponse):
def __init__(self, response):
self.response = response
@property
def dc_voltage_0(self):
return self.unpack('>H', 2)[0]/10
@property
def dc_current_0(self):
return self.unpack('>H', 4)[0]/100
@property
def dc_power_0(self):
return self.unpack('>H', 6)[0]/10
@property
def dc_energy_total_0(self):
return self.unpack('>L', 8)[0]
@property
def dc_energy_daily_0(self):
return self.unpack('>H', 12)[0]
@property
def ac_voltage_0(self):
return self.unpack('>H', 14)[0]/10
@property
def ac_current_0(self):
return self.unpack('>H', 22)[0]/100
@property
def ac_power_0(self):
return self.unpack('>H', 18)[0]/10
@property
def frequency(self):
return self.unpack('>H', 16)[0]/100
@property
def temperature(self):
return self.unpack('>H', 26)[0]/10
class HM300_Decode11(EventsResponse):
def __init__(self, response):
super().__init__(response)
class HM300_Decode12(EventsResponse):
def __init__(self, response):
super().__init__(response)
# 1141-Series Inverters, 2 MPPT, 1 Phase
class HM600_Decode0B(StatusResponse):
def __init__(self, response):
self.response = response
@property
def dc_voltage_0(self):
return self.unpack('>H', 2)[0]/10
@property
def dc_current_0(self):
return self.unpack('>H', 4)[0]/100
@property
def dc_power_0(self):
return self.unpack('>H', 6)[0]/10
@property
def dc_energy_total_0(self):
return self.unpack('>L', 14)[0]
@property
def dc_energy_daily_0(self):
return self.unpack('>H', 22)[0]
@property
def dc_voltage_1(self):
return self.unpack('>H', 8)[0]/10
@property
def dc_current_1(self):
return self.unpack('>H', 10)[0]/100
@property
def dc_power_1(self):
return self.unpack('>H', 12)[0]/10
@property
def dc_energy_total_1(self):
return self.unpack('>L', 18)[0]
@property
def dc_energy_daily_1(self):
return self.unpack('>H', 24)[0]
@property
def ac_voltage_0(self):
return self.unpack('>H', 26)[0]/10
@property
def ac_current_0(self):
return self.unpack('>H', 34)[0]/10
@property
def ac_power_0(self):
return self.unpack('>H', 30)[0]/10
@property
def frequency(self):
return self.unpack('>H', 28)[0]/100
@property
def temperature(self):
return self.unpack('>H', 38)[0]/10
class HM600_Decode11(EventsResponse):
def __init__(self, response):
super().__init__(response)
class HM600_Decode12(EventsResponse):
def __init__(self, response):
super().__init__(response)
# 1161-Series Inverters, 4 MPPT, 1 Phase
class HM1200_Decode0B(StatusResponse):
def __init__(self, response):
self.response = response
@property
def dc_voltage_0(self):
return self.unpack('>H', 2)[0]/10
@property
def dc_current_0(self):
return self.unpack('>H', 4)[0]/100
@property
def dc_power_0(self):
return self.unpack('>H', 8)[0]/10
@property
def dc_energy_total_0(self):
return self.unpack('>L', 12)[0]
@property
def dc_energy_daily_0(self):
return self.unpack('>H', 20)[0]
@property
def dc_voltage_1(self):
return self.unpack('>H', 2)[0]/10
@property
def dc_current_1(self):
return self.unpack('>H', 4)[0]/100
@property
def dc_power_1(self):
return self.unpack('>H', 10)[0]/10
@property
def dc_energy_total_1(self):
return self.unpack('>L', 16)[0]
@property
def dc_energy_daily_1(self):
return self.unpack('>H', 22)[0]
@property
def dc_voltage_2(self):
return self.unpack('>H', 24)[0]/10
@property
def dc_current_2(self):
return self.unpack('>H', 26)[0]/100
@property
def dc_power_2(self):
return self.unpack('>H', 30)[0]/10
@property
def dc_energy_total_2(self):
return self.unpack('>L', 34)[0]
@property
def dc_energy_daily_2(self):
return self.unpack('>H', 42)[0]
@property
def dc_voltage_3(self):
return self.unpack('>H', 24)[0]/10
@property
def dc_current_3(self):
return self.unpack('>H', 28)[0]/100
@property
def dc_power_3(self):
return self.unpack('>H', 32)[0]/10
@property
def dc_energy_total_3(self):
return self.unpack('>L', 38)[0]
@property
def dc_energy_daily_3(self):
return self.unpack('>H', 44)[0]
@property
def ac_voltage_0(self):
return self.unpack('>H', 46)[0]/10
@property
def ac_current_0(self):
return self.unpack('>H', 54)[0]/100
@property
def ac_power_0(self):
return self.unpack('>H', 50)[0]/10
@property
def frequency(self):
return self.unpack('>H', 48)[0]/100
@property
def temperature(self):
return self.unpack('>H', 58)[0]/10
class HM1200_Decode11(EventsResponse):
def __init__(self, response):
super().__init__(response)
class HM1200_Decode12(EventsResponse):
def __init__(self, response):
super().__init__(response)

5
tools/rpi/requirements.txt

@ -1,2 +1,3 @@
paho-mqtt
crcmod
paho-mqtt>=1.5
crcmod>=1.7
PyYAML>=5.0

Loading…
Cancel
Save