//----------------------------------------------------------------------------- // 2022 Ahoy, https://www.mikrocontroller.net/topic/525778 // Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/ //----------------------------------------------------------------------------- #if defined(ESP32) && defined(F) #undef F #define F(sl) (sl) #endif #include "app.h" #include //----------------------------------------------------------------------------- app::app() { Serial.begin(115200); DPRINTLN(DBG_VERBOSE, F("app::app")); mEep = new eep(); mWifi = new ahoywifi(this, &mSysConfig, &mConfig); resetSystem(); loadDefaultConfig(); mSys = new HmSystemType(); } //----------------------------------------------------------------------------- void app::setup(uint32_t timeout) { DPRINTLN(DBG_VERBOSE, F("app::setup")); mWifiSettingsValid = checkEEpCrc(ADDR_START, ADDR_WIFI_CRC, ADDR_WIFI_CRC); mSettingsValid = checkEEpCrc(ADDR_START_SETTINGS, ((ADDR_NEXT)-(ADDR_START_SETTINGS)), ADDR_SETTINGS_CRC); loadEEpconfig(); mWifi->setup(timeout, mWifiSettingsValid); #ifndef AP_ONLY setupMqtt(); #endif mSys->setup(&mConfig); mWebInst = new web(this, &mSysConfig, &mConfig, mVersion); mWebInst->setup(); } //----------------------------------------------------------------------------- void app::loop(void) { DPRINTLN(DBG_VERBOSE, F("app::loop")); bool apActive = mWifi->loop(); mWebInst->loop(); if(checkTicker(&mUptimeTicker, mUptimeInterval)) { mUptimeSecs++; if(0 != mTimestamp) mTimestamp++; else { if(!apActive) { mTimestamp = mWifi->getNtpTime(); DPRINTLN(DBG_INFO, "[NTP]: " + getDateTimeStr(mTimestamp)); } } } mSys->Radio.loop(); yield(); if(checkTicker(&mRxTicker, 5)) { bool rxRdy = mSys->Radio.switchRxCh(); if(!mSys->BufCtrl.empty()) { uint8_t len; packet_t *p = mSys->BufCtrl.getBack(); if(mSys->Radio.checkPaketCrc(p->packet, &len, p->rxCh)) { // process buffer only on first occurrence if(mConfig.serialDebug) { DPRINT(DBG_INFO, "RX " + String(len) + "B Ch" + String(p->rxCh) + " | "); mSys->Radio.dumpBuf(NULL, p->packet, len); } mFrameCnt++; if(0 != len) { Inverter<> *iv = mSys->findInverter(&p->packet[1]); if(NULL != iv && p->packet[0] == (TX_REQ_INFO + 0x80)) { // response from get information command DPRINTLN(DBG_DEBUG, F("Response from info request received")); uint8_t *pid = &p->packet[9]; if (*pid == 0x00) { DPRINT(DBG_DEBUG, "fragment number zero received and ignored"); } else { if ((*pid & 0x7F) < 5) { memcpy(mPayload[iv->id].data[(*pid & 0x7F) - 1], &p->packet[10], len - 11); mPayload[iv->id].len[(*pid & 0x7F) - 1] = len - 11; } if ((*pid & 0x80) == 0x80) { // Last packet if ((*pid & 0x7f) > mPayload[iv->id].maxPackId) { mPayload[iv->id].maxPackId = (*pid & 0x7f); if (*pid > 0x81) mLastPacketId = *pid; } } } } if(NULL != iv && p->packet[0] == (TX_REQ_DEVCONTROL + 0x80)) { // response from dev control command DPRINTLN(DBG_DEBUG, F("Response from devcontrol request received")); iv->devControlRequest = false; switch (p->packet[12]) { case ActivePowerContr: if (iv->devControlCmd >= ActivePowerContr && iv->devControlCmd <= PFSet) { // ok inverter accepted the set point copy it to dtu eeprom if ((iv->powerLimit[1] & 0xff00) > 0) { // User want to have