//----------------------------------------------------------------------------- // 2022 Ahoy, https://www.mikrocontroller.net/topic/525778 // Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/ //----------------------------------------------------------------------------- #if defined(ESP32) && defined(F) #undef F #define F(sl) (sl) #endif #include "app.h" #include //----------------------------------------------------------------------------- app::app() { Serial.begin(115200); DPRINTLN(DBG_VERBOSE, F("app::app")); mEep = new eep(); mWifi = new ahoywifi(this, &mSysConfig, &mConfig); resetSystem(); loadDefaultConfig(); mSys = new HmSystemType(); mShouldReboot = false; } //----------------------------------------------------------------------------- void app::setup(uint32_t timeout) { DPRINTLN(DBG_VERBOSE, F("app::setup")); mWifiSettingsValid = checkEEpCrc(ADDR_START, ADDR_WIFI_CRC, ADDR_WIFI_CRC); mSettingsValid = checkEEpCrc(ADDR_START_SETTINGS, ((ADDR_NEXT)-(ADDR_START_SETTINGS)), ADDR_SETTINGS_CRC); loadEEpconfig(); mWifi->setup(timeout, mWifiSettingsValid); #ifndef AP_ONLY setupMqtt(); #endif mSys->setup(mConfig.amplifierPower, mConfig.pinIrq, mConfig.pinCe, mConfig.pinCs); mWebInst = new web(this, &mSysConfig, &mConfig, &mStat, mVersion); mWebInst->setup(); } //----------------------------------------------------------------------------- void app::loop(void) { DPRINTLN(DBG_VERBOSE, F("app::loop")); bool apActive = mWifi->loop(); mWebInst->loop(); if(millis() - mPrevMillis >= 1000) { mPrevMillis += 1000; mUptimeSecs++; if(0 != mUtcTimestamp) mUtcTimestamp++; } if(checkTicker(&mNtpRefreshTicker, mNtpRefreshInterval)) { if(!apActive) mUpdateNtp = true; } if(mUpdateNtp) { mUpdateNtp = false; mUtcTimestamp = mWifi->getNtpTime(); DPRINTLN(DBG_INFO, F("[NTP]: ") + getDateTimeStr(mUtcTimestamp) + F(" UTC")); } if(mFlagSendDiscoveryConfig) { mFlagSendDiscoveryConfig = false; sendMqttDiscoveryConfig(); } if(mShouldReboot) { DPRINTLN(DBG_INFO, F("Rebooting...")); ESP.restart(); } mSys->Radio.loop(); yield(); if(checkTicker(&mRxTicker, 5)) { bool rxRdy = mSys->Radio.switchRxCh(); if(!mSys->BufCtrl.empty()) { uint8_t len; packet_t *p = mSys->BufCtrl.getBack(); if(mSys->Radio.checkPaketCrc(p->packet, &len, p->rxCh)) { // process buffer only on first occurrence if(mConfig.serialDebug) { DPRINT(DBG_INFO, "RX " + String(len) + "B Ch" + String(p->rxCh) + " | "); mSys->Radio.dumpBuf(NULL, p->packet, len); } mStat.frmCnt++; if(0 != len) { Inverter<> *iv = mSys->findInverter(&p->packet[1]); if((NULL != iv) && (p->packet[0] == (TX_REQ_INFO + ALL_FRAMES))) // response from get information command { mPayload[iv->id].txId = p->packet[0]; DPRINTLN(DBG_DEBUG, F("Response from info request received")); uint8_t *pid = &p->packet[9]; if (*pid == 0x00) { DPRINT(DBG_DEBUG, F("fragment number zero received and ignored")); } else { DPRINTLN(DBG_DEBUG, "PID: 0x" + String(*pid, HEX)); if ((*pid & 0x7F) < 5) { memcpy(mPayload[iv->id].data[(*pid & 0x7F) - 1], &p->packet[10], len - 11); mPayload[iv->id].len[(*pid & 0x7F) - 1] = len - 11; } if ((*pid & ALL_FRAMES) == ALL_FRAMES) { // Last packet if ((*pid & 0x7f) > mPayload[iv->id].maxPackId) { mPayload[iv->id].maxPackId = (*pid & 0x7f); if (*pid > 0x81) mLastPacketId = *pid; } } } } if((NULL != iv) && (p->packet[0] == (TX_REQ_DEVCONTROL + ALL_FRAMES))) // response from dev control command { DPRINTLN(DBG_DEBUG, F("Response from devcontrol request received")); mPayload[iv->id].txId = p->packet[0]; iv->devControlRequest = false; if ((p->packet[12] == ActivePowerContr) && (p->packet[13] == 