//----------------------------------------------------------------------------- // 2023 Ahoy, https://ahoydtu.de // Creative Commons - https://creativecommons.org/licenses/by-nc-sa/4.0/deed //----------------------------------------------------------------------------- #ifndef __HM_PAYLOAD_H__ #define __HM_PAYLOAD_H__ #include "../utils/dbg.h" #include "../utils/crc.h" #include "../config/config.h" #include "hmRadio.h" #if defined(ESP32) #include "../hms/cmt2300a.h" #endif #include #define HMS_TIMEOUT_SEC 30 typedef struct { uint8_t txCmd; uint8_t txId; uint32_t ts; uint8_t data[MAX_PAYLOAD_ENTRIES][MAX_RF_PAYLOAD_SIZE]; int8_t rssi[MAX_PAYLOAD_ENTRIES]; uint8_t len[MAX_PAYLOAD_ENTRIES]; bool complete; uint8_t maxPackId; bool lastFound; uint8_t retransmits; bool requested; bool gotFragment; bool rxTmo; } invPayload_t; typedef std::function *)> payloadListenerType; typedef std::function *)> alarmListenerType; template class HmPayload { public: HmPayload() {} void setup(IApp *app, HMSYSTEM *sys, uint8_t maxRetransmits, uint32_t *timestamp) { mApp = app; mSys = sys; mMaxRetrans = maxRetransmits; mTimestamp = timestamp; for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) { reset(i); mIvCmd56Cnt[i] = 0; } mSerialDebug = false; mHighPrioIv = NULL; mCbAlarm = NULL; mCbPayload = NULL; } void enableSerialDebug(bool enable) { mSerialDebug = enable; } void addPayloadListener(payloadListenerType cb) { mCbPayload = cb; } void addAlarmListener(alarmListenerType cb) { mCbAlarm = cb; } void loop() { if (NULL != mHighPrioIv) { ivSend(mHighPrioIv, true); // for e.g. devcontrol commands mHighPrioIv = NULL; } } /*void simulation() { uint8_t pay[] = { 0x00, 0x01, 0x01, 0x24, 0x02, 0x28, 0x02, 0x33, 0x06, 0x49, 0x06, 0x6a, 0x00, 0x05, 0x5f, 0x1b, 0x00, 0x06, 0x66, 0x9a, 0x03, 0xfd, 0x04, 0x0b, 0x01, 0x23, 0x02, 0x28, 0x02, 0x28, 0x06, 0x41, 0x06, 0x43, 0x00, 0x05, 0xdc, 0x2c, 0x00, 0x06, 0x2e, 0x3f, 0x04, 0x01, 0x03, 0xfb, 0x09, 0x78, 0x13, 0x86, 0x18, 0x15, 0x00, 0xcf, 0x00, 0xfe, 0x03, 0xe7, 0x01, 0x42, 0x00, 0x03 }; Inverter<> *iv = mSys->getInverterByPos(0); record_t<> *rec = iv->getRecordStruct(0x0b); rec->ts = *mTimestamp; for (uint8_t i = 0; i < rec->length; i++) { iv->addValue(i, pay, rec); yield(); } iv->doCalculations(); notify(0x0b, iv); }*/ void ivSendHighPrio(Inverter<> *iv) { mHighPrioIv = iv; } void ivSend(Inverter<> *iv, bool highPrio = false) { if(!highPrio) { if (mPayload[iv->id].requested) { if (!mPayload[iv->id].complete) process(false); // no retransmit if (!mPayload[iv->id].complete) { if (mSerialDebug) DPRINT_IVID(DBG_INFO, iv->id); if (MAX_PAYLOAD_ENTRIES == mPayload[iv->id].maxPackId) { iv->radioStatistics.rxFailNoAnser++; // got nothing if (mSerialDebug) DBGPRINTLN(F("enqueued cmd failed/timeout")); } else { iv->radioStatistics.rxFail++; // got fragments but not complete response if (mSerialDebug) { DBGPRINT(F("no complete Payload received! (retransmits: ")); DBGPRINT(String(mPayload[iv->id].retransmits)); DBGPRINTLN(F(")")); } } iv->setQueuedCmdFinished(); // command failed } } } reset(iv->id, !iv->isAvailable()); mPayload[iv->id].requested = true; yield(); if (mSerialDebug) { DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F("Requesting Inv SN ")); DBGPRINTLN(String(iv->config->serial.u64, HEX)); } if (iv->getDevControlRequest()) { if (mSerialDebug) { DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F("Devcontrol request 