//-----------------------------------------------------------------------------
// 2023 Ahoy, https://github.com/lumpapu/ahoy
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/4.0/deed
//-----------------------------------------------------------------------------

#ifndef __HM_RADIO_H__
#define __HM_RADIO_H__

#include <RF24.h>
#include "SPI.h"
#include "radio.h"

#define SPI_SPEED           1000000

#define RF_CHANNELS         5

const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"};

#define TX_REQ_DREDCONTROL  0x50
#define DRED_A5 0xa5
#define DRED_5A 0x5a
#define DRED_AA 0xaa
#define DRED_55 0x55

//-----------------------------------------------------------------------------
// HM Radio class
//-----------------------------------------------------------------------------
template <uint8_t IRQ_PIN = DEF_NRF_IRQ_PIN, uint8_t CE_PIN = DEF_NRF_CE_PIN, uint8_t CS_PIN = DEF_NRF_CS_PIN, uint8_t AMP_PWR = RF24_PA_LOW, uint8_t SCLK_PIN = DEF_NRF_SCLK_PIN, uint8_t MOSI_PIN = DEF_NRF_MOSI_PIN, uint8_t MISO_PIN = DEF_NRF_MISO_PIN, uint32_t DTU_SN = 0x81001765>
class HmRadio : public Radio {
    public:
        HmRadio() : mNrf24(CE_PIN, CS_PIN, SPI_SPEED) {
            if(mSerialDebug) {
                DPRINT(DBG_VERBOSE, F("hmRadio.h : HmRadio():mNrf24(CE_PIN: "));
                DBGPRINT(String(CE_PIN));
                DBGPRINT(F(", CS_PIN: "));
                DBGPRINT(String(CS_PIN));
                DBGPRINT(F(", SPI_SPEED: "));
                DBGPRINT(String(SPI_SPEED));
                DBGPRINTLN(F(")"));
            }
            mDtuSn = DTU_SN;

            mSerialDebug    = false;
            mIrqRcvd        = false;
        }
        ~HmRadio() {}

        void setup(uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN, uint8_t sclk = SCLK_PIN, uint8_t mosi = MOSI_PIN, uint8_t miso = MISO_PIN) {
            DPRINTLN(DBG_VERBOSE, F("hmRadio.h:setup"));
            pinMode(irq, INPUT_PULLUP);

            generateDtuSn();
            DTU_RADIO_ID = ((uint64_t)(((mDtuSn >> 24) & 0xFF) | ((mDtuSn >> 8) & 0xFF00) | ((mDtuSn << 8) & 0xFF0000) | ((mDtuSn << 24) & 0xFF000000)) << 8) | 0x01;

            #ifdef ESP32
                #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
                    mSpi = new SPIClass(HSPI);
                #else
                    mSpi = new SPIClass(VSPI);
                #endif
                mSpi->begin(sclk, miso, mosi, cs);
            #else
                //the old ESP82xx cannot freely place their SPI pins
                mSpi = new SPIClass();
                mSpi->begin();
            #endif

            mNrf24.begin(mSpi, ce, cs);
            mNrf24.setRetries(3, 15); // 3*250us + 250us and 15 loops -> 15ms

            mNrf24.setChannel(mRfChLst[mRxChIdx]);
            mNrf24.startListening();
            mNrf24.setDataRate(RF24_250KBPS);
            mNrf24.setAutoAck(true);
            mNrf24.enableDynamicAck();
            mNrf24.enableDynamicPayloads();
            mNrf24.setCRCLength(RF24_CRC_16);
            mNrf24.setAddressWidth(5);
            mNrf24.openReadingPipe(1, reinterpret_cast<uint8_t*>(&DTU_RADIO_ID));

            // enable all receiving interrupts
            mNrf24.maskIRQ(false, false, false);

            mNrf24.setPALevel(1); // low is default

            if(mNrf24.isChipConnected()) {
                DPRINTLN(DBG_INFO, F("Radio Config:"));
                mNrf24.printPrettyDetails();
                DPRINT(DBG_INFO, F("DTU_SN: 0x"));
                DBGPRINTLN(String(mDtuSn, HEX));
            } else
                DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
        }

        void loop(void) {
            if (!mIrqRcvd)
                return; // nothing to do
            mIrqRcvd = false;
            bool tx_ok, tx_fail, rx_ready;
            mNrf24.whatHappened(tx_ok, tx_fail, rx_ready);  // resets the IRQ pin to HIGH
            mNrf24.flush_tx();                              // empty TX FIFO

            // start listening
            //mNrf24.setChannel(23);
            //mRxChIdx = 0;
            mNrf24.setChannel(mRfChLst[mRxChIdx]);
            mNrf24.startListening();

            if(NULL == mLastIv) // prevent reading on NULL object!
                return;

            uint32_t startMicros = micros() + 5110;
            uint32_t loopMillis = millis() + 400;
            while (millis() < loopMillis) {
                while (micros() < startMicros) {  // listen (4088us or?) 5110us to each channel
                    if (mIrqRcvd) {
                        mIrqRcvd = false;