it persistent mEep->write(ADDR_INV_PWR_LIM + iv->id * 2, iv->powerLimit[0]); mEep->write(ADDR_INV_PWR_LIM_CON + iv->id * 2, iv->powerLimit[1]); updateCrc(); mEep->commit(); DPRINTLN(DBG_INFO, F("Inverter ") + String(iv->id) + F(" has accepted power limit set point ") + String(iv->powerLimit[0]) + F(" with PowerLimitControl ") + String(iv->powerLimit[1]) + F(", written to dtu eeprom")); } else DPRINTLN(DBG_INFO, F("Inverter ") + String(iv->id) + F(" has accepted power limit set point ") + String(iv->powerLimit[0]) + F(" with PowerLimitControl ") + String(iv->powerLimit[1])); iv->devControlCmd = Init; } break; default: if (iv->devControlCmd == ActivePowerContr) { //case inverter did not accept the sent limit; set back to last stored limit mEep->read(ADDR_INV_PWR_LIM + iv->id * 2, (uint16_t *)&(iv->powerLimit[0])); mEep->read(ADDR_INV_PWR_LIM_CON + iv->id * 2, (uint16_t *)&(iv->powerLimit[1])); DPRINTLN(DBG_INFO, F("Inverter has not accepted power limit set point")); } iv->devControlCmd = Init; break; } } } } mSys->BufCtrl.popBack(); } yield(); if(rxRdy) { processPayload(true); } } if(mMqttActive) mMqtt.loop(); if(checkTicker(&mTicker, 1000)) { if((++mMqttTicker >= mMqttInterval) && (mMqttInterval != 0xffff) && mMqttActive) { mMqttTicker = 0; mMqtt.isConnected(true); // really needed? See comment from HorstG-57 #176 char val[10]; snprintf(val, 10, "%ld", millis()/1000); #ifndef __MQTT_NO_DISCOVERCONFIG__ // MQTTDiscoveryConfig nur wenn nicht abgeschaltet. sendMqttDiscoveryConfig(); #endif mMqtt.sendMsg("uptime", val); #ifdef __MQTT_TEST__ // für einfacheren Test mit MQTT, den MQTT abschnitt in 10 Sekunden wieder ausführen mMqttTicker = mMqttInterval -10; #endif } if(mConfig.serialShowIv) { if(++mSerialTicker >= mConfig.serialInterval) { mSerialTicker = 0; char topic[30], val[10]; for(uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if(NULL != iv) { if(iv->isAvailable(mTimestamp)) { DPRINTLN(DBG_INFO, "Inverter: " + String(id)); for(uint8_t i = 0; i < iv->listLen; i++) { if(0.0f != iv->getValue(i)) { snprintf(topic, 30, "%s/ch%d/%s", iv->name, iv->assign[i].ch, iv->getFieldName(i)); snprintf(val, 10, "%.3f %s", iv->getValue(i), iv->getUnit(i)); DPRINTLN(DBG_INFO, String(topic) + ": " + String(val)); } yield(); } DPRINTLN(DBG_INFO, ""); } } } } } if(++mSendTicker >= mConfig.sendInterval) { mSendTicker = 0; if(0 != mTimestamp) { if(mConfig.serialDebug) DPRINTLN(DBG_DEBUG, F("Free heap: 0x") + String(ESP.getFreeHeap(), HEX)); if(!mSys->BufCtrl.empty()) { if(mConfig.serialDebug) DPRINTLN(DBG_DEBUG, F("recbuf not empty! #") + String(mSys->BufCtrl.getFill())); } int8_t maxLoop = MAX_NUM_INVERTERS; Inverter<> *iv = mSys->getInverterByPos(mSendLastIvId); do { if(NULL != iv) mPayload[iv->id].requested = false; mSendLastIvId = ((MAX_NUM_INVERTERS-1) == mSendLastIvId) ? 