//----------------------------------------------------------------------------- // 2022 Ahoy, https://ahoydtu.de // Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/ //----------------------------------------------------------------------------- #ifndef __PUB_MQTT_H__ #define __PUB_MQTT_H__ #ifdef ESP8266 #include #elif defined(ESP32) #include #endif #include "../utils/dbg.h" #include "../utils/ahoyTimer.h" #include "../config/config.h" #include #include #include "../defines.h" #include "../hm/hmSystem.h" #define QOS_0 0 //https://bert.emelis.net/espMqttClient/ template class PubMqtt { public: PubMqtt() { mTxCnt = 0; } ~PubMqtt() { } void setup(cfgMqtt_t *cfg_mqtt, const char *devName, const char *version, HMSYSTEM *sys, uint32_t *utcTs, uint32_t *sunrise, uint32_t *sunset) { mCfgMqtt = cfg_mqtt; mDevName = devName; mVersion = version; mSys = sys; mUtcTimestamp = utcTs; mSunrise = sunrise; mSunset = sunset; mHWifiCon = WiFi.onStationModeGotIP(std::bind(&PubMqtt::onWifiConnect, this, std::placeholders::_1)); mHWifiDiscon = WiFi.onStationModeDisconnected(std::bind(&PubMqtt::onWifiDisconnect, this, std::placeholders::_1)); if((strlen(mCfgMqtt->user) > 0) && (strlen(mCfgMqtt->pwd) > 0)) mClient.setCredentials(mCfgMqtt->user, mCfgMqtt->pwd); mClient.setClientId(mDevName); // TODO: add mac? mClient.setServer(mCfgMqtt->broker, mCfgMqtt->port); mClient.onConnect(std::bind(&PubMqtt::onConnect, this, std::placeholders::_1)); mClient.onDisconnect(std::bind(&PubMqtt::onDisconnect, this, std::placeholders::_1)); mClient.onSubscribe(std::bind(&PubMqtt::onSubscribe, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3)); mClient.onPublish(std::bind(&PubMqtt::onPublish, this, std::placeholders::_1)); //mClient.setWill } void loop() { mClient.loop(); } void tickerSecond() { sendIvData(); } void tickerMinute() { char val[12]; snprintf(val, 12, "%ld", millis() / 1000); publish("uptime", val); publish("wifi_rssi", String(WiFi.RSSI()).c_str()); } void tickerHour() { publish("sunrise", String(*mSunrise).c_str(), true); publish("sunset", String(*mSunset).c_str(), true); } void publish(const char *subTopic, const char *payload, bool retained = false) { char topic[MQTT_TOPIC_LEN + 2]; snprintf(topic, (MQTT_TOPIC_LEN + 2), "%s/%s", mCfgMqtt->topic, subTopic); mClient.publish(topic, QOS_0, retained, payload); mTxCnt++; } void subscribe(const char *subTopic) { char topic[MQTT_TOPIC_LEN + 20]; snprintf(topic, (MQTT_TOPIC_LEN + 20), "%s/%s", mCfgMqtt->topic, subTopic); mClient.subscribe(topic, QOS_0); } inline bool isConnected() { return mClient.connected(); } inline uint32_t getTxCnt(void) { return mTxCnt; } void payloadEventListener(uint8_t cmd) { mSendList.push(cmd); } void sendMqttDiscoveryConfig(const char *topic) { DPRINTLN(DBG_VERBOSE, F("sendMqttDiscoveryConfig")); char stateTopic[64], discoveryTopic[64], buffer[512], name[32], uniq_id[32]; for (uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if (NULL != iv) { record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); DynamicJsonDocument deviceDoc(128); deviceDoc["name"] = iv->config->name; deviceDoc["ids"] = String(iv->config->serial.u64, HEX); deviceDoc["cu"] = F("http://") + String(WiFi.localIP().toString()); deviceDoc["mf"] = "Hoymiles"; deviceDoc["mdl"] = iv->config->name; JsonObject deviceObj = deviceDoc.as(); DynamicJsonDocument doc(384); for (uint8_t i = 0; i < rec->length; i++) { if (rec->assign[i].ch == CH0) { snprintf(name, 32, "%s %s", iv->config->name, iv->getFieldName(i, rec)); } else { snprintf(name, 32, "%s CH%d %s", iv->config->name, rec->assign[i].ch, iv->getFieldName(i, rec)); } snprintf(stateTopic, 64, "%s/%s/ch%d/%s", topic, iv->config->name, rec->assign[i].ch, iv->getFieldName(i, rec)); snprintf(discoveryTopic, 