0x00)) { String msg = (p->packet[10] == 0x00 && p->packet[11] == 0x00) ? "" : "NOT "; DPRINTLN(DBG_INFO, F("Inverter ") + String(iv->id) + F(" has ") + msg + F("accepted power limit set point ") + String(iv->powerLimit[0]) + F(" with PowerLimitControl ") + String(iv->powerLimit[1])); } iv->devControlCmd = Init; } } } mSys->BufCtrl.popBack(); } yield(); if(rxRdy) { processPayload(true); } } if(mMqttActive) mMqtt.loop(); if(checkTicker(&mTicker, 1000)) { if(mUtcTimestamp > 946684800 && mConfig.sunLat && mConfig.sunLon && (mUtcTimestamp + mCalculatedTimezoneOffset) / 86400 != (mLatestSunTimestamp + mCalculatedTimezoneOffset) / 86400) { // update on reboot or midnight if (!mLatestSunTimestamp) { // first call: calculate time zone from longitude to refresh at local midnight mCalculatedTimezoneOffset = (int8_t)((mConfig.sunLon >= 0 ? mConfig.sunLon + 7.5 : mConfig.sunLon - 7.5) / 15) * 3600; } calculateSunriseSunset(); mLatestSunTimestamp = mUtcTimestamp; } if((++mMqttTicker >= mMqttInterval) && (mMqttInterval != 0xffff) && mMqttActive) { mMqttTicker = 0; mMqtt.isConnected(true); // really needed? See comment from HorstG-57 #176 char val[10]; snprintf(val, 10, "%ld", millis()/1000); mMqtt.sendMsg("uptime", val); #ifdef __MQTT_TEST__ // für einfacheren Test mit MQTT, den MQTT abschnitt in 10 Sekunden wieder ausführen mMqttTicker = mMqttInterval -10; #endif } if(mConfig.serialShowIv) { if(++mSerialTicker >= mConfig.serialInterval) { mSerialTicker = 0; char topic[30], val[10]; for(uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if(NULL != iv) { record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); if(iv->isAvailable(mUtcTimestamp, rec)) { DPRINTLN(DBG_INFO, "Inverter: " + String(id)); for(uint8_t i = 0; i < rec->length; i++) { if(0.0f != iv->getValue(i, rec)) { snprintf(topic, 30, "%s/ch%d/%s", iv->name, rec->assign[i].ch, iv->getFieldName(i, rec)); snprintf(val, 10, "%.3f %s", iv->getValue(i, rec), iv->getUnit(i, rec)); DPRINTLN(DBG_INFO, String(topic) + ": " + String(val)); } yield(); } DPRINTLN(DBG_INFO, ""); } } } } } if(++mSendTicker >= mConfig.sendInterval) { mSendTicker = 0; if(mUtcTimestamp > 946684800 && (!mConfig.sunDisNightCom || !mLatestSunTimestamp || (mUtcTimestamp >= mSunrise && mUtcTimestamp <= mSunset))) { // Timestamp is set and (inverter communication only during the day if the option is activated and sunrise/sunset is set) if(mConfig.serialDebug) DPRINTLN(DBG_DEBUG, F("Free heap: 0x") + String(ESP.getFreeHeap(), HEX)); if(!mSys->BufCtrl.empty()) { if(mConfig.serialDebug) DPRINTLN(DBG_DEBUG, F("recbuf not empty! #") + String(mSys->BufCtrl.getFill())); } int8_t maxLoop = MAX_NUM_INVERTERS; Inverter<> *iv = mSys->getInverterByPos(mSendLastIvId); do { //if(NULL != iv) // mPayload[iv->id].requested = false; mSendLastIvId = ((MAX_NUM_INVERTERS-1) == mSendLastIvId) ? 0 : mSendLastIvId + 1; iv = mSys->getInverterByPos(mSendLastIvId); } while((NULL == iv) && ((maxLoop--) > 0)); if(NULL != iv) { if(!mPayload[iv->id].complete) processPayload(false); if(!mPayload[iv->id].complete) { if(0 == mPayload[iv->id].maxPackId) mStat.rxFailNoAnser++; else mStat.rxFail++; iv->setQueuedCmdFinished(); // command failed if(mConfig.serialDebug) DPRINTLN(DBG_INFO, F("enqueued cmd failed/timeout")); if(mConfig.serialDebug) { DPRINT(DBG_INFO, F("Inverter #") + String(iv->id) + " "); DPRINTLN(DBG_INFO, F("no Payload received! (retransmits: ") + String(mPayload[iv->id].retransmits) + ")"); } } resetPayload(iv); mPayload[iv->id].requested = true; yield(); if(mConfig.serialDebug) { DPRINTLN(DBG_DEBUG, F("app:loop WiFi WiFi.status ") + String(WiFi.status())); DPRINTLN(DBG_INFO, F("Requesting Inverter SN ") + String(iv->serial.u64, HEX)); } if(iv->devControlRequest) { if(mConfig.serialDebug) DPRINTLN(DBG_INFO, F("Devcontrol request ") + String(iv->devControlCmd) + F(" power limit ") + String(iv->powerLimit[0])); mSys->Radio.sendControlPacket(iv->radioId.u64, iv->devControlCmd, iv->powerLimit); mPayload[iv->id].txCmd = iv->devControlCmd; iv->clearCmdQueue(); iv->enqueCommand(SystemConfigPara); } else { uint8_t cmd = iv->getQueuedCmd(); mSys->Radio.sendTimePacket(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex); mPayload[iv->id].txCmd = cmd; mRxTicker = 0; } } } else if(mConfig.serialDebug) DPRINTLN(DBG_WARN, F("Time not set or it is night time, therefore no communication to the inverter!")); yield(); } } } //----------------------------------------------------------------------------- void app::handleIntr(void) { DPRINTLN(DBG_VERBOSE, F("app::handleIntr")); mSys->Radio.handleIntr(); } //----------------------------------------------------------------------------- bool app::buildPayload(uint8_t id) { DPRINTLN(DBG_VERBOSE, F("app::buildPayload")); uint16_t crc = 0xffff, crcRcv = 0x0000; if(mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES) mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES; for(uint8_t i = 0; i < mPayload[id].maxPackId; i ++) { if(mPayload[id].len[i] > 0) { if(i == (mPayload[id].maxPackId-1)) { crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc); crcRcv = (mPayload[id].data[i][mPayload[id].len[i] - 2] << 8) | (mPayload[id].data[i][mPayload[id].len[i] - 1]); } else crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i], crc); } yield(); } return (crc == crcRcv) ? true : false; } //----------------------------------------------------------------------------- void app::processPayload(bool retransmit) { #ifdef __MQTT_AFTER_RX__ boolean doMQTT = false; #endif //DPRINTLN(DBG_INFO, F("processPayload")); for(uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if(NULL != iv) { if((mPayload[iv->id].txId != (TX_REQ_INFO + ALL_FRAMES)) && (0 != mPayload[iv->id].txId)) { // no processing needed if txId is not 0x95 //DPRINTLN(DBG_INFO, F("processPayload - set complete, txId: ") + String(mPayload[iv->id].txId, HEX)); mPayload[iv->id].complete = true; } if(!mPayload[iv->id].complete ) { if(!buildPayload(iv->id)) // payload not complete { if(mPayload[iv->id].requested) { if(retransmit) { if(iv->devControlCmd == Restart || iv->devControlCmd == CleanState_LockAndAlarm ) { // This is required to prevent retransmissions without answer. DPRINTLN(DBG_INFO, F("Prevent retransmit on Restart / CleanState_LockAndAlarm...")); mPayload[iv->id].retransmits = mConfig.maxRetransPerPyld; } else { if(mPayload[iv->id].retransmits < mConfig.maxRetransPerPyld) { mPayload[iv->id].retransmits++; if(mPayload[iv->id].maxPackId != 0) { for(uint8_t i = 0; i < (mPayload[iv->id].maxPackId-1); i++) { if(mPayload[iv->id].len[i] == 0) { if(mConfig.serialDebug) DPRINTLN(DBG_WARN, F("while retrieving data: Frame ") + String(i+1) + F(" missing: Request Retransmit")); mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, (SINGLE_FRAME+i), true); break; // only retransmit one frame per loop } yield(); } } else { if(mConfig.serialDebug) DPRINTLN(DBG_WARN, F("while retrieving data: last frame missing: Request Retransmit")); if(0x00 != mLastPacketId) mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, mLastPacketId, true); else { mPayload[iv->id].txCmd = iv->getQueuedCmd(); mSys->Radio.sendTimePacket(iv->radioId.u64, mPayload[iv->id].txCmd, mPayload[iv->id].ts, iv->alarmMesIndex); } } mSys->Radio.switchRxCh(100); } } } } } else { // payload complete DPRINTLN(DBG_INFO, F("procPyld: cmd: ") + String(mPayload[iv->id].txCmd)); DPRINTLN(DBG_INFO, F("procPyld: txid: 0x") + String(mPayload[iv->id].txId, HEX)); DPRINTLN(DBG_DEBUG, F("procPyld: max: ") + String(mPayload[iv->id].maxPackId)); record_t<> *rec = iv->getRecordStruct(mPayload[iv->id].txCmd); // choose the parser mPayload[iv->id].complete = true; uint8_t payload[128]; uint8_t payloadLen = 0; memset(payload, 0, 128); for(uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i ++) { memcpy(&payload[payloadLen], mPayload[iv->id].data[i], (mPayload[iv->id].len[i])); payloadLen += (mPayload[iv->id].len[i]); yield(); } payloadLen-=2; if(mConfig.serialDebug) { DPRINT(DBG_INFO, F("Payload (") + String(payloadLen) + "): "); mSys->Radio.dumpBuf(NULL, payload, payloadLen); } if(NULL == rec) { DPRINTLN(DBG_ERROR, F("record is NULL!")); } else if((rec->pyldLen == payloadLen) || (0 == rec->pyldLen)) { if(mPayload[iv->id].txId == (TX_REQ_INFO + 0x80)) mStat.rxSuccess++; rec->ts = mPayload[iv->id].ts; for(uint8_t i = 0; i < rec->length; i++) { iv->addValue(i, payload, rec); yield(); } iv->doCalculations(); // MQTT send out if(mMqttActive) { record_t<> *recRealtime = iv->getRecordStruct(RealTimeRunData_Debug); char topic[32 + MAX_NAME_LENGTH], val[32]; float total[4]; memset(total, 0, sizeof(float) * 4); for (uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if (NULL != iv) { if (iv->isAvailable(mUtcTimestamp, rec)) { for (uint8_t i = 0; i < rec->length; i++) { snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/ch%d/%s", iv->name, rec->assign[i].ch, fields[rec->assign[i].fieldId]); snprintf(val, 10, "%.3f", iv->getValue(i, rec)); mMqtt.sendMsg(topic, val); if(recRealtime == rec) { if(CH0 == rec->assign[i].ch) { switch(rec->assign[i].fieldId) { case FLD_PAC: total[0] += iv->getValue(i, rec); break; case FLD_YT: total[1] += iv->getValue(i, rec); break; case FLD_YD: total[2] += iv->getValue(i, rec); break; case FLD_PDC: total[3] += iv->getValue(i, rec); break; } } } if(iv->isProducing(mUtcTimestamp, rec)){ snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/available_text", iv->name); snprintf(val, 32, DEF_MQTT_IV_MESSAGE_INVERTER_AVAIL_AND_PRODUCED); mMqtt.sendMsg(topic, val); snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/available", iv->name); snprintf(val, 32, "2"); } else { snprintf(val, 32, DEF_MQTT_IV_MESSAGE_INVERTER_AVAIL_AND_NOT_PRODUCED); mMqtt.sendMsg(topic, val); snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/available", iv->name); snprintf(val, 32, "1"); } mMqtt.sendMsg(topic, val); snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/last_success", iv->name); snprintf(val, 48, "%i", iv->getLastTs(rec) * 1000); mMqtt.sendMsg(topic, val); yield(); } } } } // total values (sum of all inverters) if(recRealtime == rec) { if(mSys->getNumInverters() > 1) { uint8_t fieldId = 0; for (uint8_t i = 0; i < 4; i++) { switch(i) { case 0: fieldId = FLD_PAC; break; case 1: fieldId = FLD_YT; break; case 2: fieldId = FLD_YD; break; case 3: fieldId = FLD_PDC; break; } snprintf(topic, 32 + MAX_NAME_LENGTH, "total/%s", fields[fieldId]); snprintf(val, 10, "%.3f", total[i]); mMqtt.sendMsg(topic, val); } } } } } else { DPRINTLN(DBG_ERROR, F("plausibility check failed, expected ") + String(rec->pyldLen) + F(" bytes")); mStat.rxFail++; } iv->setQueuedCmdFinished(); #ifdef __MQTT_AFTER_RX__ doMQTT = true; #endif } } if(mMqttActive) { record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); char topic[32 + MAX_NAME_LENGTH], val[32]; if (!iv->isAvailable(mUtcTimestamp, rec) && !iv->isProducing(mUtcTimestamp, rec)){ snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/available_text", iv->name); snprintf(val, 32, DEF_MQTT_IV_MESSAGE_NOT_AVAIL_AND_NOT_PRODUCED); mMqtt.sendMsg(topic, val); snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/available", iv->name); snprintf(val, 32, "0"); mMqtt.sendMsg(topic, val); } } yield(); } } #ifdef __MQTT_AFTER_RX__ // ist MQTT aktiviert und es wurden Daten vom einem oder mehreren WR aufbereitet ( doMQTT = true) // dann die den mMqttTicker auf mMqttIntervall -2 setzen, also // MQTT aussenden in 2 sek aktivieren // dies sollte noch über einen Schalter im Setup aktivier / deaktivierbar gemacht werden if( (mMqttInterval != 0xffff) && doMQTT ) { ++mMqttTicker = mMqttInterval -2; DPRINT(DBG_DEBUG, F("MQTTticker auf Intervall -2 sec ")) ; } #endif } //----------------------------------------------------------------------------- void app::cbMqtt(char* topic, byte* payload, unsigned int length) { // callback handling on subscribed devcontrol topic DPRINTLN(DBG_INFO, F("app::cbMqtt")); // subcribed topics are mTopic + "/devcontrol/#" where # is / // eg. mypvsolar/devcontrol/1/11 with payload "400" --> inverter 1 active power limit 400 Watt const char *token = strtok(topic, "/"); while (token != NULL) { if (strcmp(token,"devcontrol")==0) { token = strtok(NULL, "/"); uint8_t iv_id = std::stoi(token); if (iv_id >= 0 && iv_id <= MAX_NUM_INVERTERS) { Inverter<> *iv = this->mSys->getInverterByPos(iv_id); if(NULL != iv) { if (!iv->devControlRequest) // still pending { token = strtok(NULL, "/"); switch ( std::stoi(token) ) { // Active Power Control case ActivePowerContr: token = strtok(NULL, "/"); // get ControlMode aka "PowerPF.Desc" in DTU-Pro Code from topic string if (token == NULL) // default via mqtt ommit the LimitControlMode iv->powerLimit[1] = AbsolutNonPersistent; else iv->powerLimit[1] = std::stoi(token); if (length<=5){ // if (std::stoi((char*)payload) > 0) more error handling powerlimit needed? if (iv->powerLimit[1] >= AbsolutNonPersistent && iv->powerLimit[1] <= RelativPersistent){ iv->devControlCmd = ActivePowerContr; iv->powerLimit[0] = std::stoi(std::string((char*)payload, (unsigned int)length)); // THX to @silversurfer if (iv->powerLimit[1] & 0x0001) DPRINTLN(DBG_INFO, F("Power limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("%") ); else DPRINTLN(DBG_INFO, F("Power limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("W") ); } iv->devControlRequest = true; } else { DPRINTLN(DBG_INFO, F("Invalid mqtt payload recevied: ") + String((char*)payload)); } break; // Turn On case TurnOn: iv->devControlCmd = TurnOn; DPRINTLN(DBG_INFO, F("Turn on inverter ") + String(iv->id) ); iv->devControlRequest = true; break; // Turn Off case TurnOff: iv->devControlCmd = TurnOff; DPRINTLN(DBG_INFO, F("Turn off inverter ") + String(iv->id) ); iv->devControlRequest = true; break; // Restart case Restart: iv->devControlCmd = Restart; DPRINTLN(DBG_INFO, F("Restart inverter ") + String(iv->id) ); iv->devControlRequest = true; break; // Reactive Power Control case ReactivePowerContr: iv->devControlCmd = ReactivePowerContr; if (true){ // if (std::stoi((char*)payload) > 0) error handling powerlimit needed? iv->devControlCmd = ReactivePowerContr; iv->powerLimit[0] = std::stoi(std::string((char*)payload, (unsigned int)length)); iv->powerLimit[1] = 