Browse Source

MonochromeDisplay in Display umbenannt

pull/735/head
dAjaY85 2 years ago
parent
commit
ce20d7c1b4
  1. 133
      src/app.cpp
  2. 454
      src/app.h
  3. 16
      src/plugins/Display/Display.h

133
src/app.cpp

@ -4,13 +4,14 @@
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
#include "app.h" #include "app.h"
#include <ArduinoJson.h> #include <ArduinoJson.h>
#include "utils/sun.h" #include "utils/sun.h"
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
app::app() : ah::Scheduler() {} app::app() : ah::Scheduler() {}
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
void app::setup() { void app::setup() {
Serial.begin(115200); Serial.begin(115200);
@ -24,7 +25,7 @@ void app::setup() {
mSettings.setup(); mSettings.setup();
mSettings.getPtr(mConfig); mSettings.getPtr(mConfig);
DPRINT(DBG_INFO, F("Settings valid: ")); DPRINT(DBG_INFO, F("Settings valid: "));
if(mSettings.getValid()) if (mSettings.getValid())
DBGPRINTLN(F("true")); DBGPRINTLN(F("true"));
else else
DBGPRINTLN(F("false")); DBGPRINTLN(F("false"));
@ -32,16 +33,16 @@ void app::setup() {
mSys.enableDebug(); mSys.enableDebug();
mSys.setup(mConfig->nrf.amplifierPower, mConfig->nrf.pinIrq, mConfig->nrf.pinCe, mConfig->nrf.pinCs); mSys.setup(mConfig->nrf.amplifierPower, mConfig->nrf.pinIrq, mConfig->nrf.pinCe, mConfig->nrf.pinCs);
#if defined(AP_ONLY) #if defined(AP_ONLY)
mInnerLoopCb = std::bind(&app::loopStandard, this); mInnerLoopCb = std::bind(&app::loopStandard, this);
#else #else
mInnerLoopCb = std::bind(&app::loopWifi, this); mInnerLoopCb = std::bind(&app::loopWifi, this);
#endif #endif
mWifi.setup(mConfig, &mTimestamp, std::bind(&app::onWifi, this, std::placeholders::_1)); mWifi.setup(mConfig, &mTimestamp, std::bind(&app::onWifi, this, std::placeholders::_1));
#if !defined(AP_ONLY) #if !defined(AP_ONLY)
everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL"); everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL");
#endif #endif
mSys.addInverters(&mConfig->inst); mSys.addInverters(&mConfig->inst);
@ -52,23 +53,23 @@ void app::setup() {
mMiPayload.setup(this, &mSys, &mStat, mConfig->nrf.maxRetransPerPyld, &mTimestamp); mMiPayload.setup(this, &mSys, &mStat, mConfig->nrf.maxRetransPerPyld, &mTimestamp);
mMiPayload.enableSerialDebug(mConfig->serial.debug); mMiPayload.enableSerialDebug(mConfig->serial.debug);
//DBGPRINTLN("--- after payload"); // DBGPRINTLN("--- after payload");
//DBGPRINTLN(String(ESP.getFreeHeap())); // DBGPRINTLN(String(ESP.getFreeHeap()));
//DBGPRINTLN(String(ESP.getHeapFragmentation())); // DBGPRINTLN(String(ESP.getHeapFragmentation()));
//DBGPRINTLN(String(ESP.getMaxFreeBlockSize())); // DBGPRINTLN(String(ESP.getMaxFreeBlockSize()));
if(!mSys.Radio.isChipConnected()) if (!mSys.Radio.isChipConnected())
DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring")); DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
// when WiFi is in client mode, then enable mqtt broker // when WiFi is in client mode, then enable mqtt broker
#if !defined(AP_ONLY) #if !defined(AP_ONLY)
mMqttEnabled = (mConfig->mqtt.broker[0] > 0); mMqttEnabled = (mConfig->mqtt.broker[0] > 0);