0x")); DHEX(iv->devControlCmd); DBGPRINT(F(" power limit ")); DBGPRINTLN(String(iv->powerLimit[0])); } iv->powerLimitAck = false; iv->radio->sendControlPacket(iv, iv->devControlCmd, iv->powerLimit, false); mPayload[iv->id].txCmd = iv->devControlCmd; //iv->clearCmdQueue(); //iv->enqueCommand(SystemConfigPara); // read back power limit } else { #if defined(ESP32) if((IV_HMS == iv->ivGen) || (IV_HMT == iv->ivGen)) { record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); if(((rec->ts + HMS_TIMEOUT_SEC) < *mTimestamp) && (mIvCmd56Cnt[iv->id] < 3)) { iv->radio->switchFrequency(iv, HOY_BOOT_FREQ_KHZ, WORK_FREQ_KHZ); mIvCmd56Cnt[iv->id]++; return; } else if(++mIvCmd56Cnt[iv->id] == 10) mIvCmd56Cnt[iv->id] = 0; } #endif uint8_t cmd = iv->getQueuedCmd(); if (mSerialDebug) { DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F("prepareDevInformCmd 0x")); DBGHEXLN(cmd); } iv->radio->prepareDevInformCmd(iv, cmd, mPayload[iv->id].ts, iv->alarmLastId, false); mPayload[iv->id].txCmd = cmd; } } void add(Inverter<> *iv, packet_t *p) { if (p->packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command mPayload[iv->id].txId = p->packet[0]; DPRINTLN(DBG_DEBUG, F("Response from info request received")); uint8_t *pid = &p->packet[9]; if (*pid == 0x00) { DPRINTLN(DBG_DEBUG, F("fragment number zero received and ignored")); } else { DPRINT(DBG_DEBUG, F("PID: 0x")); DPRINTLN(DBG_DEBUG, String(*pid, HEX)); if ((*pid & 0x7F) < MAX_PAYLOAD_ENTRIES) { memcpy(mPayload[iv->id].data[(*pid & 0x7F) - 1], &p->packet[10], p->len - 11); mPayload[iv->id].len[(*pid & 0x7F) - 1] = p->len - 11; mPayload[iv->id].gotFragment = true; mPayload[iv->id].rssi[(*pid & 0x7F) - 1] = p->rssi; } if ((*pid & ALL_FRAMES) == ALL_FRAMES) { // Last packet if (((*pid & 0x7f) > mPayload[iv->id].maxPackId) || (MAX_PAYLOAD_ENTRIES == mPayload[iv->id].maxPackId)) { mPayload[iv->id].maxPackId = (*pid & 0x7f); if (*pid > 0x81) mPayload[iv->id].lastFound = true; } } } } else if (p->packet[0] == (TX_REQ_DEVCONTROL + ALL_FRAMES)) { // response from dev control command DPRINTLN(DBG_DEBUG, F("Response from devcontrol request received")); mPayload[iv->id].txId = p->packet[0]; iv->clearDevControlRequest(); if ((p->packet[12] == ActivePowerContr) && (p->packet[13] == 0x00)) { bool ok = true; if((p->packet[10] == 0x00) && (p->packet[11] == 0x00)) { mApp->setMqttPowerLimitAck(iv); iv->powerLimitAck = true; } else ok = false; if (mSerialDebug) { DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F(" has ")); if(!ok) DBGPRINT(F("not ")); DBGPRINT(F("accepted power limit set point ")); DBGPRINT(String(iv->powerLimit[0])); DBGPRINT(F(" with PowerLimitControl ")); DBGPRINTLN(String(iv->powerLimit[1])); } iv->clearCmdQueue(); iv->enqueCommand(SystemConfigPara); // read back power limit if(mHighPrioIv == NULL) // do it immediately if possible mHighPrioIv = iv; } iv->devControlCmd = Init; } } void process(bool retransmit) { for (uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if (NULL == iv) continue; // skip to next inverter if ((mPayload[iv->id].txId != (TX_REQ_INFO + ALL_FRAMES)) && (0 != mPayload[iv->id].txId)) { // no processing needed if txId is not 0x95 mPayload[iv->id].complete = true; continue; // skip to next inverter } if (!mPayload[iv->id].complete) { bool crcPass, pyldComplete, fastNext; crcPass = build(iv, &pyldComplete, &fastNext); if (!crcPass && !pyldComplete) { // payload not complete