0 : mSendLastIvId + 1; iv = mSys->getInverterByPos(mSendLastIvId); } while((NULL == iv) && ((maxLoop--) > 0)); if(NULL != iv) { if(!mPayload[iv->id].complete) processPayload(false); if(!mPayload[iv->id].complete) { mRxFailed++; iv->setQueuedCmdFinished(); // command failed if(mConfig.serialDebug) { DPRINTLN(DBG_INFO, F("enqueued cmd failed/timeout")); } if(mConfig.serialDebug) { DPRINT(DBG_INFO, F("Inverter #") + String(iv->id) + " "); DPRINTLN(DBG_INFO, F("no Payload received! (retransmits: ") + String(mPayload[iv->id].retransmits) + ")"); } } resetPayload(iv); yield(); if(mConfig.serialDebug) DPRINTLN(DBG_DEBUG, F("app:loop WiFi WiFi.status ") + String(WiFi.status())); DPRINTLN(DBG_INFO, F("Requesting Inverter SN ") + String(iv->serial.u64, HEX)); if(iv->devControlRequest && (iv->powerLimit[0] > 0) && (NoPowerLimit != iv->powerLimit[1])) { // prevent to "switch off" if(mConfig.serialDebug) DPRINTLN(DBG_INFO, F("Devcontrol request ") + String(iv->devControlCmd) + F(" power limit ") + String(iv->powerLimit[0])); mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd ,iv->powerLimit); iv->enqueCommand(SystemConfigPara); } else { mSys->Radio.sendTimePacket(iv->radioId.u64,iv->getQueuedCmd(), mPayload[iv->id].ts,iv->alarmMesIndex); mRxTicker = 0; } } } else if(mConfig.serialDebug) DPRINTLN(DBG_WARN, F("time not set, can't request inverter!")); yield(); } } } //----------------------------------------------------------------------------- void app::handleIntr(void) { DPRINTLN(DBG_VERBOSE, F("app::handleIntr")); mSys->Radio.handleIntr(); } //----------------------------------------------------------------------------- bool app::buildPayload(uint8_t id) { DPRINTLN(DBG_VERBOSE, F("app::buildPayload")); uint16_t crc = 0xffff, crcRcv = 0x0000; if(mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES) mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES; for(uint8_t i = 0; i < mPayload[id].maxPackId; i ++) { if(mPayload[id].len[i] > 0) { if(i == (mPayload[id].maxPackId-1)) { crc = Hoymiles::crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc); crcRcv = (mPayload[id].data[i][mPayload[id].len[i] - 2] << 8) | (mPayload[id].data[i][mPayload[id].len[i] - 1]); } else crc = Hoymiles::crc16(mPayload[id].data[i], mPayload[id].len[i], crc); } yield(); } if(crc == crcRcv) return true; return false; } //----------------------------------------------------------------------------- void app::processPayload(bool retransmit) { #ifdef __MQTT_AFTER_RX__ boolean doMQTT = false; #endif DPRINTLN(DBG_VERBOSE, F("app::processPayload")); for(uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if(NULL != iv) { if(!mPayload[iv->id].complete) { if(!buildPayload(iv->id)) { if(mPayload[iv->id].requested) { if(retransmit) { if(mPayload[iv->id].retransmits < mConfig.maxRetransPerPyld) { mPayload[iv->id].retransmits++; if(mPayload[iv->id].maxPackId != 0) { for(uint8_t i = 0; i < (mPayload[iv->id].maxPackId-1); i ++) { if(mPayload[iv->id].len[i] == 0) { if(mConfig.serialDebug) DPRINTLN(DBG_ERROR, F("while retrieving data: Frame ") + String(i+1) + F(" missing: Request Retransmit")); mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, (SINGLE_FRAME+i), true); break; // only retransmit one frame per loop } yield(); } } else { if(mConfig.serialDebug) DPRINTLN(DBG_ERROR, F("while retrieving data: last frame missing: Request Retransmit")); if(0x00 != mLastPacketId) mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, mLastPacketId, true); else