if (mMqttEnabled) { if (mMqttEnabled) {
mMqtt.setup(&mConfig->mqtt, mConfig->sys.deviceName, mVersion, &mSys, &mTimestamp); mMqtt.setup(&mConfig->mqtt, mConfig->sys.deviceName, mVersion, &mSys, &mTimestamp);
mMqtt.setSubscriptionCb(std::bind(&app::mqttSubRxCb, this, std::placeholders::_1)); mMqtt.setSubscriptionCb(std::bind(&app::mqttSubRxCb, this, std::placeholders::_1));
mPayload.addAlarmListener(std::bind(&PubMqttType::alarmEventListener, &mMqtt, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3)); mPayload.addAlarmListener(std::bind(&PubMqttType::alarmEventListener, &mMqtt, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3));
} }
#endif #endif
setupLed(); setupLed();
mWeb.setup(this, &mSys, mConfig); mWeb.setup(this, &mSys, mConfig);
@ -77,18 +78,17 @@ void app::setup() {
mApi.setup(this, &mSys, mWeb.getWebSrvPtr(), mConfig); mApi.setup(this, &mSys, mWeb.getWebSrvPtr(), mConfig);
// Plugins // Plugins
if(mConfig->plugin.display.type != 0) if (mConfig->plugin.display.type != 0)
mMonoDisplay.setup(&mConfig->plugin.display, &mSys, &mTimestamp, 0xff, mVersion); mDisplay.setup(&mConfig->plugin.display, &mSys, &mTimestamp, 0xff, mVersion);
mPubSerial.setup(mConfig, &mSys, &mTimestamp); mPubSerial.setup(mConfig, &mSys, &mTimestamp);
regularTickers(); regularTickers();
// DBGPRINTLN("--- end setup");
//DBGPRINTLN("--- end setup"); // DBGPRINTLN(String(ESP.getFreeHeap()));
//DBGPRINTLN(String(ESP.getFreeHeap())); // DBGPRINTLN(String(ESP.getHeapFragmentation()));
//DBGPRINTLN(String(ESP.getHeapFragmentation())); // DBGPRINTLN(String(ESP.getMaxFreeBlockSize()));
//DBGPRINTLN(String(ESP.getMaxFreeBlockSize()));
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
@ -115,8 +115,8 @@ void app::loopStandard(void) {
mStat.frmCnt++; mStat.frmCnt++;
Inverter<> *iv = mSys.findInverter(&p->packet[1]); Inverter<> *iv = mSys.findInverter(&p->packet[1]);
if(NULL != iv) { if (NULL != iv) {
if(IV_HM == iv->ivGen) if (IV_HM == iv->ivGen)
mPayload.add(iv, p); mPayload.add(iv, p);
else else
mMiPayload.add(iv, p); mMiPayload.add(iv, p);
@ -130,7 +130,7 @@ void app::loopStandard(void) {
mPayload.loop(); mPayload.loop();
mMiPayload.loop(); mMiPayload.loop();
if(mMqttEnabled) if (mMqttEnabled)
mMqtt.loop(); mMqtt.loop();
} }
@ -144,19 +144,18 @@ void app::loopWifi(void) {
void app::onWifi(bool gotIp) { void app::onWifi(bool gotIp) {
DPRINTLN(DBG_DEBUG, F("onWifi")); DPRINTLN(DBG_DEBUG, F("onWifi"));
ah::Scheduler::resetTicker(); ah::Scheduler::resetTicker();
regularTickers(); // reinstall regular tickers regularTickers(); // reinstall regular tickers
if (gotIp) { if (gotIp) {
mInnerLoopCb = std::bind(&app::loopStandard, this); mInnerLoopCb = std::bind(&app::loopStandard, this);
every(std::bind(&app::tickSend, this), mConfig->nrf.sendInterval, "tSend"); every(std::bind(&app::tickSend, this), mConfig->nrf.sendInterval, "tSend");
mMqttReconnect = true; mMqttReconnect = true;
mSunrise = 0; // needs to be set to 0, to reinstall sunrise and ivComm tickers! mSunrise = 0; // needs to be set to 0, to reinstall sunrise and ivComm tickers!
