//----------------------------------------------------------------------------- // 2022 Ahoy, https://www.mikrocontroller.net/topic/525778 // Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/ //----------------------------------------------------------------------------- #if defined(ESP32) && defined(F) #undef F #define F(sl) (sl) #endif #include "app.h" #include #include "utils/sun.h" //----------------------------------------------------------------------------- app::app() { Serial.begin(115200); DPRINTLN(DBG_VERBOSE, F("app::app")); mEep = new eep(); resetSystem(); loadDefaultConfig(); mWifi = new ahoywifi(this, &mSysConfig, &mConfig); mSys = new HmSystemType(); mSys->enableDebug(); mShouldReboot = false; } //----------------------------------------------------------------------------- void app::setup(uint32_t timeout) { DPRINTLN(DBG_VERBOSE, F("app::setup")); mWifiSettingsValid = checkEEpCrc(ADDR_START, ADDR_WIFI_CRC, ADDR_WIFI_CRC); mSettingsValid = checkEEpCrc(ADDR_START_SETTINGS, ((ADDR_NEXT) - (ADDR_START_SETTINGS)), ADDR_SETTINGS_CRC); loadEEpconfig(); mWifi->setup(timeout, mWifiSettingsValid); mSys->setup(mConfig.amplifierPower, mConfig.pinIrq, mConfig.pinCe, mConfig.pinCs); #ifndef AP_ONLY setupMqtt(); #endif setupLed(); mWebInst = new web(this, &mSysConfig, &mConfig, &mStat, mVersion); mWebInst->setup(); mWebInst->setProtection(strlen(mConfig.password) != 0); DPRINTLN(DBG_INFO, F("Settings valid: ") + String((mSettingsValid) ? F("true") : F("false"))); DPRINTLN(DBG_INFO, F("EEprom storage size: 0x") + String(ADDR_SETTINGS_CRC, HEX)); } //----------------------------------------------------------------------------- void app::loop(void) { DPRINTLN(DBG_VERBOSE, F("app::loop")); bool apActive = mWifi->loop(); mWebInst->loop(); if (millis() - mPrevMillis >= 1000) { mPrevMillis += 1000; mUptimeSecs++; if (0 != mUtcTimestamp) mUtcTimestamp++; mWebInst->tickSecond(); if (mShouldReboot) { DPRINTLN(DBG_INFO, F("Rebooting...")); ESP.restart(); } } if (checkTicker(&mNtpRefreshTicker, mNtpRefreshInterval)) { if (!apActive) mUpdateNtp = true; } if (mUpdateNtp) { mUpdateNtp = false; mUtcTimestamp = mWifi->getNtpTime(); DPRINTLN(DBG_INFO, F("[NTP]: ") + getDateTimeStr(mUtcTimestamp) + F(" UTC")); } if (mFlagSendDiscoveryConfig) { mFlagSendDiscoveryConfig = false; mMqtt.sendMqttDiscoveryConfig(mConfig.mqtt.topic, mMqttInterval); } mSys->Radio.loop(); yield(); if (checkTicker(&mRxTicker, 5)) { bool rxRdy = mSys->Radio.switchRxCh(); if (!mSys->BufCtrl.empty()) { uint8_t len; packet_t *p = mSys->BufCtrl.getBack(); if (mSys->Radio.checkPaketCrc(p->packet, &len, p->rxCh)) { // process buffer only on first occurrence if (mConfig.serialDebug) { DPRINT(DBG_INFO, "RX " + String(len) + "B Ch" + String(p->rxCh) + " | "); mSys->Radio.dumpBuf(NULL, p->packet, len); } mStat.frmCnt++; if (0 != len) { Inverter<> *iv = mSys->findInverter(&p->packet[1]); if ((NULL != iv) && (p->packet[0] == (TX_REQ_INFO + ALL_FRAMES))) { // response from get information command mPayload[iv->id].txId = p->packet[0]; DPRINTLN(DBG_DEBUG, F("Response from info request received")); uint8_t *pid = &p->packet[9]; if (*pid == 0x00) { DPRINT(DBG_DEBUG, F("fragment number zero received and ignored")); } else { DPRINTLN(DBG_DEBUG, "PID: 