                        if (getReceived()) { // everything received
                            return;
                        }
                    }
                    yield();
                }
                // switch to next RX channel
                if(++mRxChIdx >= RF_CHANNELS)
                    mRxChIdx = 0;
                mNrf24.setChannel(mRfChLst[mRxChIdx]);
                startMicros = micros() + 5110;
            }
            // not finished but time is over
            if(++mRxChIdx >= RF_CHANNELS)
                mRxChIdx = 0;

            return;
        }

        bool isChipConnected(void) {
            //DPRINTLN(DBG_VERBOSE, F("hmRadio.h:isChipConnected"));
            return mNrf24.isChipConnected();
        }

        void sendControlPacket(Inverter<> *iv, uint8_t cmd, uint16_t *data, bool isRetransmit) {
            DPRINT_IVID(DBG_INFO, iv->id);
            DBGPRINT(F("sendControlPacket cmd: 0x"));
            DBGHEXLN(cmd);
            initPacket(iv->radioId.u64, TX_REQ_DEVCONTROL, SINGLE_FRAME);
            uint8_t cnt = 10;
            if (IV_MI != iv->ivGen) {
                mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor
                mTxBuf[cnt++] = 0x00;
                if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet
                    mTxBuf[cnt++] = ((data[0] * 10) >> 8) & 0xff; // power limit
                    mTxBuf[cnt++] = ((data[0] * 10)     ) & 0xff; // power limit
                    mTxBuf[cnt++] = ((data[1]     ) >> 8) & 0xff; // setting for persistens handlings
                    mTxBuf[cnt++] = ((data[1]     )     ) & 0xff; // setting for persistens handling
                }
            } else { //MI 2nd gen. specific
                uint16_t powerMax = ((iv->powerLimit[1] == RelativNonPersistent) ? 0 : iv->getMaxPower());
                switch (cmd) {
                    case Restart:
                    case TurnOn:
                        mTxBuf[9]  = DRED_55;
                        mTxBuf[10] = DRED_AA;
                        break;
                    case TurnOff:
                        mTxBuf[9]  = DRED_AA;
                        mTxBuf[10] = DRED_55;
                        break;
                    case ActivePowerContr:
                        if (data[1]<256) { // non persistent
                            mTxBuf[9]  = DRED_5A;
                            mTxBuf[10] = DRED_5A;
                            //Testing only! Original NRF24_DTUMIesp.ino code #L612-L613:
                            //UsrData[0]=0x5A;UsrData[1]=0x5A;UsrData[2]=100;//0x0a;// 10% limit
                            //UsrData[3]=((Limit*10) >> 8) & 0xFF;   UsrData[4]= (Limit*10)  & 0xFF;   //WR needs 1 dec= zB 100.1 W
                            if (!data[1]) {   //     AbsolutNonPersistent
                                mTxBuf[++cnt] = 100; //10% limit, seems to be necessary to send sth. at all, but for MI-1500 this has no effect
                                //works (if ever!) only for absulute power limits!
                                mTxBuf[++cnt] = ((data[0] * 10) >> 8) & 0xff; // power limit in W
                                mTxBuf[++cnt] = ((data[0] * 10)     ) & 0xff; // power limit in W
                            } else if (powerMax) {       //relative, but 4ch-MI (if ever) only accepts absolute values
                                mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10?
                                mTxBuf[++cnt] = ((data[0] * 10 * powerMax) >> 8) & 0xff; // power limit
                                mTxBuf[++cnt] = ((data[0] * 10 * powerMax)     ) & 0xff; // power limit
                            } else {   // might work for 1/2ch MI (if ever)
                                mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10?
                            }
                        } else {       // persistent power limit needs to be translated in DRED command (?)
                            /* DRED instruction
                            Order	 Function
                            0x55AA	 Boot without DRM restrictions
                            0xA5A5	 DRM0 shutdown
                            0x5A5A	 DRM5 power limit 0%
                            0xAA55	 DRM6 power limit 50%
                            0x5A55	 DRM8 unlimited power operation
                            */
                            mTxBuf[0] = TX_REQ_DREDCONTROL;