once(std::bind(&app::tickNtpUpdate, this), 2, "ntp2"); once(std::bind(&app::tickNtpUpdate, this), 2, "ntp2");
if(WIFI_AP == WiFi.getMode()) { if (WIFI_AP == WiFi.getMode()) {
mMqttEnabled = false; mMqttEnabled = false;
everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL"); everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL");
} }
} } else {
else {
mInnerLoopCb = std::bind(&app::loopWifi, this); mInnerLoopCb = std::bind(&app::loopWifi, this);
everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL"); everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL");
} }
@ -167,8 +166,8 @@ void app::regularTickers(void) {
DPRINTLN(DBG_DEBUG, F("regularTickers")); DPRINTLN(DBG_DEBUG, F("regularTickers"));
everySec(std::bind(&WebType::tickSecond, &mWeb), "webSc"); everySec(std::bind(&WebType::tickSecond, &mWeb), "webSc");
// Plugins // Plugins
if(mConfig->plugin.display.type != 0) if (mConfig->plugin.display.type != 0)
everySec(std::bind(&MonoDisplayType::tickerSecond, &mMonoDisplay), "disp"); everySec(std::bind(&DisplayType::tickerSecond, &mDisplay), "disp");
every(std::bind(&PubSerialType::tick, &mPubSerial), mConfig->serial.interval, "uart"); every(std::bind(&PubSerialType::tick, &mPubSerial), mConfig->serial.interval, "uart");
} }
@ -184,26 +183,26 @@ void app::tickNtpUpdate(void) {
} }
// only install schedulers once even if NTP wasn't successful in first loop // only install schedulers once even if NTP wasn't successful in first loop
if(mMqttReconnect) { // @TODO: mMqttReconnect is variable which scope has changed if (mMqttReconnect) { // @TODO: mMqttReconnect is variable which scope has changed
if(mConfig->inst.rstValsNotAvail) if (mConfig->inst.rstValsNotAvail)
everyMin(std::bind(&app::tickMinute, this), "tMin"); everyMin(std::bind(&app::tickMinute, this), "tMin");
if(mConfig->inst.rstYieldMidNight) { if (mConfig->inst.rstYieldMidNight) {
uint32_t localTime = gTimezone.toLocal(mTimestamp); uint32_t localTime = gTimezone.toLocal(mTimestamp);
uint32_t midTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time uint32_t midTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time
onceAt(std::bind(&app::tickMidnight, this), midTrig, "midNi"); onceAt(std::bind(&app::tickMidnight, this), midTrig, "midNi");
} }
} }
nxtTrig = isOK ? 43200 : 60; // depending on NTP update success check again in 12 h or in 1 min nxtTrig = isOK ? 43200 : 60; // depending on NTP update success check again in 12 h or in 1 min
if((mSunrise == 0) && (mConfig->sun.lat) && (mConfig->sun.lon)) { if ((mSunrise == 0) && (mConfig->sun.lat) && (mConfig->sun.lon)) {
mCalculatedTimezoneOffset = (int8_t)((mConfig->sun.lon >= 0 ? mConfig->sun.lon + 7.5 : mConfig->sun.lon - 7.5) / 15) * 3600; mCalculatedTimezoneOffset = (int8_t)((mConfig->sun.lon >= 0 ? mConfig->sun.lon + 7.5 : mConfig->sun.lon - 7.5) / 15) * 3600;
tickCalcSunrise(); tickCalcSunrise();
} }
// immediately start communicating // immediately start communicating
// @TODO: leads to reboot loops? not sure #674 // @TODO: leads to reboot loops? not sure #674
if(isOK && mSendFirst) { if (isOK && mSendFirst) {
mSendFirst = false; mSendFirst = false;
once(std::bind(&app::tickSend, this), 2, "senOn"); once(std::bind(&app::tickSend, this), 2, "senOn");
} }
@ -215,15 +214,15 @@ void app::tickNtpUpdate(void) {
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
void app::tickCalcSunrise(void) { void app::tickCalcSunrise(void) {
if (mSunrise == 0) // on boot/reboot calc sun values for current time if (mSunrise == 0) // on boot/reboot calc sun values for current time
ah::calculateSunriseSunset(mTimestamp, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset); ah::calculateSunriseSunset(mTimestamp, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset);