0x" + String(*pid, HEX)); if ((*pid & 0x7F) < 5) { memcpy(mPayload[iv->id].data[(*pid & 0x7F) - 1], &p->packet[10], len - 11); mPayload[iv->id].len[(*pid & 0x7F) - 1] = len - 11; } if ((*pid & ALL_FRAMES) == ALL_FRAMES) { // Last packet if ((*pid & 0x7f) > mPayload[iv->id].maxPackId) { mPayload[iv->id].maxPackId = (*pid & 0x7f); if (*pid > 0x81) mLastPacketId = *pid; } } } } if ((NULL != iv) && (p->packet[0] == (TX_REQ_DEVCONTROL + ALL_FRAMES))) { // response from dev control command DPRINTLN(DBG_DEBUG, F("Response from devcontrol request received")); mPayload[iv->id].txId = p->packet[0]; iv->devControlRequest = false; if ((p->packet[12] == ActivePowerContr) && (p->packet[13] == 0x00)) { String msg = (p->packet[10] == 0x00 && p->packet[11] == 0x00) ? "" : "NOT "; DPRINTLN(DBG_INFO, F("Inverter ") + String(iv->id) + F(" has ") + msg + F("accepted power limit set point ") + String(iv->powerLimit[0]) + F(" with PowerLimitControl ") + String(iv->powerLimit[1])); } iv->devControlCmd = Init; } } } mSys->BufCtrl.popBack(); } yield(); if (rxRdy) { processPayload(true); } } if (mMqttActive) mMqtt.loop(); if (checkTicker(&mTicker, 1000)) { if (mUtcTimestamp > 946684800 && mConfig.sunLat && mConfig.sunLon && (mUtcTimestamp + mCalculatedTimezoneOffset) / 86400 != (mLatestSunTimestamp + mCalculatedTimezoneOffset) / 86400) { // update on reboot or midnight if (!mLatestSunTimestamp) { // first call: calculate time zone from longitude to refresh at local midnight mCalculatedTimezoneOffset = (int8_t)((mConfig.sunLon >= 0 ? mConfig.sunLon + 7.5 : mConfig.sunLon - 7.5) / 15) * 3600; } ah::calculateSunriseSunset(mUtcTimestamp, mCalculatedTimezoneOffset, mConfig.sunLat, mConfig.sunLon, &mSunrise, &mSunset); mLatestSunTimestamp = mUtcTimestamp; } if ((++mMqttTicker >= mMqttInterval) && (mMqttInterval != 0xffff) && mMqttActive) { mMqttTicker = 0; mMqtt.sendIvData(mUtcTimestamp, mMqttSendList); } if (mConfig.serialShowIv) { if (++mSerialTicker >= mConfig.serialInterval) { mSerialTicker = 0; char topic[30], val[10]; for (uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if (NULL != iv) { record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); if (iv->isAvailable(mUtcTimestamp, rec)) { DPRINTLN(DBG_INFO, "Inverter: " + String(id)); for (uint8_t i = 0; i < rec->length; i++) { if (0.0f != iv->getValue(i, rec)) { snprintf(topic, 30, "%s/ch%d/%s", iv->name, rec->assign[i].ch, iv->getFieldName(i, rec)); snprintf(val, 10, "%.3f %s", iv->getValue(i, rec), iv->getUnit(i, rec)); DPRINTLN(DBG_INFO, String(topic) + ": " + String(val)); } yield(); } DPRINTLN(DBG_INFO, ""); } } } } } if (++mSendTicker >= mConfig.sendInterval) { mSendTicker = 0; if (mUtcTimestamp > 946684800 && (!mConfig.sunDisNightCom || !mLatestSunTimestamp || (mUtcTimestamp >= mSunrise && mUtcTimestamp <= mSunset))) { // Timestamp is set and (inverter communication only during the day if the option is activated and sunrise/sunset is set) if (mConfig.serialDebug) DPRINTLN(DBG_DEBUG, F("Free heap: 0x") + String(ESP.getFreeHeap(), HEX)); if (!mSys->BufCtrl.empty()) { if (mConfig.serialDebug) DPRINTLN(DBG_DEBUG, F("recbuf not empty! #") + String(mSys->BufCtrl.getFill())); } int8_t maxLoop = MAX_NUM_INVERTERS; Inverter<> *iv = mSys->getInverterByPos(mSendLastIvId); do { // if(NULL != iv) // mPayload[iv->id].requested = false; mSendLastIvId = ((MAX_NUM_INVERTERS - 1) == mSendLastIvId) ? 