if ((mPayload[iv->id].requested) && (retransmit)) { if (mPayload[iv->id].retransmits < mMaxRetrans) { mPayload[iv->id].retransmits++; if (iv->devControlCmd == Restart || iv->devControlCmd == CleanState_LockAndAlarm) { // This is required to prevent retransmissions without answer. DPRINTLN(DBG_INFO, F("Prevent retransmit on Restart / CleanState_LockAndAlarm...")); mPayload[iv->id].retransmits = mMaxRetrans; } else if(iv->devControlCmd == ActivePowerContr) { DPRINT_IVID(DBG_INFO, iv->id); DPRINTLN(DBG_INFO, F("retransmit power limit")); iv->radio->sendControlPacket(iv, iv->devControlCmd, iv->powerLimit, true); } else { if(false == mPayload[iv->id].gotFragment) { DPRINT_IVID(DBG_WARN, iv->id); if (mPayload[iv->id].rxTmo) { DBGPRINTLN(F("nothing received")); mPayload[iv->id].retransmits = mMaxRetrans; } else { DBGPRINTLN(F("nothing received: complete retransmit")); mPayload[iv->id].txCmd = iv->getQueuedCmd(); DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") prepareDevInformCmd 0x") + String(mPayload[iv->id].txCmd, HEX)); iv->radio->prepareDevInformCmd(iv, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex, true); } } else { for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId - 1); i++) { if (mPayload[iv->id].len[i] == 0) { if (mSerialDebug) { DPRINT_IVID(DBG_WARN, iv->id); DBGPRINT(F("Frame ")); DBGPRINT(String(i + 1)); DBGPRINTLN(F(" missing: Request Retransmit")); } iv->radio->sendCmdPacket(iv, TX_REQ_INFO, (SINGLE_FRAME + i), true); break; // only request retransmit one frame per loop } yield(); } } } } } else if (false == mPayload[iv->id].gotFragment) { // only if there is no sign of life mPayload[iv->id].rxTmo = true; // inv might be down, no complete retransmit anymore } } else if(!crcPass && pyldComplete) { // crc error on complete Payload if (mPayload[iv->id].retransmits < mMaxRetrans) { mPayload[iv->id].retransmits++; mPayload[iv->id].txCmd = iv->getQueuedCmd(); if (mSerialDebug) { DPRINT_IVID(DBG_WARN, iv->id); DBGPRINTLN(F("CRC Error: Request Complete Retransmit")); DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F("prepareDevInformCmd 0x")); DBGHEXLN(mPayload[iv->id].txCmd); } iv->radio->prepareDevInformCmd(iv, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmLastId, true); } } else { // payload complete if (mSerialDebug) { DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F("procPyld: cmd: 0x")); DBGHEXLN(mPayload[iv->id].txCmd); //DPRINT(DBG_DEBUG, F("procPyld: txid: 0x")); //DBGHEXLN(mPayload[iv->id].txId); DPRINT(DBG_DEBUG, F("procPyld: max: ")); DPRINTLN(DBG_DEBUG, String(mPayload[iv->id].maxPackId)); } record_t<> *rec = iv->getRecordStruct(mPayload[iv->id].txCmd); // choose the parser mPayload[iv->id].complete = true; mPayload[iv->id].requested = false; mPayload[iv->id].rxTmo = false; uint8_t payload[150]; uint8_t payloadLen = 0; memset(payload, 0, 150); int8_t rssi = -127; for (uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i++) { if((mPayload[iv->id].len[i] + payloadLen) > 150) { DPRINTLN(DBG_ERROR, F("payload buffer to small!")); break; } memcpy(&payload[payloadLen], mPayload[iv->id].data[i], (mPayload[iv->id].len[i])); payloadLen += (mPayload[iv->id].len[i]); // get worst RSSI if(mPayload[iv->id].rssi[i] > rssi) rssi = mPayload[iv->id].rssi[i]; yield(); } payloadLen -= 2; if (mSerialDebug) { DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F("Payload (")); DBGPRINT(String(payloadLen)); DBGPRINT(F("): ")); ah::dumpBuf(payload, payloadLen); } if (NULL == rec) { DPRINTLN(DBG_ERROR, F("record is NULL!")); } else if ((rec->pyldLen == payloadLen) || (0 == rec->pyldLen)) { if (mPayload[iv->id].txId == (TX_REQ_INFO + ALL_FRAMES)) iv->radioStatistics.rxSuccess++; rec->ts = mPayload[iv->id].ts; for (uint8_t i = 0; i < rec->length; i++) { iv->addValue(i, payload, rec); yield(); } iv->rssi = rssi; iv->doCalculations(); notify(mPayload[iv->id].txCmd, iv); if(AlarmData == mPayload[iv->id].txCmd) { uint8_t i = 0; while(1) { if(0 == iv->parseAlarmLog(i++, payload, payloadLen)) break; if (NULL != mCbAlarm) (mCbAlarm)(iv); yield(); } } if (fastNext && (mHighPrioIv == NULL)) { /*iv->setQueuedCmdFinished(); uint8_t cmd = iv->getQueuedCmd(); if (mSerialDebug) { DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F("fast mode ")); DBGPRINT(F("prepareDevInformCmd 0x")); DBGHEXLN(cmd); } iv->radioStatistics.rxSuccess++; iv->radio->prepareDevInformCmd(iv, cmd, mPayload[iv->id].ts, iv->alarmLastId, false); mPayload[iv->id].txCmd = cmd; */ mHighPrioIv = iv; } } else { if (mSerialDebug) { DPRINT(DBG_ERROR, F("plausibility check failed, expected ")); DBGPRINT(String(rec->pyldLen)); DBGPRINTLN(F(" bytes")); } iv->radioStatistics.rxFail++; } iv->setQueuedCmdFinished(); } } yield(); } } private: void notify(uint8_t val, Inverter<> *iv) { if(NULL != mCbPayload) (mCbPayload)(val, iv); } bool build(Inverter<> *iv, bool *complete, bool *fastNext ) { DPRINTLN(DBG_VERBOSE, F("build")); uint16_t crc = 0xffff, crcRcv = 0x0000; if (mPayload[iv->id].maxPackId > MAX_PAYLOAD_ENTRIES) mPayload[iv->id].maxPackId = MAX_PAYLOAD_ENTRIES; // check if all fragments are there *complete = true; *fastNext = false; for (uint8_t i = 0; i < mPayload[iv->id].maxPackId; i++) { if(mPayload[iv->id].len[i] == 0) { *complete = false; } } if(!*complete) return false; for (uint8_t i = 0; i < mPayload[iv->id].maxPackId; i++) { if (mPayload[iv->id].len[i] > 0) { if (i == (mPayload[iv->id].maxPackId - 1)) { crc = ah::crc16(mPayload[iv->id].data[i], mPayload[iv->id].len[i] - 2, crc); crcRcv = (mPayload[iv->id].data[i][mPayload[iv->id].len[i] - 2] << 8) | (mPayload[iv->id].data[i][mPayload[iv->id].len[i] - 1]); } else crc = ah::crc16(mPayload[iv->id].data[i], mPayload[iv->id].len[i], crc); } yield(); } //return (crc == crcRcv) ? true : false; if (crc != crcRcv) return false; //requests to cause the next request to be executed immediately if (mPayload[iv->id].gotFragment && ((mPayload[iv->id].txCmd < RealTimeRunData_Debug) || (mPayload[iv->id].txCmd >= AlarmData))) { *fastNext = true; } return true; } void reset(uint8_t id, bool setTxTmo = true) { //DPRINT_IVID(DBG_INFO, id); //DBGPRINTLN(F("resetPayload")); memset(mPayload[id].len, 0, MAX_PAYLOAD_ENTRIES); mPayload[id].txCmd = 0; mPayload[id].gotFragment = false; mPayload[id].retransmits = 0; mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES; mPayload[id].lastFound = false; mPayload[id].complete = false; mPayload[id].requested = false; mPayload[id].ts = *mTimestamp; mPayload[id].rxTmo = setTxTmo; // design: don't start with complete retransmit } IApp *mApp; HMSYSTEM *mSys; uint8_t mMaxRetrans; uint32_t *mTimestamp; invPayload_t mPayload[MAX_NUM_INVERTERS]; uint8_t mIvCmd56Cnt[MAX_NUM_INVERTERS]; bool mSerialDebug; Inverter<> *mHighPrioIv; alarmListenerType mCbAlarm; payloadListenerType mCbPayload; }; #endif /*__HM_PAYLOAD_H__*/