if (mTimestamp > (mSunset + mConfig->sun.offsetSec)) // current time is past communication stop, calc sun values for next day if (mTimestamp > (mSunset + mConfig->sun.offsetSec)) // current time is past communication stop, calc sun values for next day
ah::calculateSunriseSunset(mTimestamp + 86400, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset); ah::calculateSunriseSunset(mTimestamp + 86400, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset);
tickIVCommunication(); tickIVCommunication();
uint32_t nxtTrig = mSunset + mConfig->sun.offsetSec + 60; // set next trigger to communication stop, +60 for safety that it is certain past communication stop uint32_t nxtTrig = mSunset + mConfig->sun.offsetSec + 60; // set next trigger to communication stop, +60 for safety that it is certain past communication stop
onceAt(std::bind(&app::tickCalcSunrise, this), nxtTrig, "Sunri"); onceAt(std::bind(&app::tickCalcSunrise, this), nxtTrig, "Sunri");
if (mMqttEnabled) if (mMqttEnabled)
tickSun(); tickSun();
@ -231,15 +230,15 @@ void app::tickCalcSunrise(void) {
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
void app::tickIVCommunication(void) { void app::tickIVCommunication(void) {
mIVCommunicationOn = !mConfig->sun.disNightCom; // if sun.disNightCom is false, communication is always on mIVCommunicationOn = !mConfig->sun.disNightCom; // if sun.disNightCom is false, communication is always on
if (!mIVCommunicationOn) { // inverter communication only during the day if (!mIVCommunicationOn) { // inverter communication only during the day
uint32_t nxtTrig; uint32_t nxtTrig;
if (mTimestamp < (mSunrise - mConfig->sun.offsetSec)) { // current time is before communication start, set next trigger to communication start if (mTimestamp < (mSunrise - mConfig->sun.offsetSec)) { // current time is before communication start, set next trigger to communication start
nxtTrig = mSunrise - mConfig->sun.offsetSec; nxtTrig = mSunrise - mConfig->sun.offsetSec;
} else { } else {
if (mTimestamp >= (mSunset + mConfig->sun.offsetSec)) { // current time is past communication stop, nothing to do. Next update will be done at midnight by tickCalcSunrise if (mTimestamp >= (mSunset + mConfig->sun.offsetSec)) { // current time is past communication stop, nothing to do. Next update will be done at midnight by tickCalcSunrise
nxtTrig = 0; nxtTrig = 0;
} else { // current time lies within communication start/stop time, set next trigger to communication stop } else { // current time lies within communication start/stop time, set next trigger to communication stop
mIVCommunicationOn = true; mIVCommunicationOn = true;
nxtTrig = mSunset + mConfig->sun.offsetSec; nxtTrig = mSunset + mConfig->sun.offsetSec;
} }
@ -254,17 +253,17 @@ void app::tickIVCommunication(void) {
void app::tickSun(void) { void app::tickSun(void) {
// only used and enabled by MQTT (see setup()) // only used and enabled by MQTT (see setup())
if (!mMqtt.tickerSun(mSunrise, mSunset, mConfig->sun.offsetSec, mConfig->sun.disNightCom)) if (!mMqtt.tickerSun(mSunrise, mSunset, mConfig->sun.offsetSec, mConfig->sun.disNightCom))
once(std::bind(&app::tickSun, this), 1, "mqSun"); // MQTT not connected, retry once(std::bind(&app::tickSun, this), 1, "mqSun"); // MQTT not connected, retry
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
void app::tickComm(void) { void app::tickComm(void) {
if((!mIVCommunicationOn) && (mConfig->inst.rstValsCommStop)) if ((!mIVCommunicationOn) && (mConfig->inst.rstValsCommStop))
once(std::bind(&app::tickZeroValues, this), mConfig->nrf.sendInterval, "tZero"); once(std::bind(&app::tickZeroValues, this), mConfig->nrf.sendInterval, "tZero");
if (mMqttEnabled) { if (mMqttEnabled) {
if (!mMqtt.tickerComm(!mIVCommunicationOn)) if (!mMqtt.tickerComm(!mIVCommunicationOn))
once(std::bind(&app::tickComm, this), 5, "mqCom"); // MQTT not connected, retry after 5s once(std::bind(&app::tickComm, this), 5, "mqCom"); // MQTT not connected, retry after 5s
