//----------------------------------------------------------------------------- // 2023 Ahoy, https://ahoydtu.de // Creative Commons - https://creativecommons.org/licenses/by-nc-sa/4.0/deed //----------------------------------------------------------------------------- #include #include "app.h" #include "utils/sun.h" //----------------------------------------------------------------------------- app::app() : ah::Scheduler {} {} //----------------------------------------------------------------------------- void app::setup() { Serial.begin(115200); while (!Serial) yield(); resetSystem(); mSettings.setup(); mSettings.getPtr(mConfig); ah::Scheduler::setup(mConfig->inst.startWithoutTime); DPRINT(DBG_INFO, F("Settings valid: ")); DSERIAL.flush(); if (mSettings.getValid()) DBGPRINTLN(F("true")); else DBGPRINTLN(F("false")); if(mConfig->nrf.enabled) { mNrfRadio.setup(&mNrfStat, mConfig->nrf.amplifierPower, mConfig->nrf.pinIrq, mConfig->nrf.pinCe, mConfig->nrf.pinCs, mConfig->nrf.pinSclk, mConfig->nrf.pinMosi, mConfig->nrf.pinMiso); mNrfRadio.enableDebug(); } #if defined(ESP32) if(mConfig->cmt.enabled) { mCmtRadio.setup(&mCmtStat, mConfig->cmt.pinSclk, mConfig->cmt.pinSdio, mConfig->cmt.pinCsb, mConfig->cmt.pinFcsb, false); mCmtRadio.enableDebug(); } #endif #ifdef ETHERNET delay(1000); DPRINT(DBG_INFO, F("mEth setup...")); DSERIAL.flush(); mEth.setup(mConfig, &mTimestamp, [this](bool gotIp) { this->onNetwork(gotIp); }, [this](bool gotTime) { this->onNtpUpdate(gotTime); }); DBGPRINTLN(F("done...")); DSERIAL.flush(); #endif // ETHERNET #if !defined(ETHERNET) mWifi.setup(mConfig, &mTimestamp, std::bind(&app::onNetwork, this, std::placeholders::_1)); #if !defined(AP_ONLY) everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL"); #endif #endif /* defined(ETHERNET) */ mSys.setup(&mTimestamp, &mConfig->inst); Inverter<> *iv; for (uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) { mSys.addInverter(i); } if (mConfig->nrf.enabled) { mPayload.setup(this, &mSys, &mNrfRadio, &mNrfStat, mConfig->nrf.maxRetransPerPyld, &mTimestamp); mPayload.enableSerialDebug(mConfig->serial.debug); mPayload.addPayloadListener(std::bind(&app::payloadEventListener, this, std::placeholders::_1, std::placeholders::_2)); mMiPayload.setup(this, &mSys, &mNrfRadio, &mNrfStat, mConfig->nrf.maxRetransPerPyld, &mTimestamp); mMiPayload.enableSerialDebug(mConfig->serial.debug); mMiPayload.addPayloadListener(std::bind(&app::payloadEventListener, this, std::placeholders::_1, std::placeholders::_2)); } #if defined(ESP32) mHmsPayload.setup(this, &mSys, &mCmtRadio, &mCmtStat, 5, &mTimestamp); mHmsPayload.enableSerialDebug(mConfig->serial.debug); mHmsPayload.addPayloadListener(std::bind(&app::payloadEventListener, this, std::placeholders::_1, std::placeholders::_2)); #endif if(mConfig->nrf.enabled) { if (!mNrfRadio.isChipConnected()) DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring")); } // when WiFi is in client mode, then enable mqtt broker #if !defined(AP_ONLY) mMqttEnabled = (mConfig->mqtt.broker[0] > 0); if (mMqttEnabled) { mMqtt.setup(&mConfig->mqtt, mConfig->sys.deviceName, mVersion, &mSys, &mTimestamp, &mUptime); mMqtt.setSubscriptionCb(std::bind(&app::mqttSubRxCb, this, std::placeholders::_1)); mPayload.addAlarmListener([this](Inverter<> *iv) { mMqtt.alarmEvent(iv); }); mMiPayload.addAlarmListener([this](Inverter<> *iv) { mMqtt.alarmEvent(iv); }); #if defined(ESP32) mHmsPayload.addAlarmListener([this](Inverter<> *iv) { mMqtt.alarmEvent(iv); }); #endif } #endif setupLed(); mWeb.setup(this, &mSys, mConfig); mWeb.setProtection(strlen(mConfig->sys.adminPwd) != 0); mApi.setup(this, &mSys, mWeb.getWebSrvPtr(), mConfig); // Plugins if (mConfig->plugin.display.type != 0) mDisplay.setup(this, &mConfig->plugin.display, &mSys, &mNrfRadio, &mTimestamp); mPubSerial.setup(mConfig, &mSys, &mTimestamp); #if !defined(ETHERNET) //mImprov.setup(this, mConfig->sys.deviceName, mVersion); #endif regularTickers(); } //----------------------------------------------------------------------------- void app::loop(void) { ah::Scheduler::loop(); if (mNrfRadio.loop() && mConfig->nrf.enabled) { while (!mNrfRadio.mBufCtrl.empty()) { packet_t *p = &mNrfRadio.mBufCtrl.front(); if (mConfig->serial.debug) { DPRINT(DBG_INFO, F("RX ")); DBGPRINT(String(p->len)); DBGPRINT(F(" CH")); DBGPRINT(String(p->ch)); DBGPRINT(F(", ")); DBGPRINT(String(p->rssi)); DBGPRINT(F("dBm | ")); ah::dumpBuf(p->packet, p->len); } mNrfStat.frmCnt++; Inverter<> *iv = mSys.findInverter(&p->packet[1]); if (NULL != iv) { if (IV_HM == iv->ivGen) mPayload.add(iv, p); else mMiPayload.add(iv, p); } mNrfRadio.mBufCtrl.pop(); yield(); } mPayload.process(true); mMiPayload.process(true); } #if defined(ESP32) if (mCmtRadio.loop() && mConfig->cmt.enabled) { while (!mCmtRadio.mBufCtrl.empty()) { packet_t *p = &mCmtRadio.mBufCtrl.front(); if (mConfig->serial.debug) { DPRINT(DBG_INFO, F("RX ")); DBGPRINT(String(p->len)); DBGPRINT(F(", ")); DBGPRINT(String(p->rssi)); DBGPRINT(F("dBm | ")); ah::dumpBuf(p->packet, p->len); } mCmtStat.frmCnt++; Inverter<> *iv = mSys.findInverter(&p->packet[1]); if(NULL != iv) { if((iv->ivGen == IV_HMS) || (iv->ivGen == IV_HMT)) mHmsPayload.add(iv, p); } mCmtRadio.mBufCtrl.pop(); yield(); } mHmsPayload.process(false); //true } #endif mPayload.loop(); mMiPayload.loop(); #if defined(ESP32) mHmsPayload.loop(); #endif if (mMqttEnabled && mNetworkConnected) mMqtt.loop(); } //----------------------------------------------------------------------------- void app::onNetwork(bool gotIp) { DPRINTLN(DBG_DEBUG, F("onNetwork")); mNetworkConnected = gotIp; ah::Scheduler::resetTicker(); regularTickers(); //reinstall regular tickers every(std::bind(&app::tickSend, this), mConfig->nrf.sendInterval, "tSend"); #if defined(ESP32) if(mConfig->cmt.enabled) everySec(std::bind(&CmtRadioType::tickSecond, &mCmtRadio), "tsCmt"); #endif mMqttReconnect = true; mSunrise = 0; // needs to be set to 0, to reinstall sunrise and ivComm tickers! //once(std::bind(&app::tickNtpUpdate, this), 2, "ntp2"); tickNtpUpdate(); #if !defined(ETHERNET) if (WIFI_AP == WiFi.getMode()) { mMqttEnabled = false; } everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL"); #endif /* !defined(ETHERNET) */ } //----------------------------------------------------------------------------- void app::regularTickers(void) { DPRINTLN(DBG_DEBUG, F("regularTickers")); everySec(std::bind(&WebType::tickSecond, &mWeb), "webSc"); // Plugins if (mConfig->plugin.display.type != 0) everySec(std::bind(&DisplayType::tickerSecond, &mDisplay), "disp"); every(std::bind(&PubSerialType::tick, &mPubSerial), mConfig->serial.interval, "uart"); #if !defined(ETHERNET) //everySec([this]() { mImprov.tickSerial(); }, "impro"); #endif // every([this]() { mPayload.simulation();}, 15, "simul"); } #if defined(ETHERNET) void app::onNtpUpdate(bool gotTime) { uint32_t nxtTrig = 5; // default: check again in 5 sec if (gotTime || mTimestamp != 0) { this->updateNtp(); nxtTrig = gotTime ? 