//----------------------------------------------------------------------------- // 2024 Ahoy, https://github.com/lumpapu/ahoy // Creative Commons - http://creativecommons.org/licenses/by-nc-sa/4.0/deed //----------------------------------------------------------------------------- #ifndef __HM_RADIO_H__ #define __HM_RADIO_H__ #include #include "SPI.h" #include "radio.h" #include "../config/config.h" #if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL) #include "nrfHal.h" #endif #define SPI_SPEED 1000000 #define RF_CHANNELS 5 const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"}; #define TX_REQ_DREDCONTROL 0x50 #define DRED_A5 0xa5 #define DRED_5A 0x5a #define DRED_AA 0xaa #define DRED_55 0x55 //----------------------------------------------------------------------------- // HM Radio class //----------------------------------------------------------------------------- template class HmRadio : public Radio { public: HmRadio() { mDtuSn = DTU_SN; mIrqRcvd = false; #if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL) //mNrf24.reset(new RF24()); #else mNrf24.reset(new RF24(CE_PIN, CS_PIN, SPI_SPEED)); #endif } ~HmRadio() {} void setup(bool *serialDebug, bool *privacyMode, bool *printWholeTrace, uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN, uint8_t sclk = SCLK_PIN, uint8_t mosi = MOSI_PIN, uint8_t miso = MISO_PIN) { DPRINTLN(DBG_VERBOSE, F("hmRadio.h:setup")); pinMode(irq, INPUT_PULLUP); mSerialDebug = serialDebug; mPrivacyMode = privacyMode; mPrintWholeTrace = printWholeTrace; generateDtuSn(); mDtuRadioId = ((uint64_t)(((mDtuSn >> 24) & 0xFF) | ((mDtuSn >> 8) & 0xFF00) | ((mDtuSn << 8) & 0xFF0000) | ((mDtuSn << 24) & 0xFF000000)) << 8) | 0x01; #ifdef ESP32 #if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL) mNrfHal.init(mosi, miso, sclk, cs, ce, SPI_SPEED); mNrf24.reset(new RF24(&mNrfHal)); #else #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 mSpi.reset(new SPIClass(HSPI)); #else mSpi.reset(new SPIClass(VSPI)); #endif mSpi->begin(sclk, miso, mosi, cs); #endif #else //the old ESP82xx cannot freely place their SPI pins mSpi.reset(new SPIClass()); mSpi->begin(); #endif #if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL) mNrf24->begin(); #else mNrf24->begin(mSpi.get(), ce, cs); #endif mNrf24->setRetries(3, 9); // wait 3*250 = 750us, 16 * 250us -> 4000us = 4ms mNrf24->setDataRate(RF24_250KBPS); //mNrf24->setAutoAck(true); // enabled by default //mNrf24->enableDynamicAck(); mNrf24->enableDynamicPayloads(); mNrf24->setCRCLength(RF24_CRC_16); mNrf24->setAddressWidth(5); mNrf24->openReadingPipe(1, reinterpret_cast(&mDtuRadioId)); mNrf24->maskIRQ(false, false, false); // enable all receiving interrupts mNrf24->setPALevel(1); // low is default if(mNrf24->isChipConnected()) { DPRINTLN(DBG_INFO, F("Radio Config:")); mNrf24->printPrettyDetails(); DPRINT(DBG_INFO, F("DTU_SN: ")); DBGPRINTLN(String(mDtuSn, HEX)); } else DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring")); } // returns true if communication is active bool loop(void) override { if (!mIrqRcvd && !mNRFisInRX) return false; // first quick check => nothing to do at all here if(NULL == mLastIv) // prevent reading on NULL object! return false; if(!mIrqRcvd) { // no news from nRF, check timers if ((millis() - mTimeslotStart) < innerLoopTimeout) return true; // nothing to do, still waiting if (mRadioWaitTime.isTimeout()) { // timeout reached! mNRFisInRX = false; rx_ready = false; return false; } // otherwise switch to next RX channel mTimeslotStart = millis(); if(!mNRFloopChannels && ((mTimeslotStart - mLastIrqTime) > (DURATION_TXFRAME))) //(DURATION_TXFRAME+DURATION_ONEFRAME))) mNRFloopChannels = true; mRxPendular = !mRxPendular; innerLoopTimeout = DURATION_LISTEN_MIN; if(mNRFloopChannels) tempRxChIdx = (tempRxChIdx + 4) % RF_CHANNELS; else tempRxChIdx = (mRxChIdx + mRxPendular*4) % RF_CHANNELS; mNrf24->setChannel(mRfChLst[tempRxChIdx]); isRxInit = false; return true; // communicating, but changed RX channel } else { // here we got news from the nRF mIrqRcvd = false; mNrf24->whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH mLastIrqTime = millis(); if(tx_ok || tx_fail) { // tx related interrupt, basically we should start listening mNrf24->flush_tx(); // empty TX FIFO //mTxSetupTime = millis() - mMillis; if(mNRFisInRX) { DPRINTLN(DBG_WARN, F("unexpected tx irq!")); return false; } mNRFisInRX = true; if(tx_ok) mLastIv->mAckCount++; //#ifdef DYNAMIC_OFFSET mRxChIdx = (mTxChIdx + mLastIv->rxOffset) % RF_CHANNELS; /*#else mRxChIdx = (mTxChIdx + 2) % RF_CHANNELS; #endif*/ mNrf24->setChannel(mRfChLst[mRxChIdx]); mNrf24->startListening(); mTimeslotStart = millis(); tempRxChIdx = mRxChIdx; // might be better to start off with one channel less? mRxPendular = false; mNRFloopChannels = (mLastIv->ivGen == IV_MI); //innerLoopTimeout = mLastIv->ivGen != IV_MI ? DURATION_TXFRAME : DURATION_ONEFRAME; //innerLoopTimeout = mLastIv->ivGen != IV_MI ? DURATION_LISTEN_MIN : 4; //innerLoopTimeout = (mLastIv->mIsSingleframeReq || mLastIv->ivGen == IV_MI) ? DURATION_LISTEN_MIN : DURATION_TXFRAME; innerLoopTimeout = DURATION_LISTEN_MIN; } if(rx_ready) { if (getReceived()) { // check what we got, returns true for last package or success for single frame request mNRFisInRX = false; rx_ready = false; mRadioWaitTime.startTimeMonitor(DURATION_PAUSE_LASTFR); // let the inverter first end his transmissions mNrf24->stopListening(); return false; } else { innerLoopTimeout = DURATION_LISTEN_MIN; mTimeslotStart = millis(); if (!mNRFloopChannels) { if (isRxInit) { isRxInit = false; tempRxChIdx = (mRxChIdx + 4) % RF_CHANNELS; mNrf24->setChannel(mRfChLst[tempRxChIdx]); } else mRxChIdx = tempRxChIdx; } return true; } rx_ready = false; // reset return mNRFisInRX; } } return false; } bool isChipConnected(void) const override { return mNrf24->isChipConnected(); } void sendControlPacket(Inverter<> *iv, uint8_t cmd, uint16_t *data, bool isRetransmit) override { DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F("sendControlPacket cmd: ")); DBGHEXLN(cmd); initPacket(iv->radioId.u64, TX_REQ_DEVCONTROL, SINGLE_FRAME); uint8_t cnt = 10; if (IV_MI != iv->ivGen) { mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor mTxBuf[cnt++] = 0x00; if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet mTxBuf[cnt++] = (data[0] >> 8) & 0xff; // power limit, multiplied by 10 (because of fraction) mTxBuf[cnt++] = (data[0] ) & 0xff; // power limit mTxBuf[cnt++] = (data[1] >> 8) & 0xff; // setting for persistens handlings mTxBuf[cnt++] = (data[1] ) & 0xff; // setting for persistens handling } } else { //MI 2nd gen. specific uint16_t powerMax = ((iv->powerLimit[1] == RelativNonPersistent) ? 