64, "%s/sensor/%s/ch%d_%s/config", MQTT_DISCOVERY_PREFIX, iv->config->name, rec->assign[i].ch, iv->getFieldName(i, rec)); snprintf(uniq_id, 32, "ch%d_%s", rec->assign[i].ch, iv->getFieldName(i, rec)); const char *devCls = getFieldDeviceClass(rec->assign[i].fieldId); const char *stateCls = getFieldStateClass(rec->assign[i].fieldId); doc["name"] = name; doc["stat_t"] = stateTopic; doc["unit_of_meas"] = iv->getUnit(i, rec); doc["uniq_id"] = String(iv->config->serial.u64, HEX) + "_" + uniq_id; doc["dev"] = deviceObj; doc["exp_aft"] = MQTT_INTERVAL + 5; // add 5 sec if connection is bad or ESP too slow @TODO: stimmt das wirklich als expire!? if (devCls != NULL) doc["dev_cla"] = devCls; if (stateCls != NULL) doc["stat_cla"] = stateCls; serializeJson(doc, buffer); publish(discoveryTopic, buffer, true); doc.clear(); } yield(); } } } private: void onWifiConnect(const WiFiEventStationModeGotIP& event) { DPRINTLN(DBG_VERBOSE, F("MQTT connecting")); mClient.connect(); } void onWifiDisconnect(const WiFiEventStationModeDisconnected& event) { DPRINTLN(DBG_WARN, F("TODO: MQTT reconnect!")); } void onConnect(bool sessionPreset) { DPRINTLN(DBG_INFO, F("MQTT connected")); publish("version", mVersion, true); publish("device", mDevName, true); publish("uptime", "0"); subscribe("devcontrol/#"); // TODO: register onMessage callback! } void onDisconnect(espMqttClientTypes::DisconnectReason reason) { DBGPRINT(F("MQTT disconnected, reason: ")); switch (reason) { case espMqttClientTypes::DisconnectReason::TCP_DISCONNECTED: DBGPRINTLN(F("TCP disconnect")); break; case espMqttClientTypes::DisconnectReason::MQTT_UNACCEPTABLE_PROTOCOL_VERSION: DBGPRINTLN(F("wrong protocol version")); break; case espMqttClientTypes::DisconnectReason::MQTT_IDENTIFIER_REJECTED: DBGPRINTLN(F("identifier rejected")); break; case espMqttClientTypes::DisconnectReason::MQTT_SERVER_UNAVAILABLE: DBGPRINTLN(F("broker unavailable")); break; case espMqttClientTypes::DisconnectReason::MQTT_MALFORMED_CREDENTIALS: DBGPRINTLN(F("malformed credentials")); break; case espMqttClientTypes::DisconnectReason::MQTT_NOT_AUTHORIZED: DBGPRINTLN(F("not authorized")); break; default: DBGPRINTLN(F("unknown")); } } void onSubscribe(uint16_t packetId, const espMqttClientTypes::SubscribeReturncode* codes, size_t len) { DPRINTLN(DBG_INFO, F("MQTT Subscribe")); Serial.print(" packetId: "); Serial.println(packetId); for (size_t i = 0; i < len; ++i) { Serial.print(" qos: "); Serial.println(static_cast(codes[i])); } } void onPublish(uint16_t packetId) { Serial.println("Publish acknowledged."); Serial.print(" packetId: "); Serial.println(packetId); } /*void reconnect(void) { DPRINTLN(DBG_DEBUG, F("mqtt.h:reconnect")); DPRINTLN(DBG_DEBUG, F("MQTT mClient->_state ") + String(mClient->state()) ); #ifdef ESP8266 DPRINTLN(DBG_DEBUG, F("WIFI mEspClient.status ") + String(mEspClient.status()) ); #endif boolean resub = false; if(!mClient->connected() && (millis() - mLastReconnect) > MQTT_RECONNECT_DELAY ) { mLastReconnect = millis(); if(strlen(mDevName) > 0) { // der Server und der Port müssen neu gesetzt werden, // da ein MQTT_CONNECTION_LOST -3 die Werte zerstört hat. mClient->setServer(mCfgMqtt->broker, mCfgMqtt->port); mClient->setBufferSize(MQTT_MAX_PACKET_SIZE); char lwt[MQTT_TOPIC_LEN + 7 ]; // "/uptime" --> + 7 byte snprintf(lwt, MQTT_TOPIC_LEN + 7, "%s/uptime", mCfgMqtt->topic); if((strlen(mCfgMqtt->user) > 0) && (strlen(mCfgMqtt->pwd) > 0)) resub = mClient->connect(mDevName, mCfgMqtt->user, mCfgMqtt->pwd, lwt, 0, false, "offline"); else resub = mClient->connect(mDevName, lwt, 0, false, "offline"); // ein Subscribe ist nur nach einem connect notwendig if(resub) { char topic[MQTT_TOPIC_LEN + 13 ]; // "/devcontrol/#" --> + 