} }
} }
@ -275,7 +274,7 @@ void app::tickZeroValues(void) {
for (uint8_t id = 0; id < mSys.getNumInverters(); id++) { for (uint8_t id = 0; id < mSys.getNumInverters(); id++) {
iv = mSys.getInverterByPos(id); iv = mSys.getInverterByPos(id);
if (NULL == iv) if (NULL == iv)
continue; // skip to next inverter continue; // skip to next inverter
mPayload.zeroInverterValues(iv); mPayload.zeroInverterValues(iv);
} }
@ -290,9 +289,9 @@ void app::tickMinute(void) {
for (uint8_t id = 0; id < mSys.getNumInverters(); id++) { for (uint8_t id = 0; id < mSys.getNumInverters(); id++) {
iv = mSys.getInverterByPos(id); iv = mSys.getInverterByPos(id);
if (NULL == iv) if (NULL == iv)
continue; // skip to next inverter continue; // skip to next inverter
if(!iv->isAvailable(mTimestamp) && !iv->isProducing(mTimestamp) && iv->config->enabled) if (!iv->isAvailable(mTimestamp) && !iv->isProducing(mTimestamp) && iv->config->enabled)
mPayload.zeroInverterValues(iv); mPayload.zeroInverterValues(iv);
} }
} }
@ -301,7 +300,7 @@ void app::tickMinute(void) {
void app::tickMidnight(void) { void app::tickMidnight(void) {
// only triggered if 'reset values at midnight is enabled' // only triggered if 'reset values at midnight is enabled'
uint32_t localTime = gTimezone.toLocal(mTimestamp); uint32_t localTime = gTimezone.toLocal(mTimestamp);
uint32_t nxtTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time uint32_t nxtTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time
onceAt(std::bind(&app::tickMidnight, this), nxtTrig, "mid2"); onceAt(std::bind(&app::tickMidnight, this), nxtTrig, "mid2");
Inverter<> *iv; Inverter<> *iv;
@ -309,7 +308,7 @@ void app::tickMidnight(void) {
for (uint8_t id = 0; id < mSys.getNumInverters(); id++) { for (uint8_t id = 0; id < mSys.getNumInverters(); id++) {
iv = mSys.getInverterByPos(id); iv = mSys.getInverterByPos(id);
if (NULL == iv) if (NULL == iv)
continue; // skip to next inverter continue; // skip to next inverter
mPayload.zeroInverterValues(iv); mPayload.zeroInverterValues(iv);
mPayload.zeroYieldDay(iv); mPayload.zeroYieldDay(iv);
@ -321,7 +320,7 @@ void app::tickMidnight(void) {
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
void app::tickSend(void) { void app::tickSend(void) {
if(!mSys.Radio.isChipConnected()) { if (!mSys.Radio.isChipConnected()) {
DPRINTLN(DBG_WARN, F("NRF24 not connected!")); DPRINTLN(DBG_WARN, F("NRF24 not connected!"));
return; return;
} }
@ -341,8 +340,8 @@ void app::tickSend(void) {
} while ((NULL == iv) && ((maxLoop--) > 0)); } while ((NULL == iv) && ((maxLoop--) > 0));
if (NULL != iv) { if (NULL != iv) {
if(iv->config->enabled) { if (iv->config->enabled) {
if(iv->ivGen == IV_HM) if (iv->ivGen == IV_HM)
mPayload.ivSend(iv); mPayload.ivSend(iv);
else else
mMiPayload.ivSend(iv); mMiPayload.ivSend(iv);
@ -368,7 +367,7 @@ void app::resetSystem(void) {
mSendFirst = true; mSendFirst = true;
mSunrise = 0; mSunrise = 0;
mSunset = 0; mSunset = 0;
mMqttEnabled = false; mMqttEnabled = false;
@ -391,25 +390,25 @@ void app::setupLed(void) {
* PIN ---- |<----- 3.3V * PIN ---- |<----- 3.3V
* *
* */ * */
if(mConfig->led.led0 != 0xff) { if (mConfig->led.led0 != 0xff) {
pinMode(mConfig->led.led0, OUTPUT); pinMode(mConfig->led.led0, OUTPUT);
digitalWrite(mConfig->led.led0, HIGH); // LED off digitalWrite(mConfig->led.led0, HIGH); // LED off
} }
if(mConfig->led.led1 != 0xff) { if (mConfig->led.led1 != 0xff) {
pinMode(mConfig->led.led1, OUTPUT); pinMode(mConfig->led.led1, OUTPUT);
digitalWrite(mConfig->led.led1, HIGH); // LED off digitalWrite(mConfig->led.led1, HIGH); // LED off
} }
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
void app::updateLed(void) { void app::updateLed(void) {
if(mConfig->led.led0 != 0xff) { if (mConfig->led.led0 != 0xff) {
Inverter<> *iv = mSys.getInverterByPos(0); Inverter<> *iv = mSys.getInverterByPos(0);
if (NULL != iv) { if (NULL != iv) {
