#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Hoymiles micro-inverters python shared code """ import struct import time import re from datetime import datetime import json import crcmod from RF24 import RF24, RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH, RF24_PA_MAX, RF24_250KBPS, RF24_CRC_DISABLED, RF24_CRC_8, RF24_CRC_16 from .decoders import * f_crc_m = crcmod.predefined.mkPredefinedCrcFun('modbus') f_crc8 = crcmod.mkCrcFun(0x101, initCrc=0, xorOut=0) HOYMILES_TRANSACTION_LOGGING=False HOYMILES_DEBUG_LOGGING=False def ser_to_hm_addr(inverter_ser): """ Calculate the 4 bytes that the HM devices use in their internal messages to address each other. :param str inverter_ser: inverter serial :return: inverter address :rtype: bytes """ bcd = int(str(inverter_ser)[-8:], base=16) return struct.pack('>L', bcd) def ser_to_esb_addr(inverter_ser): """ Convert a Hoymiles inverter/DTU serial number into its corresponding NRF24 'enhanced shockburst' address byte sequence (5 bytes). The NRF library expects these in LSB to MSB order, even though the transceiver itself will then output them in MSB-to-LSB order over the air. The inverters use a BCD representation of the last 8 digits of their serial number, in reverse byte order, followed by \x01. :param str inverter_ser: inverter serial :return: ESB inverter address :rtype: bytes """ air_order = ser_to_hm_addr(inverter_ser)[::-1] + b'\x01' return air_order[::-1] def print_addr(inverter_ser): """ Debug print addresses :param str inverter_ser: inverter serial """ print(f"ser# {inverter_ser} ", end='') print(f" -> HM {' '.join([f'{byte:02x}' for byte in ser_to_hm_addr(inverter_ser)])}", end='') print(f" -> ESB {' '.join([f'{byte:02x}' for byte in ser_to_esb_addr(inverter_ser)])}") class ResponseDecoderFactory: """ Prepare payload decoder :param bytes response: ESB response frame to decode :param request: ESB request frame :type request: bytes :param inverter_ser: inverter serial :type inverter_ser: str :param time_rx: idatetime when payload was received :type time_rx: datetime """ model = None request = None response = None time_rx = None def __init__(self, response, **params): self.response = response self.time_rx = params.get('time_rx', datetime.now()) if 'request' in params: self.request = params['request'] elif hasattr(response, 'request'): self.request = response.request if 'inverter_ser' in params: self.inverter_ser = params['inverter_ser'] self.model = self.inverter_model def unpack(self, fmt, base): """ Data unpack helper :param str fmt: struct format string :param int base: unpack base position from self.response bytes :return: unpacked values :rtype: tuple """ size = struct.calcsize(fmt) return struct.unpack(fmt, self.response[base:base+size]) @property def inverter_model(self): """ Find decoder for inverter model :return: suitable decoder model string :rtype: str :raises ValueError: on invalid inverter serial :raises NotImplementedError: if inverter model can not be determined """ if not self.inverter_ser: raise ValueError('Inverter serial while decoding response') ser_db = [ ('Hm300', r'^1121........'), ('Hm600', r'^1141........'), ('Hm1200', r'^1161........'), ] ser_str = str(self.inverter_ser) model = None for s_model, r_match in ser_db: if re.match(r_match, ser_str): model = s_model break if len(model): return model raise NotImplementedError('Model lookup failed for serial {ser_str}') @property def request_command(self): """ Return requested command identifier byte :return: hexlified command byte string :rtype: str """ r_code = self.request[10] return f'{r_code:02x}' class ResponseDecoder(ResponseDecoderFactory): """ Base response :param bytes response: ESB frame response """ def __init__(self, response, **params): """Initialize ResponseDecoder""" ResponseDecoderFactory.