0 : mSendLastIvId + 1; iv = mSys->getInverterByPos(mSendLastIvId); } while ((NULL == iv) && ((maxLoop--) > 0)); if (NULL != iv) { if (!mPayload[iv->id].complete) processPayload(false); if (!mPayload[iv->id].complete) { if (0 == mPayload[iv->id].maxPackId) mStat.rxFailNoAnser++; else mStat.rxFail++; iv->setQueuedCmdFinished(); // command failed if (mConfig.serialDebug) DPRINTLN(DBG_INFO, F("enqueued cmd failed/timeout")); if (mConfig.serialDebug) { DPRINT(DBG_INFO, F("(#") + String(iv->id) + ") "); DPRINTLN(DBG_INFO, F("no Payload received! (retransmits: ") + String(mPayload[iv->id].retransmits) + ")"); } } resetPayload(iv); mPayload[iv->id].requested = true; yield(); if (mConfig.serialDebug) { DPRINTLN(DBG_DEBUG, F("app:loop WiFi WiFi.status ") + String(WiFi.status())); DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") Requesting Inv SN ") + String(iv->serial.u64, HEX)); } if (iv->devControlRequest) { if (mConfig.serialDebug) DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") Devcontrol request ") + String(iv->devControlCmd) + F(" power limit ") + String(iv->powerLimit[0])); mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit); mPayload[iv->id].txCmd = iv->devControlCmd; iv->clearCmdQueue(); iv->enqueCommand(SystemConfigPara); } else { uint8_t cmd = iv->getQueuedCmd(); DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") sendTimePacket")); mSys->Radio.sendTimePacket(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex); mPayload[iv->id].txCmd = cmd; mRxTicker = 0; } } } else if (mConfig.serialDebug) DPRINTLN(DBG_WARN, F("Time not set or it is night time, therefore no communication to the inverter!")); yield(); updateLed(); } } } //----------------------------------------------------------------------------- void app::handleIntr(void) { DPRINTLN(DBG_VERBOSE, F("app::handleIntr")); mSys->Radio.handleIntr(); } //----------------------------------------------------------------------------- bool app::buildPayload(uint8_t id) { DPRINTLN(DBG_VERBOSE, F("app::buildPayload")); uint16_t crc = 0xffff, crcRcv = 0x0000; if (mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES) mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES; for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) { if (mPayload[id].len[i] > 0) { if (i == (mPayload[id].maxPackId - 1)) { crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc); crcRcv = (mPayload[id].data[i][mPayload[id].len[i] - 2] << 8) | (mPayload[id].data[i][mPayload[id].len[i] - 1]); } else crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i], crc); } yield(); } return (crc == crcRcv) ? true : false; } //----------------------------------------------------------------------------- void app::processPayload(bool retransmit) { for (uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if (NULL == iv) continue; // skip to next inverter if ((mPayload[iv->id].txId != (TX_REQ_INFO + ALL_FRAMES)) && (0 != mPayload[iv->id].txId)) { // no processing needed if txId is not 0x95 // DPRINTLN(DBG_INFO, F("processPayload - set complete, txId: ") + String(mPayload[iv->id].txId, HEX)); mPayload[iv->id].complete = true; } if (!mPayload[iv->id].complete) { if (!buildPayload(iv->id)) { // payload not complete if ((mPayload[iv->id].requested) && (retransmit)) { if (iv->devControlCmd == Restart || iv->devControlCmd == CleanState_LockAndAlarm) { // This is required to prevent retransmissions without answer. DPRINTLN(DBG_INFO, F("Prevent retransmit on Restart / CleanState_LockAndAlarm...")); mPayload[iv->id].retransmits = mConfig.maxRetransPerPyld; } else { if (mPayload[iv->id].retransmits < mConfig.maxRetransPerPyld) { mPayload[iv->id].retransmits++; if (mPayload[iv->id].maxPackId != 0) { for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId - 1); i++) { if (mPayload[iv->id].len[i] == 0) { if (mConfig.serialDebug) DPRINTLN(DBG_WARN, F("while retrieving data: Frame ") + String(i + 1) + F(" missing: Request Retransmit")); mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, (SINGLE_FRAME + i), true); break; // only retransmit one frame per loop } yield(); } } else { if (mConfig.serialDebug) DPRINTLN(DBG_WARN, F("while retrieving data: last frame missing: Request Retransmit")); if (0x00 != mLastPacketId) mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, mLastPacketId, true); else { mPayload[iv->id].txCmd = iv->getQueuedCmd(); DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") sendTimePacket")); mSys->Radio.sendTimePacket(iv->radioId.u64, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex); } } mSys->Radio.switchRxCh(100); } } } } else { // payload complete DPRINTLN(DBG_INFO, F("procPyld: cmd: ") + String(mPayload[iv->id].txCmd)); DPRINTLN(DBG_INFO, F("procPyld: txid: 0x") + String(mPayload[iv->id].txId, HEX)); DPRINTLN(DBG_DEBUG, F("procPyld: max: ") + String(mPayload[iv->id].maxPackId)); record_t<> *rec = iv->getRecordStruct(mPayload[iv->id].txCmd); // choose the parser mPayload[iv->id].complete = true; uint8_t payload[128]; uint8_t payloadLen = 0; memset(payload, 0, 128); for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i++) { memcpy(&payload[payloadLen], mPayload[iv->id].data[i], (mPayload[iv->id].len[i])); payloadLen += (mPayload[iv->id].len[i]); yield(); } payloadLen -= 2; if (mConfig.serialDebug) { DPRINT(DBG_INFO, F("Payload (") + String(payloadLen) + "): "); mSys->Radio.dumpBuf(NULL, payload, payloadLen); } if (NULL == rec) { DPRINTLN(DBG_ERROR, F("record is NULL!")); } else if ((rec->pyldLen == payloadLen) || (0 == rec->pyldLen)) { if (mPayload[iv->id].txId == (TX_REQ_INFO + 0x80)) mStat.rxSuccess++; rec->ts = mPayload[iv->id].ts; for (uint8_t i = 0; i < rec->length; i++) { iv->addValue(i, payload, rec); yield(); } iv->doCalculations(); mMqttSendList.push(mPayload[iv->id].txCmd); } else { DPRINTLN(DBG_ERROR, F("plausibility check failed, expected ") + String(rec->pyldLen) + F(" bytes")); mStat.rxFail++; } iv->setQueuedCmdFinished(); } } yield(); } // ist MQTT aktiviert und es wurden Daten vom einem oder mehreren WR aufbereitet // dann die den mMqttTicker auf mMqttIntervall -2 setzen, also // MQTT aussenden in 2 sek aktivieren if ((mMqttInterval != 0xffff) && (!mMqttSendList.empty())) { mMqttTicker = mMqttInterval - 2; } } //----------------------------------------------------------------------------- bool