mSys->Radio.sendTimePacket(iv->radioId.u64, iv->getQueuedCmd(), mPayload[iv->id].ts,iv->alarmMesIndex); } mSys->Radio.switchRxCh(100); } } } } else { mPayload[iv->id].complete = true; iv->ts = mPayload[iv->id].ts; uint8_t payload[128]; uint8_t offs = 0; memset(payload, 0, 128); for(uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i ++) { memcpy(&payload[offs], mPayload[iv->id].data[i], (mPayload[iv->id].len[i])); offs += (mPayload[iv->id].len[i]); yield(); } offs-=2; if(mConfig.serialDebug) { DPRINT(DBG_INFO, F("Payload (") + String(offs) + "): "); mSys->Radio.dumpBuf(NULL, payload, offs); } mRxSuccess++; iv->getAssignment(); // choose the parser for(uint8_t i = 0; i < iv->listLen; i++) { iv->addValue(i, payload); // cmd value decides which parser is used to decode payload yield(); } iv->doCalculations(); // cmd value decides which parser is used to decode payload iv->setQueuedCmdFinished(); // MQTT send out if(mMqttActive) { char topic[30], val[10]; for (uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if (NULL != iv) { if (iv->isAvailable(mTimestamp)) { for (uint8_t i = 0; i < iv->listLen; i++) { snprintf(topic, 30, "%s/ch%d/%s", iv->name, iv->assign[i].ch, fields[iv->assign[i].fieldId]); snprintf(val, 10, "%.3f", iv->getValue(i)); mMqtt.sendMsg(topic, val); yield(); } } } } } #ifdef __MQTT_AFTER_RX__ doMQTT = true; #endif } } yield(); } } #ifdef __MQTT_AFTER_RX__ // ist MQTT aktiviert und es wurden Daten vom einem oder mehreren WR aufbereitet ( doMQTT = true) // dann die den mMqttTicker auf mMqttIntervall -2 setzen, also // MQTT aussenden in 2 sek aktivieren // dies sollte noch über einen Schalter im Setup aktivier / deaktivierbar gemacht werden if( (mMqttInterval != 0xffff) && doMQTT ) { ++mMqttTicker = mMqttInterval -2; DPRINT(DBG_DEBUG, F("MQTTticker auf Intervall -2 sec ")) ; } #endif } //----------------------------------------------------------------------------- void app::cbMqtt(char* topic, byte* payload, unsigned int length) { // callback handling on subscribed devcontrol topic DPRINTLN(DBG_INFO, F("app::cbMqtt")); // subcribed topics are mTopic + "/devcontrol/#" where # is / // eg. mypvsolar/devcontrol/1/11 with payload "400" --> inverter 1 active power limit 400 Watt const char *token = strtok(topic, "/"); while (token != NULL) { if (strcmp(token,"devcontrol")==0){ token = strtok(NULL, "/"); uint8_t iv_id = std::stoi(token); if (iv_id >= 0 && iv_id <= MAX_NUM_INVERTERS){ Inverter<> *iv = this->mSys->getInverterByPos(iv_id); if(NULL != iv) { if (!iv->devControlRequest) { // still pending token = strtok(NULL, "/"); switch ( std::stoi(token) ){ case ActivePowerContr: // Active Power Control token = strtok(NULL, "/"); // get ControlMode aka "PowerPF.Desc" in DTU-Pro Code from topic string if (token == NULL) // default via mqtt ommit the LimitControlMode iv->powerLimit[1] = AbsolutNonPersistent; else iv->powerLimit[1] = std::stoi(token); if (length<=5){ // if (std::stoi((char*)payload) > 0) more error handling powerlimit needed? if (iv->powerLimit[1] >= AbsolutNonPersistent && iv->powerLimit[1] <= RelativPersistent){ iv->devControlCmd = ActivePowerContr; iv->powerLimit[0] = std::stoi(std::string((char*)payload, (unsigned int)length)); // THX to @silversurfer if (iv->powerLimit[1] & 