6 byte // ToDo: "/devcontrol/#" is hardcoded snprintf(topic, MQTT_TOPIC_LEN + 13, "%s/devcontrol/#", mCfgMqtt->topic); DPRINTLN(DBG_INFO, F("subscribe to ") + String(topic)); mClient->subscribe(topic); // subscribe to mTopic + "/devcontrol/#" } } } }*/ const char *getFieldDeviceClass(uint8_t fieldId) { uint8_t pos = 0; for (; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) { if (deviceFieldAssignment[pos].fieldId == fieldId) break; } return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : deviceClasses[deviceFieldAssignment[pos].deviceClsId]; } const char *getFieldStateClass(uint8_t fieldId) { uint8_t pos = 0; for (; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) { if (deviceFieldAssignment[pos].fieldId == fieldId) break; } return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : stateClasses[deviceFieldAssignment[pos].stateClsId]; } void sendIvData(void) { if(mSendList.empty()) return; char topic[32 + MAX_NAME_LENGTH], val[40]; float total[4]; bool sendTotal = false; bool totalIncomplete = false; while(!mSendList.empty()) { memset(total, 0, sizeof(float) * 4); for (uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if (NULL == iv) continue; // skip to next inverter record_t<> *rec = iv->getRecordStruct(mSendList.front()); if(mSendList.front() == RealTimeRunData_Debug) { // inverter status uint8_t status = MQTT_STATUS_AVAIL_PROD; if (!iv->isAvailable(*mUtcTimestamp, rec)) { status = MQTT_STATUS_NOT_AVAIL_NOT_PROD; totalIncomplete = true; } else if (!iv->isProducing(*mUtcTimestamp, rec)) { if (MQTT_STATUS_AVAIL_PROD == status) status = MQTT_STATUS_AVAIL_NOT_PROD; } snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/available_text", iv->config->name); snprintf(val, 40, "%s%s%s%s", (status == MQTT_STATUS_NOT_AVAIL_NOT_PROD) ? "not yet " : "", "available and ", (status == MQTT_STATUS_AVAIL_NOT_PROD) ? "not " : "", (status == MQTT_STATUS_NOT_AVAIL_NOT_PROD) ? "" : "producing" ); publish(topic, val); snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/available", iv->config->name); snprintf(val, 40, "%d", status); publish(topic, val); snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/last_success", iv->config->name); snprintf(val, 40, "%i", iv->getLastTs(rec) * 1000); publish(topic, val); } // data if(iv->isAvailable(*mUtcTimestamp, rec)) { for (uint8_t i = 0; i < rec->length; i++) { snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/ch%d/%s", iv->config->name, rec->assign[i].ch, fields[rec->assign[i].fieldId]); snprintf(val, 40, "%.3f", iv->getValue(i, rec)); publish(topic, val); // calculate total values for RealTimeRunData_Debug if (mSendList.front() == RealTimeRunData_Debug) { if (CH0 == rec->assign[i].ch) { switch (rec->assign[i].fieldId) { case FLD_PAC: total[0] += iv->getValue(i, rec); break; case FLD_YT: total[1] += iv->getValue(i, rec); break; case FLD_YD: total[2] += iv->getValue(i, rec); break; case FLD_PDC: total[3] += iv->getValue(i, rec); break; } } sendTotal = true; } yield(); } } } mSendList.pop(); // remove from list once all inverters were processed if ((true == sendTotal) && (false == totalIncomplete)) { uint8_t fieldId; for (uint8_t i = 0; i < 4; i++) { switch (i) { default: case 0: fieldId = FLD_PAC; break; case 1: fieldId = FLD_YT; break; case 2: fieldId = FLD_YD; break; case 3: fieldId = FLD_PDC; break; } snprintf(topic, 32 + MAX_NAME_LENGTH, "total/%s", fields[fieldId]); snprintf(val, 40, "%.3f", total[i]); publish(topic, val); } } } } // void cbMqtt(char *topic, byte *payload, unsigned int length) { // // callback handling on subscribed devcontrol topic // DPRINTLN(DBG_INFO, F("cbMqtt")); // // subcribed topics are mTopic + "/devcontrol/#" where # is / // // eg. mypvsolar/devcontrol/1/11 with