0x0000; // if reactivepower limit is set via external interface --> set it temporay DPRINTLN(DBG_DEBUG, F("Reactivepower limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("W") ); iv->devControlRequest = true; } break; // Set Power Factor case PFSet: // iv->devControlCmd = PFSet; // uint16_t power_factor = std::stoi(strtok(NULL, "/")); DPRINTLN(DBG_INFO, F("Set Power Factor not implemented for inverter ") + String(iv->id) ); break; // CleanState lock & alarm case CleanState_LockAndAlarm: iv->devControlCmd = CleanState_LockAndAlarm; DPRINTLN(DBG_INFO, F("CleanState lock & alarm for inverter ") + String(iv->id) ); iv->devControlRequest = true; break; default: DPRINTLN(DBG_INFO, "Not implemented"); break; } } } } break; } token = strtok(NULL, "/"); } DPRINTLN(DBG_INFO, F("app::cbMqtt finished")); } //----------------------------------------------------------------------------- bool app::getWifiApActive(void) { return mWifi->getApActive(); } //----------------------------------------------------------------------------- void app::getAvailNetworks(JsonObject obj) { mWifi->getAvailNetworks(obj); } //----------------------------------------------------------------------------- void app::sendMqttDiscoveryConfig(void) { DPRINTLN(DBG_VERBOSE, F("app::sendMqttDiscoveryConfig")); char stateTopic[64], discoveryTopic[64], buffer[512], name[32], uniq_id[32]; for(uint8_t id = 0; id < mSys->getNumInverters(); id++) { Inverter<> *iv = mSys->getInverterByPos(id); if(NULL != iv) { record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); // TODO: next line makes no sense if discovery config is send manually by button //if(iv->isAvailable(mUtcTimestamp, rec) && mMqttConfigSendState[id] != true) { DynamicJsonDocument deviceDoc(128); deviceDoc["name"] = iv->name; deviceDoc["ids"] = String(iv->serial.u64, HEX); deviceDoc["cu"] = F("http://") + String(WiFi.localIP().toString()); deviceDoc["mf"] = "Hoymiles"; deviceDoc["mdl"] = iv->name; JsonObject deviceObj = deviceDoc.as(); DynamicJsonDocument doc(384); for(uint8_t i = 0; i < rec->length; i++) { if (rec->assign[i].ch == CH0) { snprintf(name, 32, "%s %s", iv->name, iv->getFieldName(i, rec)); } else { snprintf(name, 32, "%s CH%d %s", iv->name, rec->assign[i].ch, iv->getFieldName(i, rec)); } snprintf(stateTopic, 64, "%s/%s/ch%d/%s", mConfig.mqtt.topic, iv->name, rec->assign[i].ch, iv->getFieldName(i, rec)); snprintf(discoveryTopic, 64, "%s/sensor/%s/ch%d_%s/config", MQTT_DISCOVERY_PREFIX, iv->name, rec->assign[i].ch, iv->getFieldName(i, rec)); snprintf(uniq_id, 32, "ch%d_%s", rec->assign[i].ch, iv->getFieldName(i, rec)); const char* devCls = getFieldDeviceClass(rec->assign[i].fieldId); const char* stateCls = getFieldStateClass(rec->assign[i].fieldId); doc["name"] = name; doc["stat_t"] = stateTopic; doc["unit_of_meas"] = iv->getUnit(i, rec); doc["uniq_id"] = String(iv->serial.u64, HEX) + "_" + uniq_id; doc["dev"] = deviceObj; doc["exp_aft"] = mMqttInterval + 5; // add 5 sec if connection is bad or ESP too slow if (devCls != NULL) doc["dev_cla"] = devCls; if (stateCls != NULL) doc["stat_cla"] = stateCls; serializeJson(doc, buffer); mMqtt.sendMsg2(discoveryTopic, buffer, true); //DPRINTLN(DBG_INFO, F("mqtt sent")); doc.clear(); } // TODO: remove this field, obsolete? mMqttConfigSendState[id] = true; yield(); //} } } } //----------------------------------------------------------------------------- const char* app::getFieldDeviceClass(uint8_t fieldId) { uint8_t pos = 0; for(; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) { if(deviceFieldAssignment[pos].fieldId == fieldId) break; } return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : deviceClasses[deviceFieldAssignment[pos].deviceClsId]; } //----------------------------------------------------------------------------- const char* app::getFieldStateClass(uint8_t fieldId) { uint8_t pos = 0; for(; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) { if(deviceFieldAssignment[pos].fieldId == fieldId) break; } return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : stateClasses[deviceFieldAssignment[pos].stateClsId]; } //----------------------------------------------------------------------------- void app::resetSystem(void) { mUptimeSecs = 0; mPrevMillis = 0; mUpdateNtp = false; mFlagSendDiscoveryConfig = false; mNtpRefreshTicker = 0; mNtpRefreshInterval = NTP_REFRESH_INTERVAL; // [ms] #ifdef AP_ONLY mUtcTimestamp = 1; #else mUtcTimestamp = 0; #endif mHeapStatCnt = 0; mSendTicker = 0xffff; mMqttTicker = 0xffff; mMqttInterval = MQTT_INTERVAL; mSerialTicker = 0xffff; mMqttActive = false; mTicker = 0; mRxTicker = 0; mSendLastIvId = 0; mShowRebootRequest = false; memset(mPayload, 0, (MAX_NUM_INVERTERS * sizeof(invPayload_t))); memset(&mStat, 0, sizeof(statistics_t)); mLastPacketId = 0x00; } //----------------------------------------------------------------------------- void app::loadDefaultConfig(void) { memset(&mSysConfig, 0, sizeof(sysConfig_t)); memset(&mConfig, 0, sizeof(config_t)); snprintf(mVersion, 12, "%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH); snprintf(mSysConfig.deviceName, DEVNAME_LEN, "%s", DEF_DEVICE_NAME); // wifi snprintf(mSysConfig.stationSsid, SSID_LEN, "%s", FB_WIFI_SSID); snprintf(mSysConfig.stationPwd, PWD_LEN, "%s", FB_WIFI_PWD); // nrf24 mConfig.sendInterval = SEND_INTERVAL; mConfig.maxRetransPerPyld = DEF_MAX_RETRANS_PER_PYLD; mConfig.pinCs = DEF_CS_PIN; mConfig.pinCe = DEF_CE_PIN; mConfig.pinIrq = DEF_IRQ_PIN; mConfig.amplifierPower = DEF_AMPLIFIERPOWER & 0x03; // ntp snprintf(mConfig.ntpAddr, NTP_ADDR_LEN, "%s", DEF_NTP_SERVER_NAME); mConfig.ntpPort = DEF_NTP_PORT; // Latitude + Longitude mConfig.sunLat = 0.0; mConfig.sunLon = 0.0; mConfig.sunDisNightCom = false; // mqtt snprintf(mConfig.mqtt.broker, MQTT_ADDR_LEN, "%s", DEF_MQTT_BROKER); mConfig.mqtt.port = DEF_MQTT_PORT; snprintf(mConfig.mqtt.user, MQTT_USER_LEN, "%s", DEF_MQTT_USER); snprintf(mConfig.mqtt.pwd, MQTT_PWD_LEN, "%s", DEF_MQTT_PWD); snprintf(mConfig.mqtt.topic, MQTT_TOPIC_LEN, "%s", DEF_MQTT_TOPIC); // serial mConfig.serialInterval = SERIAL_INTERVAL; mConfig.serialShowIv = false; mConfig.serialDebug = false; // Disclaimer mConfig.disclaimer = false; } //----------------------------------------------------------------------------- void app::loadEEpconfig(void) { DPRINTLN(DBG_VERBOSE, F("app::loadEEpconfig")); if(mWifiSettingsValid) mEep->read(ADDR_CFG_SYS, (uint8_t*) &mSysConfig, CFG_SYS_LEN); if(mSettingsValid) { mEep->read(ADDR_CFG, (uint8_t*) &mConfig, CFG_LEN); mSendTicker = mConfig.sendInterval; mSerialTicker = 0; // inverter uint64_t invSerial; char name[MAX_NAME_LENGTH + 1] = {0}; uint16_t modPwr[4]; Inverter<> *iv; for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) { mEep->read(ADDR_INV_ADDR + (i * 8), &invSerial); mEep->read(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), name, MAX_NAME_LENGTH); mEep->read(ADDR_INV_CH_PWR + (i * 2 * 4), modPwr, 4); if(0ULL != invSerial) { iv = mSys->addInverter(name, invSerial, modPwr); if(NULL != iv) { // will run once on every dtu boot for(uint8_t j = 0; j < 4; j++) { mEep->read(ADDR_INV_CH_NAME + (i * 4 * MAX_NAME_LENGTH) + j * MAX_NAME_LENGTH, iv->chName[j], MAX_NAME_LENGTH); } } // TODO: the original mqttinterval value is not needed any more mMqttInterval += mConfig.sendInterval; } } for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) { iv = mSys->getInverterByPos(i, false); if(NULL != iv) resetPayload(iv); } } } //----------------------------------------------------------------------------- void app::saveValues(void) { DPRINTLN(DBG_VERBOSE, F("app::saveValues")); mEep->write(ADDR_CFG_SYS, (uint8_t*)&mSysConfig, CFG_SYS_LEN); mEep->write(ADDR_CFG, (uint8_t*)&mConfig, CFG_LEN); Inverter<> *iv; for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) { iv = mSys->getInverterByPos(i, false); mEep->write(ADDR_INV_ADDR + (i * 8), iv->serial.u64); mEep->write(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), iv->name, MAX_NAME_LENGTH); // max channel power / name for(uint8_t j = 0; j < 4; j++) { mEep->write(ADDR_INV_CH_PWR + (i * 2 * 4) + (j*2), iv->chMaxPwr[j]); mEep->write(ADDR_INV_CH_NAME + (i * 4 * MAX_NAME_LENGTH) + j * MAX_NAME_LENGTH, iv->chName[j], MAX_NAME_LENGTH); } } updateCrc(); // update sun mLatestSunTimestamp = 0; } //----------------------------------------------------------------------------- void app::setupMqtt(void) { if(mSettingsValid) { if(mConfig.mqtt.broker[0] > 0) { mMqttActive = true; if(mMqttInterval < MIN_MQTT_INTERVAL) mMqttInterval = MIN_MQTT_INTERVAL; } else { mMqttInterval = 0xffff; } mMqttTicker = 0; mMqtt.setup(&mConfig.mqtt, mSysConfig.deviceName); mMqtt.setCallback(std::bind(&app::cbMqtt, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3)); if(mMqttActive) { mMqtt.sendMsg("version", mVersion); if(mMqtt.isConnected()) { mMqtt.sendMsg("device", mSysConfig.deviceName); mMqtt.sendMsg("uptime", "0"); } } } } //----------------------------------------------------------------------------- void app::resetPayload(Inverter<>* iv) { DPRINTLN(DBG_INFO, "resetPayload: id: " + String(iv->id)); memset(mPayload[iv->id].len, 0, MAX_PAYLOAD_ENTRIES); mPayload[iv->id].txCmd = 0; mPayload[iv->id].retransmits = 0; mPayload[iv->id].maxPackId = 0; mPayload[iv->id].complete = false; mPayload[iv->id].requested = false; mPayload[iv->id].ts = mUtcTimestamp; } void app::calculateSunriseSunset() { // Source: https://en.wikipedia.org/wiki/Sunrise_equation#Complete_calculation_on_Earth // Julian day since 1.1.2000 12:00 + correction 69.12s double n_JulianDay = (mUtcTimestamp + mCalculatedTimezoneOffset) / 86400 - 10957.0 + 0.0008; // Mean solar time double J = n_JulianDay - mConfig.sunLon / 360; // Solar mean anomaly double M = fmod((357.5291 + 0.98560028 * J), 360); // Equation of the center double C = 1.9148 * SIN(M) + 0.02 * SIN(2 * M) + 0.0003 * SIN(3 * M); // Ecliptic longitude double lambda = fmod((M + C + 180 + 102.9372), 360); // Solar transit double Jtransit = 2451545.0 + J + 0.0053 * SIN(M) - 0.0069 * SIN(2 * lambda); // Declination of the sun double delta = ASIN(SIN(lambda) * SIN(23.44)); // Hour angle double omega = ACOS(SIN(-0.83) - SIN(mConfig.sunLat) * SIN(delta) / COS(mConfig.sunLat) * COS(delta)); // Calculate sunrise and sunset double Jrise = Jtransit - omega / 360; double Jset = Jtransit + omega / 360; // Julian sunrise/sunset to UTC unix timestamp (days incl. fraction to seconds + unix offset 1.1.2000 12:00) mSunrise = (Jrise - 2451545.0) * 86400 + 946728000; // OPTIONAL: Add an offset of +-seconds to the end of the line mSunset = (Jset - 2451545.0) * 86400 + 946728000; // OPTIONAL: Add an offset of +-seconds to the end of the line }