43200 : 60; // depending on NTP update success check again in 12 h or in 1 min } once(std::bind(&app::tickNtpUpdate, this), nxtTrig, "ntp"); } #endif /* defined(ETHERNET) */ //----------------------------------------------------------------------------- void app::updateNtp(void) { if (mMqttReconnect && mMqttEnabled) { mMqtt.tickerSecond(); everySec(std::bind(&PubMqttType::tickerSecond, &mMqtt), "mqttS"); everyMin(std::bind(&PubMqttType::tickerMinute, &mMqtt), "mqttM"); } // only install schedulers once even if NTP wasn't successful in first loop if (mMqttReconnect) { // @TODO: mMqttReconnect is variable which scope has changed if (mConfig->inst.rstValsNotAvail) everyMin(std::bind(&app::tickMinute, this), "tMin"); uint32_t localTime = gTimezone.toLocal(mTimestamp); uint32_t midTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time onceAt(std::bind(&app::tickMidnight, this), midTrig, "midNi"); if (mConfig->sys.schedReboot) { uint32_t localTime = gTimezone.toLocal(mTimestamp); uint32_t rebootTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86410); // reboot 10 secs after midnght if (rebootTrig <= mTimestamp) { //necessary for times other than midnight to prevent reboot loop rebootTrig += 86400; } onceAt(std::bind(&app::tickReboot, this), rebootTrig, "midRe"); } } if ((mSunrise == 0) && (mConfig->sun.lat) && (mConfig->sun.lon)) { mCalculatedTimezoneOffset = (int8_t)((mConfig->sun.lon >= 0 ? mConfig->sun.lon + 7.5 : mConfig->sun.lon - 7.5) / 15) * 3600; tickCalcSunrise(); } mMqttReconnect = false; } //----------------------------------------------------------------------------- void app::tickNtpUpdate(void) { uint32_t nxtTrig = 5; // default: check again in 5 sec #if defined(ETHERNET) bool isOK = mEth.updateNtpTime(); #else bool isOK = mWifi.getNtpTime(); #endif if (isOK || mTimestamp != 0) { this->updateNtp(); nxtTrig = isOK ? (mConfig->ntp.interval * 60) : 60; // depending on NTP update success check again in 12h (depends on setting) or in 1 min // immediately start communicating if (isOK && mSendFirst) { mSendFirst = false; once(std::bind(&app::tickSend, this), 2, "senOn"); } mMqttReconnect = false; } once(std::bind(&app::tickNtpUpdate, this), nxtTrig, "ntp"); } //----------------------------------------------------------------------------- void app::tickCalcSunrise(void) { if (mSunrise == 0) // on boot/reboot calc sun values for current time ah::calculateSunriseSunset(mTimestamp, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset); if (mTimestamp > (mSunset + mConfig->sun.offsetSec)) // current time is past communication stop, calc sun values for next day ah::calculateSunriseSunset(mTimestamp + 86400, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset); tickIVCommunication(); uint32_t nxtTrig = mSunset + mConfig->sun.offsetSec + 60; // set next trigger to communication stop, +60 for safety that it is certain past communication stop onceAt(std::bind(&app::tickCalcSunrise, this), nxtTrig, "Sunri"); if (mMqttEnabled) tickSun(); } //----------------------------------------------------------------------------- void app::tickIVCommunication(void) { mIVCommunicationOn = !mConfig->sun.disNightCom; // if sun.disNightCom is false, communication is always on if (!mIVCommunicationOn) { // inverter communication only during the day uint32_t nxtTrig; if (mTimestamp < (mSunrise - mConfig->sun.offsetSec)) { // current time is before communication start, set next