0x0001) DPRINTLN(DBG_INFO, F("Power limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("%") ); else DPRINTLN(DBG_INFO, F("Power limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("W") ); } iv->devControlRequest = true; } else { DPRINTLN(DBG_INFO, F("Invalid mqtt payload recevied: ") + String((char*)payload)); } break; case TurnOn: // Turn On iv->devControlCmd = TurnOn; DPRINTLN(DBG_INFO, F("Turn on inverter ") + String(iv->id) ); iv->devControlRequest = true; break; case TurnOff: // Turn Off iv->devControlCmd = TurnOff; DPRINTLN(DBG_INFO, F("Turn off inverter ") + String(iv->id) ); iv->devControlRequest = true; break; case Restart: // Restart iv->devControlCmd = Restart; DPRINTLN(DBG_INFO, F("Restart inverter ") + String(iv->id) ); iv->devControlRequest = true; break; case ReactivePowerContr: // Reactive Power Control iv->devControlCmd = ReactivePowerContr; if (true){ // if (std::stoi((char*)payload) > 0) error handling powerlimit needed? iv->devControlCmd = ReactivePowerContr; iv->powerLimit[0] = std::stoi(std::string((char*)payload, (unsigned int)length)); iv->powerLimit[1] = 0x0000; // if reactivepower limit is set via external interface --> set it temporay DPRINTLN(DBG_DEBUG, F("Reactivepower limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("W") ); iv->devControlRequest = true; } break; case PFSet: // Set Power Factor // iv->devControlCmd = PFSet; // uint16_t power_factor = std::stoi(strtok(NULL, "/")); DPRINTLN(DBG_INFO, F("Set Power Factor not implemented for inverter ") + String(iv->id) ); break; default: DPRINTLN(DBG_INFO, "Not implemented"); break; } } } } break; } token = strtok(NULL, "/"); } DPRINTLN(DBG_INFO, F("app::cbMqtt finished")); } //----------------------------------------------------------------------------- String app::getStatistics(void) { String content = F("Receive success: ") + String(mRxSuccess) + "\n"; content += F("Receive fail: ") + String(mRxFailed) + "\n"; content += F("Frames received: ") + String(mFrameCnt) + "\n"; content += F("Send Cnt: ") + String(mSys->Radio.mSendCnt) + String("\n\n"); Inverter<> *iv; for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) { iv = mSys->getInverterByPos(i); content += F("Inverter #") + String(i) + F(": "); if(NULL != iv) { bool avail = true; content += String(iv->name) + F(" (v") + String(iv->fwVersion) +F(")") + F(" is "); if(!iv->isAvailable(mTimestamp)) { content += F("not "); avail = false; } content += F("available and is "); if(!iv->isProducing(mTimestamp)) content += F("not "); content += F("producing\n"); if(!avail) { if(iv->getLastTs() > 0) content += F("-> last successful transmission: ") + getDateTimeStr(iv->getLastTs()) + "\n"; } } else content += F("n/a\n"); } if(!mSys->Radio.isChipConnected()) content += F("WARNING! your NRF24 module can't be reached, check the wiring and pinout (setup)\n"); if(mShowRebootRequest) content += F("INFO: reboot your ESP to apply all your configuration changes!\n"); if(!mSettingsValid) content += F("INFO: your settings are invalid, please switch to Setup to correct this.