#include #include #include "CircularBuffer.h" #include #include "printf.h" #include #include "hm_crc.h" #include "hm_packets.h" #include "Settings.h" // Header für Einstellungen #include "Debug.h" #include "Inverters.h" const char VERSION[] PROGMEM = "0.1.6"; #ifdef ESP8266 #define DISABLE_EINT noInterrupts() #define ENABLE_EINT interrupts() #else // für AVR z.B. ProMini oder Nano #define DISABLE_EINT EIMSK = 0x00 #define ENABLE_EINT EIMSK = 0x01 #endif #ifdef ESP8266 #define PACKET_BUFFER_SIZE (30) #else #define PACKET_BUFFER_SIZE (20) #endif // Startup defaults until user reconfigures it //#define DEFAULT_RECV_CHANNEL (3) // 3 = Default channel for Hoymiles //#define DEFAULT_SEND_CHANNEL (75) // 40 = Default channel for Hoymiles, 61 static HM_Packets hmPackets; static uint32_t tickMillis; // Set up nRF24L01 radio on SPI bus plus CE/CS pins // If more than one RF24 unit is used the another CS pin than 10 must be used // This pin is used hard coded in SPI library static RF24 Radio (RF1_CE_PIN, RF1_CS_PIN); static NRF24_packet_t bufferData[PACKET_BUFFER_SIZE]; static CircularBuffer packetBuffer(bufferData, sizeof(bufferData) / sizeof(bufferData[0])); static Serial_header_t SerialHdr; #define CHECKCRC 1 static uint16_t lastCRC; static uint16_t crc; uint8_t channels[] = {3, 23, 40, 61, 75}; //{1, 3, 6, 9, 11, 23, 40, 61, 75} uint8_t channelIdx = 2; // fange mit 40 an uint8_t DEFAULT_SEND_CHANNEL = channels[channelIdx]; // = 40 #if USE_POOR_MAN_CHANNEL_HOPPING_RCV uint8_t rcvChannelIdx = 0; uint8_t rcvChannels[] = {3, 23, 40, 61, 75}; //{1, 3, 6, 9, 11, 23, 40, 61, 75} uint8_t DEFAULT_RECV_CHANNEL = rcvChannels[rcvChannelIdx]; //3; uint8_t intvl = 4; // Zeit für poor man hopping int hophop; #else uint8_t DEFAULT_RECV_CHANNEL = 3; #endif boolean valueChanged = false; static unsigned long timeLastPacket = millis(); static unsigned long timeLastIstTagCheck = millis(); static unsigned long timeLastRcvChannelSwitch = millis(); // Function forward declaration static void SendPacket(uint64_t dest, uint8_t *buf, uint8_t len); static const char BLANK = ' '; static boolean istTag = true; char CHANNELNAME_BUFFER[15]; #ifdef ESP8266 #include "wifi.h" #include "ModWebserver.h" #include "Sonne.h" #endif inline static void dumpData(uint8_t *p, int len) { //----------------------------------------------- while (len > 0){ if (*p < 16) DEBUG_OUT.print(F("0")); DEBUG_OUT.print(*p++, HEX); len--; } DEBUG_OUT.print(BLANK); } float extractValue2 (uint8_t *p, int divisor) { //------------------------------------------- uint16_t b1 = *p++; return ((float) (b1 << 8) + *p) / (float) divisor; } float extractValue4 (uint8_t *p, int divisor) { //------------------------------------------- uint32_t ret = *p++; for (uint8_t i = 1; i <= 3; i++) ret = (ret << 8) + *p++; return (ret / divisor); } void outChannel (uint8_t wr, uint8_t i) { //------------------------------------ DEBUG_OUT.print(getMeasureName(wr, i)); DEBUG_OUT.print(F("\t:")); DEBUG_OUT.print(getMeasureValue(wr,i)); DEBUG_OUT.println(BLANK); } void analyseWords (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr //---------------------------------- //uint16_t val; DEBUG_OUT.print (F("analyse words:")); p++; for (int i = 0; i <12;i++) { DEBUG_OUT.print(extractValue2(p,1)); DEBUG_OUT.print(BLANK); p++; } DEBUG_OUT.println(); } void analyseLongs (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr //---------------------------------- //uint16_t val; DEBUG_OUT.print (F("analyse longs:")); p++; for (int i = 0; i <12;i++) { DEBUG_OUT.print(extractValue4(p,1)); DEBUG_OUT.print(BLANK); p++; } DEBUG_OUT.println(); } void analyse (NRF24_packet_t *p) { //------------------------------ uint8_t wrIdx = findInverter (&p->packet[3]); //DEBUG_OUT.print ("wrIdx="); DEBUG_OUT.println (wrIdx); if (wrIdx == 0xFF) return; uint8_t cmd = p->packet[11]; float val = 0; if (cmd == 0x01 || cmd == 0x02 || cmd == 0x83) { const measureDef_t *defs = inverters[wrIdx].measureDef; for (uint8_t i = 0; i < inverters[wrIdx].anzMeasures; i++) { if (defs[i].teleId == cmd) { uint8_t pos = defs[i].pos; if (defs[i].bytes == 2) val = extractValue2 (&p->packet[pos], getDivisor(wrIdx, i) ); else if (defs[i].bytes == 4) val = extractValue4 (&p->packet[pos], getDivisor(wrIdx, i) ); valueChanged = valueChanged ||(val != inverters[wrIdx].values[i]); inverters[wrIdx].values[i] = val; } } // calculated funstions for (uint8_t i = 0; i < inverters[wrIdx].anzMeasureCalculated; i++) { val = inverters[wrIdx].measureCalculated[i].f (inverters[wrIdx].values); int idx = inverters[wrIdx].anzMeasures + i; valueChanged = valueChanged ||(val != inverters[wrIdx].values[idx]); inverters[wrIdx].values[idx] = val; } } else if (cmd == 0x81) { ; } else { DEBUG_OUT.print (F("---- neues cmd=")); DEBUG_OUT.println(cmd, HEX); analyseWords (&p->packet[11]); analyseLongs (&p->packet[11]); DEBUG_OUT.println(); } if (p->packetsLost > 0) { DEBUG_OUT.print(F(" Lost: ")); DEBUG_OUT.println(p->packetsLost); } } #ifdef ESP8266 IRAM_ATTR #endif void handleNrf1Irq() { //------------------------- static uint8_t lostPacketCount = 0; uint8_t pipe; DISABLE_EINT; // Loop until RX buffer(s) contain no more packets. while (Radio.available(&pipe)) { if (!packetBuffer.full()) { NRF24_packet_t *p = packetBuffer.getFront(); p->timestamp = micros(); // Micros does not increase in interrupt, but it can be used. p->packetsLost = lostPacketCount; p->rcvChannel = DEFAULT_RECV_CHANNEL; uint8_t packetLen = Radio.getPayloadSize(); if (packetLen > MAX_RF_PAYLOAD_SIZE) packetLen = MAX_RF_PAYLOAD_SIZE; Radio.read(p->packet, packetLen); packetBuffer.pushFront(p); lostPacketCount = 0; } else { // Buffer full. Increase lost packet counter. bool tx_ok, tx_fail, rx_ready; if (lostPacketCount < 255) lostPacketCount++; // Call 'whatHappened' to reset interrupt status. Radio.whatHappened(tx_ok, tx_fail, rx_ready); // Flush buffer to drop the packet. Radio.flush_rx(); } } ENABLE_EINT; } static void activateConf(void) { //----------------------------- Radio.begin(); // Disable shockburst for receiving and decode payload manually Radio.setAutoAck(false); Radio.setRetries(0, 0); Radio.setChannel(DEFAULT_RECV_CHANNEL); Radio.setDataRate(DEFAULT_RF_DATARATE); Radio.disableCRC(); Radio.setAutoAck(0x00); Radio.setPayloadSize(MAX_RF_PAYLOAD_SIZE); Radio.setAddressWidth(5); Radio.openReadingPipe(1, DTU_RADIO_ID); // We want only RX irqs Radio.maskIRQ(true, true, false); // Use lo PA level, as a higher level will disturb CH340 DEBUG_OUT usb adapter Radio.setPALevel(RF24_PA_MAX); Radio.startListening(); // Attach interrupt handler to NRF IRQ output. Overwrites any earlier handler. attachInterrupt(digitalPinToInterrupt(RF1_IRQ_PIN), handleNrf1Irq, FALLING); // NRF24 Irq pin is active low. // Initialize SerialHdr header's address member to promiscuous address. uint64_t addr = DTU_RADIO_ID; for (int8_t i = sizeof(SerialHdr.address) - 1; i >= 0; --i) { SerialHdr.address[i] = addr; addr >>= 8; } //Radio.printDetails(); //DEBUG_OUT.println(); tickMillis = millis() + 200; } #define resetRF24() activateConf() void setup(void) { //-------------- #ifndef DEBUG #ifndef ESP8266 Serial.begin(SER_BAUDRATE); #endif #endif printf_begin(); DEBUG_OUT.begin(SER_BAUDRATE); DEBUG_OUT.flush(); DEBUG_OUT.println(F("-- Hoymiles DTU Simulation --")); // Configure nRF IRQ input pinMode(RF1_IRQ_PIN, INPUT); activateConf(); #ifdef ESP8266 setupWifi(); setupClock(); setupWebServer(); setupUpdateByOTA(); calcSunUpDown (getNow()); istTag = isDayTime(); DEBUG_OUT.print (F("Es ist ")); DEBUG_OUT.println (istTag?F("Tag"):F("Nacht")); hmPackets.SetUnixTimeStamp (getNow()); #else hmPackets.SetUnixTimeStamp(0x62456430); #endif setupInverts(); } uint8_t sendBuf[MAX_RF_PAYLOAD_SIZE]; void isTime2Send () { //----------------- // Second timer static const uint8_t warteZeit = 1; static uint8_t tickSec = 0; if (millis() >= tickMillis) { static uint8_t tel = 0; tickMillis += warteZeit*1000; //200; tickSec++; if (++tickSec >= 1) { // 5 for (uint8_t c=0; c < warteZeit; c++) hmPackets.UnixTimeStampTick(); tickSec = 0; } int32_t size = 0; uint64_t dest = 0; for (uint8_t wr = 0; wr < anzInv; wr++) { dest = inverters[wr].RadioId; if (tel > 1) tel = 0; if (tel == 0) { #ifdef ESP8266 hmPackets.SetUnixTimeStamp (getNow()); #endif size = hmPackets.GetTimePacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8); //DEBUG_OUT.print ("Timepacket mit cid="); DEBUG_OUT.println(sendBuf[10], HEX); } else if (tel <= 1) size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x80 + tel - 1); SendPacket (dest, (uint8_t *)&sendBuf, size); } // for wr tel++; /* for (uint8_t warte = 0; warte < 2; warte++) { delay(1000); hmPackets.UnixTimeStampTick(); }*/ } } void outputPacket(NRF24_packet_t *p, uint8_t payloadLen) { //----------------------------------------------------- // Write timestamp, packets lost, address and payload length //printf(" %09lu ", SerialHdr.timestamp); char _buf[20]; sprintf_P(_buf, PSTR("rcv CH:%d "), p->rcvChannel); DEBUG_OUT.print (_buf); dumpData((uint8_t *)&SerialHdr.packetsLost, sizeof(SerialHdr.packetsLost)); dumpData((uint8_t *)&SerialHdr.address, sizeof(SerialHdr.address)); // Trailing bit?!? dumpData(&p->packet[0], 2); // Payload length from PCF dumpData(&payloadLen, sizeof(payloadLen)); // Packet control field - PID Packet identification uint8_t val = (p->packet[1] >> 1) & 0x03; DEBUG_OUT.print(val); DEBUG_OUT.print(F(" ")); if (payloadLen > 9) { dumpData(&p->packet[2], 1); dumpData(&p->packet[3], 4); dumpData(&p->packet[7], 4); uint16_t remain = payloadLen - 2 - 1 - 4 - 4 + 4; if (remain < 32) { dumpData(&p->packet[11], remain); printf_P(PSTR("%04X "), crc); if (((crc >> 8) != p->packet[payloadLen + 2]) || ((crc & 0xFF) != p->packet[payloadLen + 3])) DEBUG_OUT.print(0); else DEBUG_OUT.print(1); } else { DEBUG_OUT.print(F("Ill remain ")); DEBUG_OUT.print(remain); } } else { dumpData(&p->packet[2], payloadLen + 2); printf_P(PSTR("%04X "), crc); } DEBUG_OUT.println(); DEBUG_OUT.flush(); } void writeArduinoInterface() { //-------------------------- if (valueChanged) { for (uint8_t wr = 0; wr < anzInv; wr++) { if (anzInv > 1) { Serial.print(wr); Serial.print('.'); } for (uint8_t i = 0; i < inverters[wr].anzTotalMeasures; i++) { Serial.print(getMeasureName(wr,i)); // Schnittstelle bei Arduino Serial.print('='); Serial.print(getMeasureValue(wr,i), getDigits(wr,i)); // Schnittstelle bei Arduino Serial.print (BLANK); Serial.println (getUnit(wr, i)); } // for i } // for wr Serial.println(F("-----------------------")); valueChanged = false; } } boolean doCheckCrc (NRF24_packet_t *p, uint8_t payloadLen) { //-------------------------------------------------------- crc = 0xFFFF; crc = crc16((uint8_t *)&SerialHdr.address, sizeof(SerialHdr.address), crc, 0, BYTES_TO_BITS(sizeof(SerialHdr.address))); // Payload length // Add one byte and one bit for 9-bit packet control field crc = crc16((uint8_t *)&p->packet[0], sizeof(p->packet), crc, 7, BYTES_TO_BITS(payloadLen + 1) + 1); if (CHECKCRC) { // If CRC is invalid only show lost packets if (((crc >> 8) != p->packet[payloadLen + 2]) || ((crc & 0xFF) != p->packet[payloadLen + 3])) { if (p->packetsLost > 