if(iv->isProducing(mTimestamp)) if (iv->isProducing(mTimestamp))
digitalWrite(mConfig->led.led0, LOW); // LED on digitalWrite(mConfig->led.led0, LOW); // LED on
else else
digitalWrite(mConfig->led.led0, HIGH); // LED off digitalWrite(mConfig->led.led0, HIGH); // LED off
} }
} }
} }

454
src/app.h

@ -6,30 +6,25 @@
#ifndef __APP_H__ #ifndef __APP_H__
#define __APP_H__ #define __APP_H__
#include "utils/dbg.h"
#include <Arduino.h> #include <Arduino.h>
#include <ArduinoJson.h>
#include <RF24.h> #include <RF24.h>
#include <RF24_config.h> #include <RF24_config.h>
#include <ArduinoJson.h>
#include "appInterface.h" #include "appInterface.h"
#include "config/settings.h" #include "config/settings.h"
#include "defines.h" #include "defines.h"
#include "utils/crc.h"
#include "utils/scheduler.h"
#include "hm/hmSystem.h"
#include "hm/hmPayload.h" #include "hm/hmPayload.h"
#include "hm/hmSystem.h"
#include "hm/miPayload.h" #include "hm/miPayload.h"
#include "wifi/ahoywifi.h"
#include "web/web.h"
#include "web/RestApi.h"
#include "publisher/pubMqtt.h" #include "publisher/pubMqtt.h"
#include "publisher/pubSerial.h" #include "publisher/pubSerial.h"
#include "utils/crc.h"
#include "utils/dbg.h"
#include "utils/scheduler.h"
#include "web/RestApi.h"
#include "web/web.h"
#include "wifi/ahoywifi.h"
// convert degrees and radians for sun calculation // convert degrees and radians for sun calculation
#define SIN(x) (sin(radians(x))) #define SIN(x) (sin(radians(x)))
@ -46,235 +41,234 @@ typedef PubMqtt<HmSystemType> PubMqttType;
typedef PubSerial<HmSystemType> PubSerialType; typedef PubSerial<HmSystemType> PubSerialType;
// PLUGINS // PLUGINS
#include "plugins/Display/MonochromeDisplay.h" #include "plugins/Display/Display.h"
typedef MonochromeDisplay<HmSystemType> MonoDisplayType; typedef Display<HmSystemType> DisplayType;
class app : public IApp, public ah::Scheduler { class app : public IApp, public ah::Scheduler {
public: public:
app(); app();
~app() {} ~app() {}
void setup(void); void setup(void);
void loop(void); void loop(void);
void loopStandard(void); void loopStandard(void);
void loopWifi(void); void loopWifi(void);
void onWifi(bool gotIp); void onWifi(bool gotIp);
void regularTickers(void); void regularTickers(void);
void handleIntr(void) { void handleIntr(void) {
mSys.Radio.handleIntr(); mSys.Radio.handleIntr();
} }
uint32_t getUptime() { uint32_t getUptime() {
return Scheduler::getUptime(); return Scheduler::getUptime();
} }
uint32_t getTimestamp() { uint32_t getTimestamp() {
return Scheduler::getTimestamp(); return Scheduler::getTimestamp();
} }
bool saveSettings() { bool saveSettings() {
mShowRebootRequest = true; mShowRebootRequest = true;
return mSettings.saveSettings(); return mSettings.saveSettings();
} }
bool readSettings(const char *path) { bool readSettings(const char *path) {
return mSettings.readSettings(path); return mSettings.readSettings(path);
}
bool eraseSettings(bool eraseWifi = false) {
return mSettings.eraseSettings(eraseWifi);
}
statistics_t *getStatistics() {
return &mStat;
}
void scanAvailNetworks() {
mWifi.scanAvailNetworks();
}
void getAvailNetworks(JsonObject obj) {
mWifi.getAvailNetworks(obj);
}
void setOnUpdate() {
onWifi(false);
}
void setRebootFlag() {
once(std::bind(&app::tickReboot, this), 3, "rboot");
}
const char *getVersion() {
return mVersion;
}
uint32_t getSunrise() {
return mSunrise;
}
uint32_t getSunset() {
return mSunset;
}
bool getSettingsValid() {
return mSettings.getValid();
}
bool getRebootRequestState() {
return mShowRebootRequest;
}
void setMqttDiscoveryFlag() {
once(std::bind(&PubMqttType::sendDiscoveryConfig, &mMqtt), 1, "disCf");
}
void setMqttPowerLimitAck(Inverter<> *iv) {
mMqtt.setPowerLimitAck(iv);
}
void ivSendHighPrio(Inverter<> *iv) {
if (mIVCommunicationOn) // only send commands if communcation is enabled
mPayload.ivSendHighPrio(iv);