\n"); content += F("MQTT: "); if(!mMqtt.isConnected()) content += F("not "); content += F("connected\n"); return content; } //----------------------------------------------------------------------------- String app::getJson(void) { DPRINTLN(DBG_VERBOSE, F("app::showJson")); String modJson; modJson = F("{\n"); for(uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if(NULL != iv) { char topic[40], val[25]; snprintf(topic, 30, "\"%s\": {\n", iv->name); modJson += String(topic); for(uint8_t i = 0; i < iv->listLen; i++) { snprintf(topic, 40, "\t\"ch%d/%s\"", iv->assign[i].ch, iv->getFieldName(i)); snprintf(val, 25, "[%.3f, \"%s\"]", iv->getValue(i), iv->getUnit(i)); modJson += String(topic) + ": " + String(val) + F(",\n"); } modJson += F("\t\"last_msg\": \"") + getDateTimeStr(iv->ts) + F("\"\n\t},\n"); } } modJson += F("\"json_ts\": \"") + String(getDateTimeStr(mTimestamp)) + F("\"\n}\n"); return modJson; } //----------------------------------------------------------------------------- bool app::getWifiApActive(void) { return mWifi->getApActive(); } //----------------------------------------------------------------------------- void app::sendMqttDiscoveryConfig(void) { DPRINTLN(DBG_VERBOSE, F("app::sendMqttDiscoveryConfig")); char stateTopic[64], discoveryTopic[64], buffer[512], name[32], uniq_id[32]; for(uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if(NULL != iv) { if(iv->isAvailable(mTimestamp) && mMqttConfigSendState[id] != true) { DynamicJsonDocument deviceDoc(128); deviceDoc["name"] = iv->name; deviceDoc["ids"] = String(iv->serial.u64, HEX); deviceDoc["cu"] = F("http://") + String(WiFi.localIP().toString()); deviceDoc["mf"] = "Hoymiles"; deviceDoc["mdl"] = iv->name; JsonObject deviceObj = deviceDoc.as(); DynamicJsonDocument doc(384); for(uint8_t i = 0; i < iv->listLen; i++) { if (iv->assign[i].ch == CH0) { snprintf(name, 32, "%s %s", iv->name, iv->getFieldName(i)); } else { snprintf(name, 32, "%s CH%d %s", iv->name, iv->assign[i].ch, iv->getFieldName(i)); } snprintf(stateTopic, 64, "%s/%s/ch%d/%s", mConfig.mqtt.topic, iv->name, iv->assign[i].ch, iv->getFieldName(i)); snprintf(discoveryTopic, 64, "%s/sensor/%s/ch%d_%s/config", MQTT_DISCOVERY_PREFIX, iv->name, iv->assign[i].ch, iv->getFieldName(i)); snprintf(uniq_id, 32, "ch%d_%s", iv->assign[i].ch, iv->getFieldName(i)); const char* devCls = getFieldDeviceClass(iv->assign[i].fieldId); const char* stateCls = getFieldStateClass(iv->assign[i].fieldId); doc["name"] = name; doc["stat_t"] = stateTopic; doc["unit_of_meas"] = iv->getUnit(i); doc["uniq_id"] = String(iv->serial.u64, HEX) + "_" + uniq_id; doc["dev"] = deviceObj; doc["exp_aft"] = mMqttInterval + 5; // add 5 sec if connection is bad or ESP too slow if (devCls != NULL) { doc["dev_cla"] = devCls; } if (stateCls != NULL) { doc["stat_cla"] = stateCls; } serializeJson(doc, buffer); mMqtt.sendMsg2(discoveryTopic, buffer, true); doc.clear(); yield(); } mMqttConfigSendState[id] = true; } } } } //----------------------------------------------------------------------------- const char* app::getFieldDeviceClass(uint8_t fieldId) { uint8_t pos = 0; for(; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) { if(deviceFieldAssignment[pos].fieldId == fieldId) break; } return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : deviceClasses[deviceFieldAssignment[pos].deviceClsId]; } //----------------------------------------------------------------------------- const char* app::getFieldStateClass(uint8_t fieldId) { uint8_t pos = 0; for(; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) { if(deviceFieldAssignment[pos].fieldId == fieldId) break; } return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : stateClasses[deviceFieldAssignment[pos].stateClsId]; } //----------------------------------------------------------------------------- void app::resetSystem(void) { mUptimeSecs = 0; mUptimeTicker = 0xffffffff; mUptimeInterval = 1000; #ifdef AP_ONLY mTimestamp = 1; #else mTimestamp = 0; #endif mHeapStatCnt = 0; mSendTicker = 0xffff; mMqttTicker = 0xffff; mMqttInterval = MQTT_INTERVAL; mSerialTicker = 0xffff; mMqttActive = false; mTicker = 0; mRxTicker = 0; mSendLastIvId = 0; mShowRebootRequest = false; memset(mPayload, 0, (MAX_NUM_INVERTERS * sizeof(invPayload_t))); mRxFailed = 0; mRxSuccess = 0; mFrameCnt = 0; mLastPacketId = 0x00; } //----------------------------------------------------------------------------- void app::loadDefaultConfig(void) { memset(&mSysConfig, 0, sizeof(sysConfig_t)); memset(&mConfig, 0, sizeof(config_t)); snprintf(mVersion, 12, "%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH); snprintf(mSysConfig.deviceName, DEVNAME_LEN, "%s", DEF_DEVICE_NAME); // wifi snprintf(mSysConfig.stationSsid, SSID_LEN, "%s", FB_WIFI_SSID); snprintf(mSysConfig.stationPwd, PWD_LEN, "%s", FB_WIFI_PWD); // nrf24 mConfig.sendInterval = SEND_INTERVAL; mConfig.maxRetransPerPyld = DEF_MAX_RETRANS_PER_PYLD; mConfig.pinCs = DEF_RF24_CS_PIN; mConfig.pinCe = DEF_RF24_CE_PIN; mConfig.pinIrq = DEF_RF24_IRQ_PIN; mConfig.amplifierPower = DEF_AMPLIFIERPOWER & 0x03; // ntp snprintf(mConfig.ntpAddr, NTP_ADDR_LEN, "%s", DEF_NTP_SERVER_NAME); mConfig.ntpPort = DEF_NTP_PORT; // mqtt snprintf(mConfig.mqtt.broker, MQTT_ADDR_LEN, "%s", DEF_MQTT_BROKER); mConfig.mqtt.port = DEF_MQTT_PORT; snprintf(mConfig.mqtt.user, MQTT_USER_LEN, "%s", DEF_MQTT_USER); snprintf(mConfig.mqtt.pwd, MQTT_PWD_LEN, "%s", DEF_MQTT_PWD); snprintf(mConfig.mqtt.topic, MQTT_TOPIC_LEN, "%s", DEF_MQTT_TOPIC); // serial mConfig.serialInterval = SERIAL_INTERVAL; mConfig.serialShowIv = false; mConfig.serialDebug = false; } //----------------------------------------------------------------------------- void app::loadEEpconfig(void) { DPRINTLN(DBG_VERBOSE, F("app::loadEEpconfig")); if(mWifiSettingsValid) mEep->read(ADDR_CFG_SYS, (uint8_t*) &mSysConfig, CFG_SYS_LEN); if(mSettingsValid) { mEep->read(ADDR_CFG, (uint8_t*) &mConfig, CFG_LEN); mSendTicker = mConfig.sendInterval; mSerialTicker = 0; // inverter uint64_t invSerial; char name[MAX_NAME_LENGTH + 1] = {0}; uint16_t modPwr[4]; Inverter<> *iv; for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) { mEep->read(ADDR_INV_ADDR + (i * 8), &invSerial); mEep->read(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), name, MAX_NAME_LENGTH); mEep->read(ADDR_INV_CH_PWR + (i * 2 * 4), modPwr, 4); if(0ULL != invSerial) { iv = mSys->addInverter(name, invSerial, modPwr); if(NULL != iv) { // will run once on every dtu boot mEep->read(ADDR_INV_PWR_LIM + (i * 2),(uint16_t *)&(iv->powerLimit[0])); mEep->read(ADDR_INV_PWR_LIM_CON + (i * 2),(uint16_t *)&(iv->powerLimit[1])); // only set it, if it is changed by user. Default value in the html setup page is -1 = 0xffff // it is "doppelt-gemoppelt" because the inverter shall remember the setting if the dtu makes a power cycle / reboot if (iv->powerLimit[0] != 0xffff) { iv->devControlCmd = ActivePowerContr; // set active power limit DPRINT(DBG_INFO, F("add inverter: ") + String(name) + ", SN: " + String(invSerial, HEX)); if(iv->powerLimit[1] != NoPowerLimit) { DBGPRINT(F(", Power Limit: ") + String(iv->powerLimit[0])); if ((iv->powerLimit[1] & 0x0001) == 0x0001) DBGPRINTLN(F(" in %")); else DBGPRINTLN(F(" in Watt")); } else DBGPRINTLN(F(" ")); } for(uint8_t j = 0; j < 4; j++) { mEep->read(ADDR_INV_CH_NAME + (i * 4 * MAX_NAME_LENGTH) + j * MAX_NAME_LENGTH, iv->chName[j], MAX_NAME_LENGTH); } } // TODO: the original mqttinterval value is not needed any more mMqttInterval += mConfig.sendInterval; } } } } //----------------------------------------------------------------------------- void app::saveValues(void) { DPRINTLN(DBG_VERBOSE, F("app::saveValues")); mEep->write(ADDR_CFG_SYS, (uint8_t*)&mSysConfig, CFG_SYS_LEN); mEep->write(ADDR_CFG, (uint8_t*)&mConfig, CFG_LEN); Inverter<> *iv; for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) { iv = mSys->getInverterByPos(i, false); mEep->write(ADDR_INV_ADDR + (i * 8), iv->serial.u64); mEep->write(ADDR_INV_PWR_LIM + i * 2, iv->powerLimit[0]); mEep->write(ADDR_INV_PWR_LIM_CON + i * 2, iv->powerLimit[1]); mEep->write(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), iv->name, MAX_NAME_LENGTH); // max channel power / name for(uint8_t j = 0; j < 4; j++) { mEep->write(ADDR_INV_CH_PWR + (i * 2 * 4) + (j*2), iv->chMaxPwr[j]); mEep->write(ADDR_INV_CH_NAME + (i * 4 * MAX_NAME_LENGTH) + j * MAX_NAME_LENGTH, iv->chName[j], MAX_NAME_LENGTH); } } updateCrc(); mEep->commit(); } //----------------------------------------------------------------------------- void app::setupMqtt(void) { if(mSettingsValid) { if(mConfig.mqtt.broker[0] > 0) { mMqttActive = true; if(mMqttInterval < MIN_MQTT_INTERVAL) mMqttInterval = MIN_MQTT_INTERVAL; } else mMqttInterval = 0xffff; mMqttTicker = 0; mMqtt.setup(&mConfig.mqtt, mSysConfig.deviceName); mMqtt.setCallback(std::bind(&app::cbMqtt, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3)); if(mMqttActive) { mMqtt.sendMsg("version", mVersion); if(mMqtt.isConnected()) mMqtt.sendMsg("device", mSysConfig.deviceName); /*char topic[30]; for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) { iv = mSys->getInverterByPos(i); if(NULL != iv) { for(uint8_t i = 0; i < 4; i++) { if(0 != iv->chName[i][0]) { snprintf(topic, 30, "%s/ch%d/%s", iv->name, i+1, "name"); mMqtt.sendMsg(topic, iv->chName[i]); yield(); } } } }*/ } } } //----------------------------------------------------------------------------- void app::resetPayload(Inverter<>* iv) { // reset payload data memset(mPayload[iv->id].len, 0, MAX_PAYLOAD_ENTRIES); mPayload[iv->id].retransmits = 0; mPayload[iv->id].maxPackId = 0; mPayload[iv->id].complete = false; mPayload[iv->id].requested = true; mPayload[iv->id].ts = mTimestamp; }