0) { DEBUG_OUT.print(F(" Lost: ")); DEBUG_OUT.println(p->packetsLost); } packetBuffer.popBack(); return false; } // Dump a decoded packet only once if (lastCRC == crc) { packetBuffer.popBack(); return false; } lastCRC = crc; } // Don't dump mysterious ack packages if (payloadLen == 0) { packetBuffer.popBack(); return false; } return true; } void poorManChannelHopping() { //-------------------------- if (hophop <= 0) return; if (millis() >= timeLastRcvChannelSwitch + intvl) { rcvChannelIdx++; if (rcvChannelIdx >= sizeof(rcvChannels)) rcvChannelIdx = 0; DEFAULT_RECV_CHANNEL = rcvChannels[rcvChannelIdx]; DISABLE_EINT; Radio.stopListening(); Radio.setChannel (DEFAULT_RECV_CHANNEL); Radio.startListening(); ENABLE_EINT; timeLastRcvChannelSwitch = millis(); hophop--; } } void loop(void) { //============= // poor man channel hopping on receive #if USE_POOR_MAN_CHANNEL_HOPPING_RCV poorManChannelHopping(); #endif if (millis() > timeLastPacket + 50000UL) { DEBUG_OUT.println (F("Reset RF24")); resetRF24(); timeLastPacket = millis(); } while (!packetBuffer.empty()) { timeLastPacket = millis(); // One or more records present NRF24_packet_t *p = packetBuffer.getBack(); // Shift payload data due to 9-bit packet control field for (int16_t j = sizeof(p->packet) - 1; j >= 0; j--) { if (j > 0) p->packet[j] = (byte)(p->packet[j] >> 7) | (byte)(p->packet[j - 1] << 1); else p->packet[j] = (byte)(p->packet[j] >> 7); } SerialHdr.timestamp = p->timestamp; SerialHdr.packetsLost = p->packetsLost; uint8_t payloadLen = ((p->packet[0] & 0x01) << 5) | (p->packet[1] >> 3); // Check CRC if (! doCheckCrc(p, payloadLen) ) continue; #ifdef DEBUG uint8_t cmd = p->packet[11]; //if (cmd != 0x01 && cmd != 0x02 && cmd != 0x83 && cmd != 0x81) outputPacket (p, payloadLen); #endif analyse (p); #ifndef ESP8266 writeArduinoInterface(); #endif // Remove record as we're done with it. packetBuffer.popBack(); } if (istTag) isTime2Send(); #ifdef ESP8266 checkWifi(); webserverHandle(); checkUpdateByOTA(); if (hour() == 0 && minute() == 0) { calcSunUpDown(getNow()); delay (60*1000); } if (millis() > timeLastIstTagCheck + 15UL * 60UL * 1000UL) { // alle 15 Minuten neu berechnen ob noch hell istTag = isDayTime(); DEBUG_OUT.print (F("Es ist ")); DEBUG_OUT.println (istTag?F("Tag"):F("Nacht")); timeLastIstTagCheck = millis(); } #endif /* if (millis() > timeLastPacket + 60UL*SECOND) { // 60 Sekunden channelIdx++; if (channelIdx >= sizeof(channels)) channelIdx = 0; DEFAULT_SEND_CHANNEL = channels[channelIdx]; DEBUG_OUT.print (F("\nneuer DEFAULT_SEND_CHANNEL: ")); DEBUG_OUT.println(DEFAULT_SEND_CHANNEL); timeLastPacket = millis(); } */ } static void SendPacket(uint64_t dest, uint8_t *buf, uint8_t len) { //-------------------------------------------------------------- //DEBUG_OUT.print (F("Sende: ")); DEBUG_OUT.println (buf[9], HEX); //dumpData (buf, len); DEBUG_OUT.println(); DISABLE_EINT; Radio.stopListening(); #ifdef CHANNEL_HOP static uint8_t hop = 0; #if DEBUG_SEND DEBUG_OUT.print(F("Send... CH")); DEBUG_OUT.println(channels[hop]); #endif Radio.setChannel(channels[hop++]); if (hop >= sizeof(channels) / sizeof(channels[0])) hop = 0; #else Radio.setChannel(DEFAULT_SEND_CHANNEL); #endif Radio.openWritingPipe(dest); Radio.setCRCLength(RF24_CRC_16); Radio.enableDynamicPayloads(); Radio.setAutoAck(true); Radio.setRetries(3, 15); bool res = Radio.write(buf, len); // Try to avoid zero payload acks (has no effect) Radio.openWritingPipe(DUMMY_RADIO_ID); Radio.setAutoAck(false); Radio.setRetries(0, 0); Radio.disableDynamicPayloads(); Radio.setCRCLength(RF24_CRC_DISABLED); Radio.setChannel(DEFAULT_RECV_CHANNEL); Radio.startListening(); ENABLE_EINT; #if USE_POOR_MAN_CHANNEL_HOPPING_RCV hophop = 5 * sizeof(rcvChannels); #endif }