trigger to communication start nxtTrig = mSunrise - mConfig->sun.offsetSec; } else { if (mTimestamp >= (mSunset + mConfig->sun.offsetSec)) { // current time is past communication stop, nothing to do. Next update will be done at midnight by tickCalcSunrise nxtTrig = 0; } else { // current time lies within communication start/stop time, set next trigger to communication stop mIVCommunicationOn = true; nxtTrig = mSunset + mConfig->sun.offsetSec; } } if (nxtTrig != 0) onceAt(std::bind(&app::tickIVCommunication, this), nxtTrig, "ivCom"); } tickComm(); } //----------------------------------------------------------------------------- void app::tickSun(void) { // only used and enabled by MQTT (see setup()) if (!mMqtt.tickerSun(mSunrise, mSunset, mConfig->sun.offsetSec, mConfig->sun.disNightCom)) once(std::bind(&app::tickSun, this), 1, "mqSun"); // MQTT not connected, retry } //----------------------------------------------------------------------------- void app::tickComm(void) { if ((!mIVCommunicationOn) && (mConfig->inst.rstValsCommStop)) once(std::bind(&app::tickZeroValues, this), mConfig->nrf.sendInterval, "tZero"); if (mMqttEnabled) { if (!mMqtt.tickerComm(!mIVCommunicationOn)) once(std::bind(&app::tickComm, this), 5, "mqCom"); // MQTT not connected, retry after 5s } } //----------------------------------------------------------------------------- void app::tickZeroValues(void) { zeroIvValues(!CHECK_AVAIL, SKIP_YIELD_DAY); } //----------------------------------------------------------------------------- void app::tickMinute(void) { // only triggered if 'reset values on no avail is enabled' zeroIvValues(CHECK_AVAIL, SKIP_YIELD_DAY); } //----------------------------------------------------------------------------- void app::tickMidnight(void) { uint32_t localTime = gTimezone.toLocal(mTimestamp); uint32_t nxtTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time onceAt(std::bind(&app::tickMidnight, this), nxtTrig, "mid2"); Inverter<> *iv; for (uint8_t id = 0; id < mSys.getNumInverters(); id++) { iv = mSys.getInverterByPos(id); if (NULL == iv) continue; // skip to next inverter // reset alarms if(InverterStatus::OFF == iv->status) iv->resetAlarms(); // clear max values if(mConfig->inst.rstMaxValsMidNight) { uint8_t pos; record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); for(uint8_t i = 0; i <= iv->channels; i++) { pos = iv->getPosByChFld(i, FLD_MP, rec); iv->setValue(pos, rec, 0.0f); } } } if (mConfig->inst.rstYieldMidNight) { zeroIvValues(!CHECK_AVAIL, !SKIP_YIELD_DAY); if (mMqttEnabled) mMqtt.tickerMidnight(); } } //----------------------------------------------------------------------------- void app::tickSend(void) { if(mConfig->nrf.enabled) { if(!mNrfRadio.isChipConnected()) { DPRINTLN(DBG_WARN, F("NRF24 not connected!")); return; } } if (mIVCommunicationOn) { if (!mNrfRadio.mBufCtrl.empty()) { if (mConfig->serial.debug) { DPRINT(DBG_DEBUG, F("recbuf not empty! #")); DBGPRINTLN(String(mNrfRadio.mBufCtrl.size())); } } #if defined(ESP32) if (!mCmtRadio.mBufCtrl.empty()) { if (mConfig->serial.debug) { DPRINT(DBG_INFO, F("recbuf not empty! #")); DBGPRINTLN(String(mCmtRadio.mBufCtrl.size())); } } #endif int8_t maxLoop = MAX_NUM_INVERTERS; Inverter<> *iv = mSys.getInverterByPos(mSendLastIvId); while(maxLoop > 0) { do { mSendLastIvId = ((MAX_NUM_INVERTERS - 1) == mSendLastIvId) ? 