0 : iv->getMaxPower()); switch (cmd) { case Restart: case TurnOn: mTxBuf[9] = DRED_55; mTxBuf[10] = DRED_AA; break; case TurnOff: mTxBuf[9] = DRED_AA; mTxBuf[10] = DRED_55; break; case ActivePowerContr: if (data[1]<256) { // non persistent mTxBuf[9] = DRED_5A; mTxBuf[10] = DRED_5A; //Testing only! Original NRF24_DTUMIesp.ino code #L612-L613: //UsrData[0]=0x5A;UsrData[1]=0x5A;UsrData[2]=100;//0x0a;// 10% limit //UsrData[3]=((Limit*10) >> 8) & 0xFF; UsrData[4]= (Limit*10) & 0xFF; //WR needs 1 dec= zB 100.1 W if (!data[1]) { // AbsolutNonPersistent mTxBuf[++cnt] = 100; //10% limit, seems to be necessary to send sth. at all, but for MI-1500 this has no effect //works (if ever!) only for absulute power limits! mTxBuf[++cnt] = ((data[0] * 10) >> 8) & 0xff; // power limit in W mTxBuf[++cnt] = ((data[0] * 10) ) & 0xff; // power limit in W } else if (powerMax) { //relative, but 4ch-MI (if ever) only accepts absolute values mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10? mTxBuf[++cnt] = ((data[0] * 10 * powerMax) >> 8) & 0xff; // power limit mTxBuf[++cnt] = ((data[0] * 10 * powerMax) ) & 0xff; // power limit } else { // might work for 1/2ch MI (if ever) mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10? } } else { // persistent power limit needs to be translated in DRED command (?) /* DRED instruction Order Function 0x55AA Boot without DRM restrictions 0xA5A5 DRM0 shutdown 0x5A5A DRM5 power limit 0% 0xAA55 DRM6 power limit 50% 0x5A55 DRM8 unlimited power operation */ mTxBuf[0] = TX_REQ_DREDCONTROL; if (data[1] == 256UL) { // AbsolutPersistent if (data[0] == 0 && !powerMax) { mTxBuf[9] = DRED_A5; mTxBuf[10] = DRED_A5; } else if (data[0] == 0 || !powerMax || data[0] < powerMax/4 ) { mTxBuf[9] = DRED_5A; mTxBuf[10] = DRED_5A; } else if (data[0] <= powerMax/4*3) { mTxBuf[9] = DRED_AA; mTxBuf[10] = DRED_55; } else if (data[0] <= powerMax) { mTxBuf[9] = DRED_5A; mTxBuf[10] = DRED_55; } else if (data[0] > powerMax*2) { mTxBuf[9] = DRED_55; mTxBuf[10] = DRED_AA; } } } break; default: return; } cnt++; } sendPacket(iv, cnt, isRetransmit, (IV_MI != iv->ivGen)); } uint8_t getDataRate(void) const { if(!mNrf24->isChipConnected()) return 3; // unknown return mNrf24->getDataRate(); } bool isPVariant(void) const { return mNrf24->isPVariant(); } private: inline bool getReceived(void) { bool isLastPackage = false; bool isRetransmitAnswer = false; rx_ready = false; // reset for ACK case while(mNrf24->available()) { uint8_t len = mNrf24->getDynamicPayloadSize(); // payload size > 32 -> corrupt payload if (len > 0) { packet_t p; p.ch = mRfChLst[tempRxChIdx]; p.len = (len > MAX_RF_PAYLOAD_SIZE) ? MAX_RF_PAYLOAD_SIZE : len; p.rssi = mNrf24->testRPD() ? -64 : -75; p.millis = millis() - mMillis; mNrf24->read(p.packet, p.len); if (p.packet[0] != 0x00) { if(!checkIvSerial(p.packet, mLastIv)) { DPRINT(DBG_WARN, "RX other inverter "); if(!*mPrivacyMode) ah::dumpBuf(p.packet, p.len); } else { mLastIv->mGotFragment = true; mBufCtrl.push(p); if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command isLastPackage = (p.packet[9] > ALL_FRAMES); // > ALL_FRAMES indicates last packet received if(mLastIv->mIsSingleframeReq) // we only expect one frame here... isRetransmitAnswer = true; if(isLastPackage) setExpectedFrames(p.packet[9] - ALL_FRAMES); #ifdef DYNAMIC_OFFSET if((p.packet[9] == 1) && (p.millis < DURATION_ONEFRAME)) mLastIv->rxOffset = (RF_CHANNELS + mTxChIdx - tempRxChIdx + 1) % RF_CHANNELS; else if(mNRFloopChannels && (mLastIv->rxOffset > RF_CHANNELS)) { // unsure setting? mLastIv->rxOffset = (RF_CHANNELS + mTxChIdx - tempRxChIdx + (isLastPackage ? mFramesExpected : p.packet[9])); // make clear it's not sure, start with one more offset mNRFloopChannels = false; } #endif } if(IV_MI == mLastIv->ivGen) { if (p.packet[0] == (0x0f + ALL_FRAMES)) // response from MI get information command isLastPackage = (p.packet[9] > 0x10); // > 0x10 indicates last packet received else if ((p.packet[0] != 0x88) && (p.packet[0] != 0x92)) // ignore MI status messages //#0 was p.packet[0] != 0x00 && isLastPackage = true; // response from dev control command #ifdef DYNAMIC_OFFSET if((p.packet[9] == 0x00) && (p.millis < DURATION_ONEFRAME)) mLastIv->rxOffset = (RF_CHANNELS + mTxChIdx - tempRxChIdx - 1) % RF_CHANNELS; #endif } rx_ready = true; //reset in case we first read messages from other inverter or ACK zero payloads } } } yield(); } if(isLastPackage) mLastIv->mGotLastMsg = true; return isLastPackage || isRetransmitAnswer; } void sendPacket(Inverter<> *iv, uint8_t len, bool isRetransmit, bool appendCrc16=true) { mNrf24->setPALevel(iv->config->powerLevel & 0x03); updateCrcs(&len, appendCrc16); // set TX and RX channels mTxChIdx = iv->heuristics.txRfChId; if(*mSerialDebug) { /*if(!isRetransmit) { DPRINT(DBG_INFO, "last tx setup: "); DBGPRINT(String(mTxSetupTime)); DBGPRINTLN("ms"); }*/ DPRINT_IVID(DBG_INFO, iv->id); DBGPRINT(F("TX ")); DBGPRINT(String(len)); DBGPRINT(" CH"); if(mTxChIdx == 0) DBGPRINT("0"); DBGPRINT(String(mRfChLst[mTxChIdx])); DBGPRINT(F(", ")); DBGPRINT(String(mTxRetriesNext)); //DBGPRINT(F(" retries | ")); //#ifdef DYNAMIC_OFFSET DBGPRINT(F(" ret., rx offset: ")); DBGPRINT(String(iv->rxOffset)); DBGPRINT(F(" | ")); /*#else DBGPRINT(F(" ret. | ")); #endif*/ if(*mPrintWholeTrace) { if(*mPrivacyMode) ah::dumpBuf(mTxBuf.data(), len, 1, 4); else ah::dumpBuf(mTxBuf.data(), len); } else { DHEX(mTxBuf[0]); DBGPRINT(F(" ")); DHEX(mTxBuf[10]); DBGPRINT(F(" ")); DBGHEXLN(mTxBuf[9]); } } mNrf24->stopListening(); mNrf24->flush_rx(); if(!isRetransmit && (mTxRetries != mTxRetriesNext)) { mNrf24->setRetries(3, mTxRetriesNext); mTxRetries = mTxRetriesNext; } mNrf24->setChannel(mRfChLst[mTxChIdx]); mNrf24->openWritingPipe(reinterpret_cast(&iv->radioId.u64)); mNrf24->startFastWrite(mTxBuf.data(), len, false); // false = request ACK response mMillis = millis(); mLastIv = iv; iv->mDtuTxCnt++; mNRFisInRX = false; } uint64_t getIvId(Inverter<> *iv) const override { return iv->radioId.u64; } uint8_t getIvGen(Inverter<> *iv) const override { return iv->ivGen; } inline bool checkIvSerial(const uint8_t buf[], Inverter<> *iv) { for(uint8_t i = 1; i < 5; i++) { if(buf[i] != iv->radioId.b[i]) return false; } return true; } uint64_t mDtuRadioId = 0ULL; const uint8_t mRfChLst[RF_CHANNELS] = {03, 23, 40, 61, 75}; // channel List:2403, 2423, 2440, 2461, 2475MHz uint8_t mTxChIdx = 0; uint8_t mRxChIdx = 0; uint8_t tempRxChIdx = 0; bool mGotLastMsg = false; uint32_t mMillis = 0; bool tx_ok = false, tx_fail = false, rx_ready = false; unsigned long mTimeslotStart = 0; unsigned long mLastIrqTime = 0; bool mNRFloopChannels = false; bool mNRFisInRX = false; bool isRxInit = true; bool mRxPendular = false; uint32_t innerLoopTimeout = DURATION_LISTEN_MIN; uint8_t mTxRetries = 15; // memorize last setting for mNrf24->setRetries(3, 15); std::unique_ptr mSpi; std::unique_ptr mNrf24; #if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL) nrfHal mNrfHal; #endif Inverter<> *mLastIv = NULL; }; #endif /*__HM_RADIO_H__*/