}
bool getMqttIsConnected() {
return mMqtt.isConnected();
}
uint32_t getMqttTxCnt() {
return mMqtt.getTxCnt();
}
uint32_t getMqttRxCnt() {
return mMqtt.getRxCnt();
}
bool getProtection() {
return mWeb.getProtection();
}
uint8_t getIrqPin(void) {
return mConfig->nrf.pinIrq;
}
String getTimeStr(uint32_t offset = 0) {
char str[10];
if (0 == mTimestamp)
sprintf(str, "n/a");
else
sprintf(str, "%02d:%02d:%02d ", hour(mTimestamp + offset), minute(mTimestamp + offset), second(mTimestamp + offset));
return String(str);
}
uint32_t getTimezoneOffset() {
return mApi.getTimezoneOffset();
}
void getSchedulerInfo(uint8_t *max) {
getStat(max);
}
void getSchedulerNames(void) {
printSchedulers();
}
void setTimestamp(uint32_t newTime) {
DPRINT(DBG_DEBUG, F("setTimestamp: "));
DBGPRINTLN(String(newTime));
if (0 == newTime)
mWifi.getNtpTime();
else
Scheduler::setTimestamp(newTime);
}
HmSystemType mSys;
private:
typedef std::function<void()> innerLoopCb;
void resetSystem(void);
void payloadEventListener(uint8_t cmd) {
#if !defined(AP_ONLY)
if (mMqttEnabled)
mMqtt.payloadEventListener(cmd);
#endif
if (mConfig->plugin.display.type != 0)
mDisplay.payloadEventListener(cmd);
}
void mqttSubRxCb(JsonObject obj);
void setupLed(void);
void updateLed(void);
void tickReboot(void) {
DPRINTLN(DBG_INFO, F("Rebooting..."));
onWifi(false);
ah::Scheduler::resetTicker();
WiFi.disconnect();
ESP.restart();
}
void tickNtpUpdate(void);
void tickCalcSunrise(void);
void tickIVCommunication(void);
void tickSun(void);
void tickComm(void);
void tickSend(void);
void tickMinute(void);
void tickZeroValues(void);
void tickMidnight(void);
/*void tickSerial(void) {
if(Serial.available() == 0)
return;
uint8_t buf[80];
uint8_t len = Serial.readBytes(buf, 80);
DPRINTLN(DBG_INFO, "got serial data, len: " + String(len));
for(uint8_t i = 0; i < len; i++) {
if((0 != i) && (i % 8 == 0))
DBGPRINTLN("");
DBGPRINT(String(buf[i], HEX) + " ");
} }
DBGPRINTLN("");
}*/
bool eraseSettings(bool eraseWifi = false) { innerLoopCb mInnerLoopCb;
return mSettings.eraseSettings(eraseWifi);
}
statistics_t *getStatistics() { bool mShowRebootRequest;
return &mStat; bool mIVCommunicationOn;
}
void scanAvailNetworks() { ahoywifi mWifi;
mWifi.scanAvailNetworks(); WebType mWeb;
} RestApiType mApi;
PayloadType mPayload;
void getAvailNetworks(JsonObject obj) { MiPayloadType mMiPayload;
mWifi.getAvailNetworks(obj); PubSerialType mPubSerial;
}
void setOnUpdate() { char mVersion[12];
onWifi(false); settings mSettings;
} settings_t *mConfig;
void setRebootFlag() { uint8_t mSendLastIvId;
once(std::bind(&app::tickReboot, this), 3, "rboot"); bool mSendFirst;
}
const char *getVersion() { statistics_t mStat;
return mVersion;
}
uint32_t getSunrise() { // mqtt
return mSunrise; PubMqttType mMqtt;
} bool mMqttReconnect;
bool mMqttEnabled;
uint32_t getSunset() { // sun
return mSunset; int32_t mCalculatedTimezoneOffset;
} uint32_t mSunrise, mSunset;
bool getSettingsValid() {
return mSettings.getValid();
}
bool getRebootRequestState() {
return mShowRebootRequest;
}
void setMqttDiscoveryFlag() {
once(std::bind(&PubMqttType::sendDiscoveryConfig, &mMqtt), 1, "disCf");
}
void setMqttPowerLimitAck(Inverter<> *iv) {
mMqtt.setPowerLimitAck(iv);
}
void ivSendHighPrio(Inverter<> *iv) {
if(mIVCommunicationOn) // only send commands if communcation is enabled
mPayload.ivSendHighPrio(iv);
}
bool getMqttIsConnected() {
return mMqtt.isConnected();
}
uint32_t getMqttTxCnt() {
return mMqtt.getTxCnt();
}
uint32_t getMqttRxCnt() {
return mMqtt.getRxCnt();
}
bool getProtection() {
return mWeb.getProtection();
}
uint8_t getIrqPin(void) {
return mConfig->nrf.pinIrq;
}
String getTimeStr(uint32_t offset = 0) {
char str[10];
if(0 == mTimestamp)
sprintf(str, "n/a");
else
sprintf(str, "%02d:%02d:%02d ", hour(mTimestamp + offset), minute(mTimestamp + offset), second(mTimestamp + offset));
return String(str);
}