                            if (data[1] == 256UL) {   //     AbsolutPersistent
                                if (data[0] == 0 && !powerMax) {
                                    mTxBuf[9]  = DRED_A5;
                                    mTxBuf[10] = DRED_A5;
                                } else if (data[0] == 0 || !powerMax || data[0] < powerMax/4 ) {
                                    mTxBuf[9]  = DRED_5A;
                                    mTxBuf[10] = DRED_5A;
                                } else if (data[0] <=  powerMax/4*3) {
                                    mTxBuf[9]  = DRED_AA;
                                    mTxBuf[10] = DRED_55;
                                } else if (data[0] <=  powerMax) {
                                    mTxBuf[9]  = DRED_5A;
                                    mTxBuf[10] = DRED_55;
                                } else if (data[0] > powerMax*2) {
                                    mTxBuf[9]  = DRED_55;
                                    mTxBuf[10] = DRED_AA;
                                }
                            }
                        }
                        break;
                    default:
                        return;
                }
                cnt++;
            }
            sendPacket(iv, cnt, isRetransmit, (IV_MI != iv->ivGen));
        }

        uint8_t getDataRate(void) {
            if(!mNrf24.isChipConnected())
                return 3; // unknown
            return mNrf24.getDataRate();
        }

        bool isPVariant(void) {
            return mNrf24.isPVariant();
        }

    private:
        inline bool getReceived(void) {
            bool tx_ok, tx_fail, rx_ready;
            mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH

            bool isLastPackage = false;
            while(mNrf24.available()) {
                uint8_t len;
                len = mNrf24.getDynamicPayloadSize(); // if payload size > 32, corrupt payload has been flushed
                if (len > 0) {
                    packet_t p;
                    p.ch = mRfChLst[mRxChIdx];
                    p.len = (len > MAX_RF_PAYLOAD_SIZE) ? MAX_RF_PAYLOAD_SIZE : len;
                    p.rssi = mNrf24.testRPD() ? -64 : -75;
                    p.millis = millis() - mMillis;
                    mNrf24.read(p.packet, p.len);
                    if (p.packet[0] != 0x00) {
                        if(!checkIvSerial(&p.packet[1], mLastIv)) {
                            DPRINT(DBG_WARN, "RX other inverter: ");
                            ah::dumpBuf(p.packet, p.len);
                            return false;
                        }
                        mLastIv->mGotFragment = true;
                        mBufCtrl.push(p);
                        if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES))  // response from get information command
                            isLastPackage = (p.packet[9] > ALL_FRAMES); // > ALL_FRAMES indicates last packet received
                        else if (p.packet[0] == ( 0x0f + ALL_FRAMES) )  // response from MI get information command
                            isLastPackage = (p.packet[9] > 0x10);       // > 0x10 indicates last packet received
                        else if ((p.packet[0] != 0x88) && (p.packet[0] != 0x92)) // ignore MI status messages //#0 was p.packet[0] != 0x00 &&
                            isLastPackage = true;                       // response from dev control command
                    }
                }
                yield();
            }
            if(isLastPackage)
                mLastIv->mGotLastMsg = true;
            return isLastPackage;
        }

        void sendPacket(Inverter<> *iv, uint8_t len, bool isRetransmit, bool appendCrc16=true) {
            mNrf24.setPALevel(iv->config->powerLevel & 0x03);
            updateCrcs(&len, appendCrc16);

            // set TX and RX channels
            mTxChIdx = mRfChLst[iv->txRfChId];

            if(mSerialDebug) {
                DPRINT_IVID(DBG_INFO, iv->id);
                DBGPRINT(F("TX "));
                DBGPRINT(String(len));
                DBGPRINT(" CH");
                DBGPRINT(String(mTxChIdx));
                DBGPRINT(F(" | "));
                ah::dumpBuf(mTxBuf, len, 1, 4, "#"+String(iv->id));
            }

            mNrf24.stopListening();
            mNrf24.setChannel(mTxChIdx);
            mNrf24.openWritingPipe(reinterpret_cast<uint8_t*>(&iv->radioId.u64));
            mNrf24.startWrite(mTxBuf, len, false); // false = request ACK response
            mMillis = millis();

            mLastIv = iv;
        }

        uint64_t getIvId(Inverter<> *iv) {
            return iv->radioId.u64;
        }

        uint8_t getIvGen(Inverter<> *iv) {
            return iv->ivGen;
        }

        inline bool checkIvSerial(uint8_t buf[], Inverter<> *iv) {
            uint8_t tmp[4];
            CP_U32_BigEndian(tmp, iv->radioId.u64 >> 8);
            for(uint8_t i = 0; i < 4; i++) {
                if(tmp[i] != buf[i])
                    return false;
            }
            return true;
        }

        uint64_t DTU_RADIO_ID;
        uint8_t mRfChLst[RF_CHANNELS] = {03, 23, 40, 61, 75}; // channel List:2403, 2423, 2440, 2461, 2475MHz
        uint8_t mTxChIdx = 0;
        uint8_t mRxChIdx = 0;
        bool    mGotLastMsg = false;
        uint32_t mMillis;

        SPIClass* mSpi;
        RF24 mNrf24;
        Inverter<> *mLastIv = NULL;
};

#endif /*__HM_RADIO_H__*/