payload "400" --> inverter 1 active power limit 400 Watt // const char *token = strtok(topic, "/"); // while (token != NULL) { // if (strcmp(token, "devcontrol") == 0) { // token = strtok(NULL, "/"); // uint8_t iv_id = std::stoi(token); // // if (iv_id >= 0 && iv_id <= MAX_NUM_INVERTERS) { // Inverter<> *iv = mSys->getInverterByPos(iv_id); // if (NULL != iv) { // if (!iv->devControlRequest) { // still pending // token = strtok(NULL, "/"); // // switch (std::stoi(token)) { // // Active Power Control // case ActivePowerContr: // token = strtok(NULL, "/"); // get ControlMode aka "PowerPF.Desc" in DTU-Pro Code from topic string // if (token == NULL) // default via mqtt ommit the LimitControlMode // iv->powerLimit[1] = AbsolutNonPersistent; // else // iv->powerLimit[1] = std::stoi(token); // if (length <= 5) { // if (std::stoi((char*)payload) > 0) more error handling powerlimit needed? // if (iv->powerLimit[1] >= AbsolutNonPersistent && iv->powerLimit[1] <= RelativPersistent) { // iv->devControlCmd = ActivePowerContr; // iv->powerLimit[0] = std::stoi(std::string((char *)payload, (unsigned int)length)); // THX to @silversurfer // /*if (iv->powerLimit[1] & 0x0001) // DPRINTLN(DBG_INFO, F("Power limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("%")); // else // DPRINTLN(DBG_INFO, F("Power limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("W"));*/ // // DPRINTLN(DBG_INFO, F("Power limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + String(iv->powerLimit[1] & 0x0001) ? F("%") : F("W")); // } // iv->devControlRequest = true; // } else { // DPRINTLN(DBG_INFO, F("Invalid mqtt payload recevied: ") + String((char *)payload)); // } // break; // // // Turn On // case TurnOn: // iv->devControlCmd = TurnOn; // DPRINTLN(DBG_INFO, F("Turn on inverter ") + String(iv->id)); // iv->devControlRequest = true; // break; // // // Turn Off // case TurnOff: // iv->devControlCmd = TurnOff; // DPRINTLN(DBG_INFO, F("Turn off inverter ") + String(iv->id)); // iv->devControlRequest = true; // break; // // // Restart // case Restart: // iv->devControlCmd = Restart; // DPRINTLN(DBG_INFO, F("Restart inverter ") + String(iv->id)); // iv->devControlRequest = true; // break; // // // Reactive Power Control // case ReactivePowerContr: // iv->devControlCmd = ReactivePowerContr; // if (true) { // if (std::stoi((char*)payload) > 0) error handling powerlimit needed? // iv->devControlCmd = ReactivePowerContr; // iv->powerLimit[0] = std::stoi(std::string((char *)payload, (unsigned int)length)); // iv->powerLimit[1] = 0x0000; // if reactivepower limit is set via external interface --> set it temporay // DPRINTLN(DBG_DEBUG, F("Reactivepower limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("W")); // iv->devControlRequest = true; // } // break; // // // Set Power Factor // case PFSet: // // iv->devControlCmd = PFSet; // // uint16_t power_factor = std::stoi(strtok(NULL, "/")); // DPRINTLN(DBG_INFO, F("Set Power Factor not implemented for inverter ") + String(iv->id)); // break; // // // CleanState lock & alarm // case CleanState_LockAndAlarm: // iv->devControlCmd = CleanState_LockAndAlarm; // DPRINTLN(DBG_INFO, F("CleanState lock & alarm for inverter ") + String(iv->id)); // iv->devControlRequest = true; // break; // // default: // DPRINTLN(DBG_INFO, "Not implemented"); // break; // } // } // } // } // break; // } // token = strtok(NULL, "/"); // } // DPRINTLN(DBG_INFO, F("app::cbMqtt finished")); // } espMqttClient mClient; cfgMqtt_t *mCfgMqtt; WiFiEventHandler mHWifiCon, mHWifiDiscon; uint32_t *mSunrise, *mSunset; HMSYSTEM *mSys; uint32_t *mUtcTimestamp; uint32_t mTxCnt; std::queue mSendList; const char *mDevName, *mVersion; //uint32_t mLastReconnect; }; #endif /*__PUB_MQTT_H__*/