__init__(self, response, **params) def decode(self): """ Decode Payload :return: payload decoder instance :rtype: object """ model = self.inverter_model command = self.request_command model_decoders = __import__('hoymiles.decoders') if hasattr(model_decoders, f'{model}Decode{command.upper()}'): device = getattr(model_decoders, f'{model}Decode{command.upper()}') else: if HOYMILES_DEBUG_LOGGING: device = getattr(model_decoders, 'DebugDecodeAny') return device(self.response, time_rx=self.time_rx, inverter_ser=self.inverter_ser ) class InverterPacketFragment: """ESB Frame""" def __init__(self, time_rx=None, payload=None, ch_rx=None, ch_tx=None, **params): """ Callback: get's invoked whenever a Nordic ESB packet has been received. :param time_rx: datetime when frame was received :type time_rx: datetime :param payload: payload bytes :type payload: bytes :param ch_rx: channel where packet was received :type ch_rx: int :param ch_tx: channel where request was sent :type ch_tx: int :raises BufferError: when data gets lost on SPI bus """ if not time_rx: time_rx = datetime.now() self.time_rx = time_rx self.frame = payload # check crc8 if f_crc8(payload[:-1]) != payload[-1]: raise BufferError('Frame corrupted - crc8 check failed') self.ch_rx = ch_rx self.ch_tx = ch_tx @property def mid(self): """Transaction counter""" return self.frame[0] @property def src(self): """ Sender adddress :return: sender address :rtype: int """ src = struct.unpack('>L', self.frame[1:5]) return src[0] @property def dst(self): """ Receiver adddress :return: receiver address :rtype: int """ dst = struct.unpack('>L', self.frame[5:8]) return dst[0] @property def seq(self): """ Framne sequence number :return: sequence number :rtype: int """ result = struct.unpack('>B', self.frame[9:10]) return result[0] @property def data(self): """ Data without protocol framing :return: payload chunk :rtype: bytes """ return self.frame[10:-1] def __str__(self): """ Represent received ESB frame :return: log line received frame :rtype: str """ c_datetime = self.time_rx.strftime("%Y-%m-%d %H:%M:%S.%f") size = len(self.frame) channel = f' channel {self.ch_rx}' if self.ch_rx else '' return f"{c_datetime} Received {size} bytes{channel}: {hexify_payload(self.frame)}" class HoymilesNRF: """Hoymiles NRF24 Interface""" tx_channel_id = 0 tx_channel_list = [40] rx_channel_id = 0 rx_channel_list = [3,23,40,61,75] rx_channel_ack = False rx_error = 0 txpower = 'max' def __init__(self, **radio_config): """ Claim radio device :param NRF24 device: instance of NRF24 """ radio = RF24( radio_config.get('ce_pin', 22), radio_config.get('cs_pin', 0), radio_config.get('spispeed', 1000000)) if not radio.begin(): raise RuntimeError('Can\'t open radio') self.txpower = radio_config.get('txpower', 'max') self.radio = radio def transmit(self, packet, txpower=None): """ Transmit Packet :param bytes packet: buffer to send :return: if ACK received of ACK disabled :rtype: bool """ if not txpower: txpower = self.txpower inv_esb_addr = b'\01' + packet[1:5] dtu_esb_addr = b'\01' + packet[5:9] self.radio.stopListening() # put radio in TX mode self.radio.setDataRate(RF24_250KBPS) self.radio.openReadingPipe(1,dtu_esb_addr) self.radio.openWritingPipe(inv_esb_addr) self.radio.setChannel(self.tx_channel) self.radio.setAutoAck(True) self.radio.setRetries(3, 15) self.radio.setCRCLength(RF24_CRC_16) self.radio.enableDynamicPayloads() if txpower == 'min': self.radio.setPALevel(RF24_PA_MIN) elif txpower == 'low': self.radio.setPALevel(RF24_PA_LOW) elif txpower == 'high': self.radio.setPALevel(RF24_PA_HIGH) else: self.radio.setPALevel(RF24_PA_MAX) return self.radio.write(packet) def receive(self, timeout=None): """ Receive Packets :param timeout: receive timeout in nanoseconds (default: 12e8) :type timeout: int :yields: fragment """ if not timeout: timeout=12e8 self.radio.setChannel(self.rx_channel) self.radio.setAutoAck(False) self.radio.setRetries(0, 0) self.radio.enableDynamicPayloads() self.radio.setCRCLength(RF24_CRC_16) self.radio.startListening() fragments = [] # Receive: Loop t_end = time.monotonic_ns()+timeout while time.monotonic_ns() < t_end: has_payload, pipe_number = self.radio.available_pipe() if has_payload: # Data in nRF24 buffer, read it self.rx_error = 0 self.rx_channel_ack = True t_end = time.monotonic_ns()+5e8 size = self.radio.getDynamicPayloadSize() payload = self.radio.read(size) fragment = InverterPacketFragment( payload=payload, ch_rx=self.rx_channel, ch_tx=self.tx_channel, time_rx=datetime.now() ) yield fragment else: # No data in nRF rx buffer, search and wait # Channel lock in (not currently used) self.rx_error = self.rx_error + 1 if self.rx_error > 1: self.rx_channel_ack = False # Channel hopping if self.next_rx_channel(): self.radio.stopListening() self.radio.setChannel(self.rx_channel) self.radio.startListening() time.sleep(0.005) def next_rx_channel(self): """ Select next channel from hop list - if hopping enabled - if channel has no ack :return: if new channel selected :rtype: bool """ if not self.rx_channel_ack: self.rx_channel_id = self.rx_channel_id + 1 if self.rx_channel_id >= len(self.rx_channel_list): self.rx_channel_id = 0 return True return False @property def tx_channel(self): """ Get current tx channel :return: tx_channel :rtype: int """ return self.tx_channel_list[self.tx_channel_id] @property def rx_channel(self): """ Get current rx channel :return: rx_channel :rtype: int """ return self.rx_channel_list[self.rx_channel_id] def __del__(self): self.radio.powerDown() def frame_payload(payload): """ Prepare payload for transmission, append Modbus CRC16 :param bytes payload: payload to be prepared :return: payload + crc :rtype: bytes """ payload_crc = f_crc_m(payload) payload = payload + struct.pack('>H', payload_crc) return payload def compose_esb_fragment(fragment, seq=b'\x80', src=99999999, dst=1, **params): """ Build standart ESB request fragment :param bytes fragment: up to 16 bytes payload chunk :param seq: frame sequence byte :type seq: bytes :param src: dtu address :type src: int :param dst: inverter address :type dst: int :return: esb frame fragment :rtype: bytes :raises ValueError: if fragment size larger 16 byte """ if len(fragment) > 17: raise ValueError(f'ESB fragment exeeds mtu: Fragment size {len(fragment)} bytes') packet = b'\x15' packet = packet + ser_to_hm_addr(dst) packet = packet + ser_to_hm_addr(src) packet = packet + seq packet = packet + fragment crc8 = f_crc8(packet) packet = packet + struct.pack('B', crc8) return packet def compose_esb_packet(packet, mtu=17, **params): """ Build ESB packet, chunk packet :param bytes packet: payload data :param mtu: maximum transmission unit per frame (default: 17) :type mtu: int :yields: fragment """ for i in range(0, len(packet), mtu): fragment = compose_esb_fragment(packet[i:i+mtu], **params) yield fragment def compose_send_time_payload(cmdId, alarm_id=0): """ Build set time request packet :param cmd to request :type cmd: uint8 :return: payload :rtype: bytes """ timestamp = int(time.time()) # indices from esp8266 hmRadio.h / sendTimePacket() payload = struct.pack('>B', cmdId) # 10 payload = payload + b'\x00' # 11 payload = payload + struct.pack('>L', timestamp) # 12..15 big-endian: msb at low address payload = payload + b'\x00\x00' # 16..17 payload = payload + struct.pack('>H', alarm_id) # 18..19 payload = payload + b'\x00\x00\x00\x00' # 20..23 return frame_payload(payload) class InverterTransaction: """ Inverter transaction buffer, implements transport-layer functions while communicating with Hoymiles inverters """ tx_queue = [] scratch = [] inverter_ser = None inverter_addr = None dtu_ser = None req_type = None time_rx = None radio = None txpower = None def __init__(self, request_time=None, inverter_ser=None, dtu_ser=None, radio=None, **params): """ :param request: Transmit ESB packet :type request: bytes :param request_time: datetime of transmission :type request_time: datetime :param inverter_ser: inverter serial :type inverter_ser: str :param dtu_ser: DTU serial :type dtu_ser: str :param radio: HoymilesNRF instance