uint32_t getTimezoneOffset() {
return mApi.getTimezoneOffset();
}
void getSchedulerInfo(uint8_t *max) {
getStat(max);
}
void getSchedulerNames(void) {
printSchedulers();
}
void setTimestamp(uint32_t newTime) {
DPRINT(DBG_DEBUG, F("setTimestamp: "));
DBGPRINTLN(String(newTime));
if(0 == newTime)
mWifi.getNtpTime();
else
Scheduler::setTimestamp(newTime);
}
HmSystemType mSys;
private:
typedef std::function<void()> innerLoopCb;
void resetSystem(void);
void payloadEventListener(uint8_t cmd) {
#if !defined(AP_ONLY)
if (mMqttEnabled)
mMqtt.payloadEventListener(cmd);
#endif
if(mConfig->plugin.display.type != 0)
mMonoDisplay.payloadEventListener(cmd);
}
void mqttSubRxCb(JsonObject obj);
void setupLed(void);
void updateLed(void);
void tickReboot(void) {
DPRINTLN(DBG_INFO, F("Rebooting..."));
onWifi(false);
ah::Scheduler::resetTicker();
WiFi.disconnect();
ESP.restart();
}
void tickNtpUpdate(void); // plugins
void tickCalcSunrise(void); DisplayType mDisplay;
void tickIVCommunication(void);
void tickSun(void);
void tickComm(void);
void tickSend(void);
void tickMinute(void);
void tickZeroValues(void);
void tickMidnight(void);
/*void tickSerial(void) {
if(Serial.available() == 0)
return;
uint8_t buf[80];
uint8_t len = Serial.readBytes(buf, 80);
DPRINTLN(DBG_INFO, "got serial data, len: " + String(len));
for(uint8_t i = 0; i < len; i++) {
if((0 != i) && (i % 8 == 0))
DBGPRINTLN("");
DBGPRINT(String(buf[i], HEX) + " ");
}
DBGPRINTLN("");
}*/
innerLoopCb mInnerLoopCb;
bool mShowRebootRequest;
bool mIVCommunicationOn;
ahoywifi mWifi;
WebType mWeb;
RestApiType mApi;
PayloadType mPayload;
MiPayloadType mMiPayload;
PubSerialType mPubSerial;
char mVersion[12];
settings mSettings;
settings_t *mConfig;
uint8_t mSendLastIvId;
bool mSendFirst;
statistics_t mStat;
// mqtt
PubMqttType mMqtt;
bool mMqttReconnect;
bool mMqttEnabled;
// sun
int32_t mCalculatedTimezoneOffset;
uint32_t mSunrise, mSunset;
// plugins
MonoDisplayType mMonoDisplay;
}; };
#endif /*__APP_H__*/ #endif /*__APP_H__*/

16
src/plugins/Display/MonochromeDisplay.h → src/plugins/Display/Display.h

@ -1,5 +1,5 @@
#ifndef __MONOCHROME_DISPLAY__ #ifndef __DISPLAY__
#define __MONOCHROME_DISPLAY__ #define __DISPLAY__
#include <Timezone.h> #include <Timezone.h>
#include <U8g2lib.h> #include <U8g2lib.h>
@ -13,9 +13,9 @@
#define DISP_DEFAULT_TIMEOUT 60 // in seconds #define DISP_DEFAULT_TIMEOUT 60 // in seconds
template <class HMSYSTEM> template <class HMSYSTEM>
class MonochromeDisplay { class Display {
public: public:
MonochromeDisplay() {} Display() {}
void setup(display_t *cfg, HMSYSTEM *sys, uint32_t *utcTs, uint8_t disp_reset, const char *version) { void setup(display_t *cfg, HMSYSTEM *sys, uint32_t *utcTs, uint8_t disp_reset, const char *version) {
mCfg = cfg; mCfg = cfg;
@ -26,7 +26,7 @@ class MonochromeDisplay {
if (mCfg->type == 0) { if (mCfg->type == 0) {
return; return;
} else if (1 < mCfg->type < 10) { } else if (1 < mCfg->type < 11) {
switch (mCfg->rot) { switch (mCfg->rot) {
case 0: case 0:
DisplayMono.disp_rotation = U8G2_R0; DisplayMono.disp_rotation = U8G2_R0;
@ -97,9 +97,9 @@ class MonochromeDisplay {
totalYieldTotal += iv->getChannelFieldValue(CH0, FLD_YT, rec); totalYieldTotal += iv->getChannelFieldValue(CH0, FLD_YT, rec);
} }
if (1 < mCfg->type < 4) { if (1 < mCfg->type < 11) {
DisplayMono.loop(totalPower, totalYieldDay, totalYieldTotal, isprod); DisplayMono.loop(totalPower, totalYieldDay, totalYieldTotal, isprod);
} else if (mCfg->type == 4) { } else if (mCfg->type > 10) {
DisplayEPaper.loop(totalPower, totalYieldDay, totalYieldTotal, isprod); DisplayEPaper.loop(totalPower, totalYieldDay, totalYieldTotal, isprod);
counterEPaper++; counterEPaper++;
} }
@ -123,4 +123,4 @@ class MonochromeDisplay {
uint32_t _lastDisplayUpdate = 0; uint32_t _lastDisplayUpdate = 0;
}; };
#endif /*__MONOCHROME_DISPLAY__*/ #endif /*__DISPLAY__*/
Loading…
Cancel
Save