//----------------------------------------------------------------------------- // 2023 Ahoy, https://github.com/lumpapu/ahoy // Creative Commons - http://creativecommons.org/licenses/by-nc-sa/4.0/deed //----------------------------------------------------------------------------- #ifndef __HM_RADIO_H__ #define __HM_RADIO_H__ #include <RF24.h> #include "SPI.h" #include "radio.h" #define SPI_SPEED 1000000 #define RF_CHANNELS 5 const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"}; #define TX_REQ_DREDCONTROL 0x50 #define DRED_A5 0xa5 #define DRED_5A 0x5a #define DRED_AA 0xaa #define DRED_55 0x55 //----------------------------------------------------------------------------- // HM Radio class //----------------------------------------------------------------------------- template <uint8_t IRQ_PIN = DEF_NRF_IRQ_PIN, uint8_t CE_PIN = DEF_NRF_CE_PIN, uint8_t CS_PIN = DEF_NRF_CS_PIN, uint8_t AMP_PWR = RF24_PA_LOW, uint8_t SCLK_PIN = DEF_NRF_SCLK_PIN, uint8_t MOSI_PIN = DEF_NRF_MOSI_PIN, uint8_t MISO_PIN = DEF_NRF_MISO_PIN, uint32_t DTU_SN = 0x81001765> class HmRadio : public Radio { public: HmRadio() : mNrf24(CE_PIN, CS_PIN, SPI_SPEED) { if(mSerialDebug) { DPRINT(DBG_VERBOSE, F("hmRadio.h : HmRadio():mNrf24(CE_PIN: ")); DBGPRINT(String(CE_PIN)); DBGPRINT(F(", CS_PIN: ")); DBGPRINT(String(CS_PIN)); DBGPRINT(F(", SPI_SPEED: ")); DBGPRINT(String(SPI_SPEED)); DBGPRINTLN(F(")")); } mDtuSn = DTU_SN; mSerialDebug = false; mIrqRcvd = false; } ~HmRadio() {} void setup(uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN, uint8_t sclk = SCLK_PIN, uint8_t mosi = MOSI_PIN, uint8_t miso = MISO_PIN) { DPRINTLN(DBG_VERBOSE, F("hmRadio.h:setup")); pinMode(irq, INPUT_PULLUP); generateDtuSn(); DTU_RADIO_ID = ((uint64_t)(((mDtuSn >> 24) & 0xFF) | ((mDtuSn >> 8) & 0xFF00) | ((mDtuSn << 8) & 0xFF0000) | ((mDtuSn << 24) & 0xFF000000)) << 8) | 0x01; #ifdef ESP32 #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 mSpi = new SPIClass(HSPI); #else mSpi = new SPIClass(VSPI); #endif mSpi->begin(sclk, miso, mosi, cs); #else //the old ESP82xx cannot freely place their SPI pins mSpi = new SPIClass(); mSpi->begin(); #endif mNrf24.begin(mSpi, ce, cs); mNrf24.setRetries(3, 15); // 3*250us + 250us and 15 loops -> 15ms mNrf24.setChannel(mRfChLst[mRxChIdx]); mNrf24.startListening(); mNrf24.setDataRate(RF24_250KBPS); mNrf24.setAutoAck(true); mNrf24.enableDynamicAck(); mNrf24.enableDynamicPayloads(); mNrf24.setCRCLength(RF24_CRC_16); mNrf24.setAddressWidth(5); mNrf24.openReadingPipe(1, reinterpret_cast<uint8_t*>(&DTU_RADIO_ID)); // enable all receiving interrupts mNrf24.maskIRQ(false, false, false); mNrf24.setPALevel(1); // low is default if(mNrf24.isChipConnected()) { DPRINTLN(DBG_INFO, F("Radio Config:")); mNrf24.printPrettyDetails(); DPRINT(DBG_INFO, F("DTU_SN: 0x")); DBGPRINTLN(String(mDtuSn, HEX)); } else DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring")); } void loop(void) { if (!mIrqRcvd) return; // nothing to do mIrqRcvd = false; bool tx_ok, tx_fail, rx_ready; mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH mNrf24.flush_tx(); // empty TX FIFO // start listening //mNrf24.setChannel(23); //mRxChIdx = 0; mNrf24.setChannel(mRfChLst[mRxChIdx]); mNrf24.startListening(); if(NULL == mLastIv) // prevent reading on NULL object! return; uint32_t startMicros = micros() + 5110; uint32_t loopMillis = millis() + 400; while (millis() < loopMillis) { while (micros() < startMicros) { // listen (4088us or?) 5110us to each channel if (mIrqRcvd) { mIrqRcvd = false; if (getReceived()) { // everything received return; } } yield(); } // switch to next RX channel if(++mRxChIdx >= RF_CHANNELS) mRxChIdx = 0; mNrf24.setChannel(mRfChLst[mRxChIdx]); startMicros = micros() + 5110; } // not finished but time is over if(++mRxChIdx >= RF_CHANNELS) mRxChIdx = 0; return; } bool isChipConnected(void) { //DPRINTLN(DBG_VERBOSE, F("hmRadio.h:isChipConnected")); return mNrf24.isChipConnected(); } void sendControlPacket(Inverter<> *iv, uint8_t cmd, uint16_t *data, bool isRetransmit) { DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F("sendControlPacket cmd: 0x")); DBGHEXLN(cmd); initPacket(iv->radioId.u64, TX_REQ_DEVCONTROL, SINGLE_FRAME); uint8_t cnt = 10; if (IV_MI != iv->ivGen) { mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor mTxBuf[cnt++] = 0x00; if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet mTxBuf[cnt++] = ((data[0] * 10) >> 8) & 0xff; // power limit mTxBuf[cnt++] = ((data[0] * 10) ) & 0xff; // power limit mTxBuf[cnt++] = ((data[1] ) >> 8) & 0xff; // setting for persistens handlings mTxBuf[cnt++] = ((data[1] ) ) & 0xff; // setting for persistens handling } } else { //MI 2nd gen. specific uint16_t powerMax = ((iv->powerLimit[1] == RelativNonPersistent) ? 0 : iv->getMaxPower()); switch (cmd) { case Restart: case TurnOn: mTxBuf[9] = DRED_55; mTxBuf[10] = DRED_AA; break; case TurnOff: mTxBuf[9] = DRED_AA; mTxBuf[10] = DRED_55; break; case ActivePowerContr: if (data[1]<256) { // non persistent mTxBuf[9] = DRED_5A; mTxBuf[10] = DRED_5A; //Testing only! Original NRF24_DTUMIesp.ino code #L612-L613: //UsrData[0]=0x5A;UsrData[1]=0x5A;UsrData[2]=100;//0x0a;// 10% limit //UsrData[3]=((Limit*10) >> 8) & 0xFF; UsrData[4]= (Limit*10) & 0xFF; //WR needs 1 dec= zB 100.1 W if (!data[1]) { // AbsolutNonPersistent mTxBuf[++cnt] = 100; //10% limit, seems to be necessary to send sth. at all, but for MI-1500 this has no effect //works (if ever!) only for absulute power limits! mTxBuf[++cnt] = ((data[0] * 10) >> 8) & 0xff; // power limit in W mTxBuf[++cnt] = ((data[0] * 10) ) & 0xff; // power limit in W } else if (powerMax) { //relative, but 4ch-MI (if ever) only accepts absolute values mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10? mTxBuf[++cnt] = ((data[0] * 10 * powerMax) >> 8) & 0xff; // power limit mTxBuf[++cnt] = ((data[0] * 10 * powerMax) ) & 0xff; // power limit } else { // might work for 1/2ch MI (if ever) mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10? } } else { // persistent power limit needs to be translated in DRED command (?) /* DRED instruction Order Function 0x55AA Boot without DRM restrictions 0xA5A5 DRM0 shutdown 0x5A5A DRM5 power limit 0% 0xAA55 DRM6 power limit 50% 0x5A55 DRM8 unlimited power operation */ mTxBuf[0] = TX_REQ_DREDCONTROL; if (data[1] == 256UL) { // AbsolutPersistent if (data[0] == 0 && !powerMax) { mTxBuf[9] = DRED_A5; mTxBuf[10] = DRED_A5; } else if (data[0] == 0 || !powerMax || data[0] < powerMax/4 ) { mTxBuf[9] = DRED_5A; mTxBuf[10] = DRED_5A; } else if (data[0] <= powerMax/4*3) { mTxBuf[9] = DRED_AA; mTxBuf[10] = DRED_55; } else if (data[0] <= powerMax) { mTxBuf[9] = DRED_5A; mTxBuf[10] = DRED_55; } else if (data[0] > powerMax*2) { mTxBuf[9] = DRED_55; mTxBuf[10] = DRED_AA; } } } break; default: return; } cnt++; } sendPacket(iv, cnt, isRetransmit, (IV_MI != iv->ivGen)); } uint8_t getDataRate(void) { if(!mNrf24.isChipConnected()) return 3; // unknown return mNrf24.getDataRate(); } bool isPVariant(void) { return mNrf24.isPVariant(); } private: inline bool getReceived(void) { bool tx_ok, tx_fail, rx_ready; mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH bool isLastPackage = false; while(mNrf24.available()) { uint8_t len; len = mNrf24.getDynamicPayloadSize(); // if payload size > 32, corrupt payload has been flushed if (len > 0) { packet_t p; p.ch = mRfChLst[mRxChIdx]; p.len = (len > MAX_RF_PAYLOAD_SIZE) ? MAX_RF_PAYLOAD_SIZE : len; p.rssi = mNrf24.testRPD() ? -64 : -75; p.millis = millis() - mMillis; mNrf24.read(p.packet, p.len); if (p.packet[0] != 0x00) { if(!checkIvSerial(&p.packet[1], mLastIv)) { DPRINT(DBG_WARN, "RX other inverter: "); ah::dumpBuf(p.packet, p.len); return false; } mLastIv->mGotFragment = true; mBufCtrl.push(p); if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES)) // response from get information command isLastPackage = (p.packet[9] > ALL_FRAMES); // > ALL_FRAMES indicates last packet received else if (p.packet[0] == ( 0x0f + ALL_FRAMES) ) // response from MI get information command isLastPackage = (p.packet[9] > 0x10); // > 0x10 indicates last packet received else if ((p.packet[0] != 0x88) && (p.packet[0] != 0x92)) // ignore MI status messages //#0 was p.packet[0] != 0x00 && isLastPackage = true; // response from dev control command } } yield(); } if(isLastPackage) mLastIv->mGotLastMsg = true; return isLastPackage; } void sendPacket(Inverter<> *iv, uint8_t len, bool isRetransmit, bool appendCrc16=true) { mNrf24.setPALevel(iv->config->powerLevel & 0x03); updateCrcs(&len, appendCrc16); // set TX and RX channels mTxChIdx = mRfChLst[iv->txRfChId]; if(mSerialDebug) { DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F("TX ")); DBGPRINT(String(len)); DBGPRINT(" CH"); DBGPRINT(String(mTxChIdx)); DBGPRINT(F(" | ")); ah::dumpBuf(mTxBuf, len, 1, 4, "#"+String(iv->id)); } mNrf24.stopListening(); mNrf24.setChannel(mTxChIdx); mNrf24.openWritingPipe(reinterpret_cast<uint8_t*>(&iv->radioId.u64)); mNrf24.startWrite(mTxBuf, len, false); // false = request ACK response mMillis = millis(); mLastIv = iv; } uint64_t getIvId(Inverter<> *iv) { return iv->radioId.u64; } uint8_t getIvGen(Inverter<> *iv) { return iv->ivGen; } inline bool checkIvSerial(uint8_t buf[], Inverter<> *iv) { uint8_t tmp[4]; CP_U32_BigEndian(tmp, iv->radioId.u64 >> 8); for(uint8_t i = 0; i < 4; i++) { if(tmp[i] != buf[i]) return false; } return true; } uint64_t DTU_RADIO_ID; uint8_t mRfChLst[RF_CHANNELS] = {03, 23, 40, 61, 75}; // channel List:2403, 2423, 2440, 2461, 2475MHz uint8_t mTxChIdx = 0; uint8_t mRxChIdx = 0; bool mGotLastMsg = false; uint32_t mMillis; SPIClass* mSpi; RF24 mNrf24; Inverter<> *mLastIv = NULL; }; #endif /*__HM_RADIO_H__*/