to use :type radio: HoymilesNRF or None """ if radio: self.radio = radio if 'txpower' in params: self.txpower = params['txpower'] if not request_time: request_time=datetime.now() self.scratch = [] if 'scratch' in params: self.scratch = params['scratch'] self.inverter_ser = inverter_ser if inverter_ser: self.inverter_addr = ser_to_hm_addr(inverter_ser) self.dtu_ser = dtu_ser if dtu_ser: self.dtu_addr = ser_to_hm_addr(dtu_ser) self.request = None if 'request' in params: self.request = params['request'] self.queue_tx(self.request) self.inverter_addr, self.dtu_addr, seq, self.req_type = struct.unpack('>LLBB', params['request'][1:11]) self.request_time = request_time def rxtx(self): """ Transmit next packet from tx_queue if available and wait for responses :return: if we got contact :rtype: bool """ if not self.radio: return False if len(self.tx_queue) == 0: return False packet = self.tx_queue.pop(0) if HOYMILES_TRANSACTION_LOGGING: c_datetime = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f") print(f'{c_datetime} Transmit {len(packet)} | {hexify_payload(packet)}') self.radio.transmit(packet, txpower=self.txpower) wait = False try: for response in self.radio.receive(): if HOYMILES_TRANSACTION_LOGGING: print(response) self.frame_append(response) wait = True except TimeoutError: pass return wait def frame_append(self, frame): """ Append received raw frame to local scratch buffer :param bytes frame: Received ESB frame :return None """ self.scratch.append(frame) def queue_tx(self, frame): """ Enqueue packet for transmission if radio is available :param bytes frame: ESB frame for transmit :return: if radio is available and frame scheduled :rtype: bool """ if not self.radio: return False self.tx_queue.append(frame) return True def get_payload(self, src=None): """ Reconstruct Hoymiles payload from scratch buffer :param src: filter frames by inverter hm_address (default self.inverter_address) :type src: bytes :return: payload :rtype: bytes :raises BufferError: if one or more frames are missing :raises ValueError: if assambled payload fails CRC check """ if not src: src = self.inverter_addr # Collect all frames from source_address src frames = [frame for frame in self.scratch if frame.src == src] tr_len = 0 # Find end frame and extract message frame count try: end_frame = next(frame for frame in frames if frame.seq > 0x80) self.time_rx = end_frame.time_rx tr_len = end_frame.seq - 0x80 except StopIteration: seq_last = max(frames, key=lambda frame:frame.seq).seq if len(frames) else 0 self.__retransmit_frame(seq_last + 1) raise BufferError(f'Missing packet: Last packet {seq_last + 1}') # Rebuild payload from unordered frames payload = b'' for frame_id in range(1, tr_len): try: data_frame = next(item for item in frames if item.seq == frame_id) payload = payload + data_frame.data except StopIteration: self.__retransmit_frame(frame_id) raise BufferError(f'Frame {frame_id} missing: Request Retransmit') payload = payload + end_frame.data # check crc pcrc = struct.unpack('>H', payload[-2:])[0] if f_crc_m(payload[:-2]) != pcrc: raise ValueError('Payload failed CRC check.') return payload def __retransmit_frame(self, frame_id): """ Build and queue retransmit request :param int frame_id: frame id to re-schedule :return: if successful scheduled :rtype: bool """ if not self.radio: return packet = compose_esb_fragment(b'', seq=int(0x80 + frame_id).to_bytes(1, 'big'), src=self.dtu_ser, dst=self.inverter_ser) return self.queue_tx(packet) def __str__(self): """ Represent transmit payload :return: log line of payload for transmission :rtype: str """ c_datetime = self.request_time.strftime("%Y-%m-%d %H:%M:%S.%f") size = len(self.request) return f'{c_datetime} Transmit | {hexify_payload(self.request)}' def hexify_payload(byte_var): """ Represent bytes :param bytes byte_var: bytes to be hexlified :return: two-byte while-space padded byte representation :rtype: str """ return ' '.join([f"{b:02x}" for b in byte_var])