0 : mSendLastIvId + 1; iv = mSys.getInverterByPos(mSendLastIvId); } while ((NULL == iv) && ((maxLoop--) > 0)); if(NULL != iv) if(iv->config->enabled) break; } if (NULL != iv) { if (iv->config->enabled) { if(mConfig->nrf.enabled) { if (iv->ivGen == IV_HM) mPayload.ivSend(iv); else if(iv->ivGen == IV_MI) mMiPayload.ivSend(iv); } #if defined(ESP32) if(mConfig->cmt.enabled) { if((iv->ivGen == IV_HMS) || (iv->ivGen == IV_HMT)) mHmsPayload.ivSend(iv); } #endif } } } else { if (mConfig->serial.debug) DPRINTLN(DBG_WARN, F("Time not set or it is night time, therefore no communication to the inverter!")); } yield(); updateLed(); } //----------------------------------------------------------------------------- void app:: zeroIvValues(bool checkAvail, bool skipYieldDay) { Inverter<> *iv; bool changed = false; // set values to zero, except yields for (uint8_t id = 0; id < mSys.getNumInverters(); id++) { iv = mSys.getInverterByPos(id); if (NULL == iv) continue; // skip to next inverter if (!iv->config->enabled) continue; // skip to next inverter if (checkAvail) { if (!iv->isAvailable()) continue; } record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); for(uint8_t ch = 0; ch <= iv->channels; ch++) { uint8_t pos = 0; for(uint8_t fld = 0; fld < FLD_EVT; fld++) { switch(fld) { case FLD_YD: if(skipYieldDay) continue; else break; case FLD_YT: continue; } pos = iv->getPosByChFld(ch, fld, rec); iv->setValue(pos, rec, 0.0f); } // zero max power if(!skipYieldDay) { pos = iv->getPosByChFld(ch, FLD_MP, rec); iv->setValue(pos, rec, 0.0f); } iv->doCalculations(); } changed = true; } if(changed) { if(mMqttEnabled && !skipYieldDay) mMqtt.setZeroValuesEnable(); payloadEventListener(RealTimeRunData_Debug, NULL); } } //----------------------------------------------------------------------------- void app::resetSystem(void) { snprintf(mVersion, 12, "%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH); #ifdef AP_ONLY mTimestamp = 1; #endif mSendFirst = true; mSunrise = 0; mSunset = 0; mMqttEnabled = false; mSendLastIvId = 0; mShowRebootRequest = false; mIVCommunicationOn = true; mSavePending = false; mSaveReboot = false; mNetworkConnected = false; memset(&mNrfStat, 0, sizeof(statistics_t)); memset(&mCmtStat, 0, sizeof(statistics_t)); } //----------------------------------------------------------------------------- void app::mqttSubRxCb(JsonObject obj) { mApi.ctrlRequest(obj); } //----------------------------------------------------------------------------- void app::setupLed(void) { uint8_t led_off = (mConfig->led.led_high_active) ? LOW : HIGH; if (mConfig->led.led0 != DEF_PIN_OFF) { pinMode(mConfig->led.led0, OUTPUT); digitalWrite(mConfig->led.led0, led_off); } if (mConfig->led.led1 != DEF_PIN_OFF) { pinMode(mConfig->led.led1, OUTPUT); digitalWrite(mConfig->led.led1, led_off); } } //----------------------------------------------------------------------------- void app::updateLed(void) { uint8_t led_off = (mConfig->led.led_high_active) ? LOW : HIGH; uint8_t led_on = (mConfig->led.led_high_active) ? HIGH : LOW; if (mConfig->led.led0 != DEF_PIN_OFF) { Inverter<> *iv; for (uint8_t id = 0; id < mSys.getNumInverters(); id++) { iv = mSys.getInverterByPos(id); if (NULL != iv) { if (iv->isProducing()) { // turn on when at least one inverter is producing digitalWrite(mConfig->led.led0, led_on); break; } else if(iv->config->enabled) digitalWrite(mConfig->led.led0, led_off); } } } if (mConfig->led.led1 != DEF_PIN_OFF) { if (getMqttIsConnected()) { digitalWrite(mConfig->led.led1, led_on); } else { digitalWrite(mConfig->led.led1, led_off); } } }