app::getWifiApActive(void) { return mWifi->getApActive(); } //----------------------------------------------------------------------------- void app::scanAvailNetworks(void) { mWifi->scanAvailNetworks(); } //----------------------------------------------------------------------------- void app::getAvailNetworks(JsonObject obj) { mWifi->getAvailNetworks(obj); } //----------------------------------------------------------------------------- void app::resetSystem(void) { mUptimeSecs = 0; mPrevMillis = 0; mUpdateNtp = false; mFlagSendDiscoveryConfig = false; mNtpRefreshTicker = 0; mNtpRefreshInterval = NTP_REFRESH_INTERVAL; // [ms] #ifdef AP_ONLY mUtcTimestamp = 1; #else mUtcTimestamp = 0; #endif mHeapStatCnt = 0; mSendTicker = 0xffff; mMqttTicker = 0xffff; mMqttInterval = MQTT_INTERVAL; mSerialTicker = 0xffff; mMqttActive = false; mTicker = 0; mRxTicker = 0; mSendLastIvId = 0; mShowRebootRequest = false; memset(mPayload, 0, (MAX_NUM_INVERTERS * sizeof(invPayload_t))); memset(&mStat, 0, sizeof(statistics_t)); mLastPacketId = 0x00; } //----------------------------------------------------------------------------- void app::loadDefaultConfig(void) { memset(&mSysConfig, 0, sizeof(sysConfig_t)); memset(&mConfig, 0, sizeof(config_t)); snprintf(mVersion, 12, "%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH); snprintf(mSysConfig.deviceName, DEVNAME_LEN, "%s", DEF_DEVICE_NAME); // wifi snprintf(mSysConfig.stationSsid, SSID_LEN, "%s", FB_WIFI_SSID); snprintf(mSysConfig.stationPwd, PWD_LEN, "%s", FB_WIFI_PWD); // password snprintf(mConfig.password, PWD_LEN, "%s", GUI_DEF_PASSWORD); // nrf24 mConfig.sendInterval = SEND_INTERVAL; mConfig.maxRetransPerPyld = DEF_MAX_RETRANS_PER_PYLD; mConfig.pinCs = DEF_CS_PIN; mConfig.pinCe = DEF_CE_PIN; mConfig.pinIrq = DEF_IRQ_PIN; mConfig.amplifierPower = DEF_AMPLIFIERPOWER & 0x03; // status LED mConfig.led.led0 = DEF_LED0_PIN; mConfig.led.led1 = DEF_LED1_PIN; // ntp snprintf(mConfig.ntpAddr, NTP_ADDR_LEN, "%s", DEF_NTP_SERVER_NAME); mConfig.ntpPort = DEF_NTP_PORT; // Latitude + Longitude mConfig.sunLat = 0.0; mConfig.sunLon = 0.0; mConfig.sunDisNightCom = false; // mqtt snprintf(mConfig.mqtt.broker, MQTT_ADDR_LEN, "%s", DEF_MQTT_BROKER); mConfig.mqtt.port = DEF_MQTT_PORT; snprintf(mConfig.mqtt.user, MQTT_USER_LEN, "%s", DEF_MQTT_USER); snprintf(mConfig.mqtt.pwd, MQTT_PWD_LEN, "%s", DEF_MQTT_PWD); snprintf(mConfig.mqtt.topic, MQTT_TOPIC_LEN, "%s", DEF_MQTT_TOPIC); // serial mConfig.serialInterval = SERIAL_INTERVAL; mConfig.serialShowIv = false; mConfig.serialDebug = false; // Disclaimer mConfig.disclaimer = false; } //----------------------------------------------------------------------------- void app::loadEEpconfig(void) { DPRINTLN(DBG_INFO, F("loadEEpconfig")); if (mWifiSettingsValid) mEep->read(ADDR_CFG_SYS, (uint8_t *)&mSysConfig, CFG_SYS_LEN); if (mSettingsValid) { mEep->read(ADDR_CFG, (uint8_t *)&mConfig, CFG_LEN); mSendTicker = mConfig.sendInterval; mSerialTicker = 0; // inverter uint64_t invSerial; char name[MAX_NAME_LENGTH + 1] = {0}; uint16_t modPwr[4]; Inverter<> *iv; for (uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) { mEep->read(ADDR_INV_ADDR + (i * 8), &invSerial); mEep->read(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), name, MAX_NAME_LENGTH); mEep->read(ADDR_INV_CH_PWR + (i * 2 * 4), modPwr, 4); if (0ULL != invSerial) { iv = mSys->addInverter(name, invSerial, modPwr); if (NULL != iv) { // will run once on every dtu boot for (uint8_t j = 0; j < 4; j++) { mEep->read(ADDR_INV_CH_NAME + (i * 4 * MAX_NAME_LENGTH) + j * MAX_NAME_LENGTH, iv->chName[j], MAX_NAME_LENGTH); } } // TODO: the original mqttinterval value is not needed any more mMqttInterval += mConfig.sendInterval; } } for (uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) { iv = mSys->getInverterByPos(i, false); if (NULL != iv) resetPayload(iv); } } } //----------------------------------------------------------------------------- void app::saveValues(void) { DPRINTLN(DBG_VERBOSE, F("app::saveValues")); mEep->write(ADDR_CFG_SYS, (uint8_t *)&mSysConfig, CFG_SYS_LEN); mEep->write(ADDR_CFG, (uint8_t *)&mConfig, CFG_LEN); Inverter<> *iv; for (uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) { iv = mSys->getInverterByPos(i, false); mEep->write(ADDR_INV_ADDR + (i * 8), iv->serial.u64); mEep->write(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), iv->name, MAX_NAME_LENGTH); // max channel power / name for (uint8_t j = 0; j < 4; j++) { mEep->write(ADDR_INV_CH_PWR + (i * 2 * 4) + (j * 2), iv->chMaxPwr[j]); mEep->write(ADDR_INV_CH_NAME + (i * 4 * MAX_NAME_LENGTH) + j * MAX_NAME_LENGTH, iv->chName[j], MAX_NAME_LENGTH); } } updateCrc(); // update sun mLatestSunTimestamp = 0; } //----------------------------------------------------------------------------- void app::setupMqtt(void) { if (mSettingsValid) { if (mConfig.mqtt.broker[0] > 0) { mMqttActive = true; if (mMqttInterval < MIN_MQTT_INTERVAL) mMqttInterval = MIN_MQTT_INTERVAL; } else mMqttInterval = 0xffff; mMqttTicker = 0; if(mMqttActive) mMqtt.setup(&mConfig.mqtt, mSysConfig.deviceName, mSys); if (mMqttActive) { mMqtt.sendMsg("version", mVersion); if (mMqtt.isConnected()) { mMqtt.sendMsg("device", mSysConfig.deviceName); mMqtt.sendMsg("uptime", "0"); } } } } //----------------------------------------------------------------------------- void app::setupLed(void) { /** LED connection diagram * \\ * PIN ---- |<----- 3.3V * * */ if(mConfig.led.led0 != 0xff) { pinMode(mConfig.led.led0, OUTPUT); digitalWrite(mConfig.led.led0, HIGH); // LED off } if(mConfig.led.led1 != 0xff) { pinMode(mConfig.led.led1, OUTPUT); digitalWrite(mConfig.led.led1, HIGH); // LED off } } //----------------------------------------------------------------------------- void app::updateLed(void) { if(mConfig.led.led0 != 0xff) { Inverter<> *iv = mSys->getInverterByPos(0); if (NULL != iv) { record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); if(iv->isProducing(mUtcTimestamp, rec)) digitalWrite(mConfig.led.led0, LOW); // LED on else digitalWrite(mConfig.led.led0, HIGH); // LED off } } } //----------------------------------------------------------------------------- void app::resetPayload(Inverter<> *iv) { DPRINTLN(DBG_INFO, "resetPayload: id: " + String(iv->id)); memset(mPayload[iv->id].len, 0, MAX_PAYLOAD_ENTRIES); mPayload[iv->id].txCmd = 0; mPayload[iv->id].retransmits = 0; mPayload[iv->id].maxPackId = 0; mPayload[iv->id].complete = false; mPayload[iv->id].requested = false; mPayload[iv->id].ts = mUtcTimestamp; }