//----------------------------------------------------------------------------- // 2023 Ahoy, https://ahoydtu.de // Creative Commons - https://creativecommons.org/licenses/by-nc-sa/4.0/deed //----------------------------------------------------------------------------- #include "app.h" #include #include "utils/sun.h" //----------------------------------------------------------------------------- app::app() : ah::Scheduler() {} //----------------------------------------------------------------------------- void app::setup() { Serial.begin(115200); while (!Serial) yield(); ah::Scheduler::setup(); resetSystem(); mSettings.setup(); mSettings.getPtr(mConfig); DPRINT(DBG_INFO, F("Settings valid: ")); if (mSettings.getValid()) DBGPRINTLN(F("true")); else DBGPRINTLN(F("false")); if(mConfig->nrf.enabled) { mNrfRadio.setup(mConfig->nrf.amplifierPower, mConfig->nrf.pinIrq, mConfig->nrf.pinCe, mConfig->nrf.pinCs, mConfig->nrf.pinSclk, mConfig->nrf.pinMosi, mConfig->nrf.pinMiso); mNrfRadio.enableDebug(); } #if defined(ESP32) if(mConfig->cmt.enabled) { mCmtRadio.setup(mConfig->cmt.pinCsb, mConfig->cmt.pinFcsb, false); mCmtRadio.enableDebug(); } #endif #if defined(AP_ONLY) mInnerLoopCb = std::bind(&app::loopStandard, this); #else mInnerLoopCb = std::bind(&app::loopWifi, this); #endif mWifi.setup(mConfig, &mTimestamp, std::bind(&app::onWifi, this, std::placeholders::_1)); #if !defined(AP_ONLY) everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL"); #endif mSys.addInverters(&mConfig->inst); if(mConfig->nrf.enabled) { mPayload.setup(this, &mSys, &mNrfRadio, &mStat, mConfig->nrf.maxRetransPerPyld, &mTimestamp); mPayload.enableSerialDebug(mConfig->serial.debug); mPayload.addPayloadListener(std::bind(&app::payloadEventListener, this, std::placeholders::_1, std::placeholders::_2)); mMiPayload.setup(this, &mSys, &mNrfRadio, &mStat, mConfig->nrf.maxRetransPerPyld, &mTimestamp); mMiPayload.enableSerialDebug(mConfig->serial.debug); mMiPayload.addPayloadListener(std::bind(&app::payloadEventListener, this, std::placeholders::_1, std::placeholders::_2)); } #if defined(ESP32) mHmsPayload.setup(this, &mSys, &mCmtRadio, &mStat, 5, &mTimestamp); mHmsPayload.enableSerialDebug(mConfig->serial.debug); mHmsPayload.addPayloadListener(std::bind(&app::payloadEventListener, this, std::placeholders::_1, std::placeholders::_2)); #endif /*DBGPRINTLN("--- after payload"); DBGPRINTLN(String(ESP.getFreeHeap())); DBGPRINTLN(String(ESP.getHeapFragmentation())); DBGPRINTLN(String(ESP.getMaxFreeBlockSize()));*/ if(mConfig->nrf.enabled) { if (!mNrfRadio.isChipConnected()) DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring")); } // when WiFi is in client mode, then enable mqtt broker #if !defined(AP_ONLY) mMqttEnabled = (mConfig->mqtt.broker[0] > 0); if (mMqttEnabled) { mMqtt.setup(&mConfig->mqtt, mConfig->sys.deviceName, mVersion, &mSys, &mTimestamp, &mUptime); mMqtt.setSubscriptionCb(std::bind(&app::mqttSubRxCb, this, std::placeholders::_1)); mPayload.addAlarmListener(std::bind(&PubMqttType::alarmEventListener, &mMqtt, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3)); mMiPayload.addAlarmListener(std::bind(&PubMqttType::alarmEventListener, &mMqtt, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3)); } #endif setupLed(); mWeb.setup(this, &mSys, mConfig); mWeb.setProtection(strlen(mConfig->sys.adminPwd) != 0); mApi.setup(this, &mSys, &mNrfRadio, mWeb.getWebSrvPtr(), mConfig); // Plugins if (mConfig->plugin.display.type != 0) mDisplay.setup(&mConfig->plugin.display, &mSys, &mTimestamp, mVersion); mPubSerial.setup(mConfig, &mSys, &mTimestamp); regularTickers(); // DBGPRINTLN("--- end setup"); // DBGPRINTLN(String(ESP.getFreeHeap())); // DBGPRINTLN(String(ESP.getHeapFragmentation())); // DBGPRINTLN(String(ESP.getMaxFreeBlockSize())); } //----------------------------------------------------------------------------- void app::loop(void) { mInnerLoopCb(); } //----------------------------------------------------------------------------- void app::loopStandard(void) { ah::Scheduler::loop(); if (mNrfRadio.loop() && mConfig->nrf.enabled) { while (!mNrfRadio.mBufCtrl.empty()) { packet_t *p = &mNrfRadio.mBufCtrl.front(); if (mConfig->serial.debug) { DPRINT(DBG_INFO, F("RX ")); DBGPRINT(String(p->len)); DBGPRINT(F("B Ch")); DBGPRINT(String(p->ch)); DBGPRINT(F(" | ")); ah::dumpBuf(p->packet, p->len); } mStat.frmCnt++; Inverter<> *iv = mSys.findInverter(&p->packet[1]); if (NULL != iv) { if (IV_HM == iv->ivGen) mPayload.add(iv, p); else mMiPayload.add(iv, p); } mNrfRadio.mBufCtrl.pop(); yield(); } mPayload.process(true); mMiPayload.process(true); } #if defined(ESP32) if (mCmtRadio.loop() && mConfig->cmt.enabled) { while (!mCmtRadio.mBufCtrl.empty()) { hmsPacket_t *p = &mCmtRadio.mBufCtrl.front(); if (mConfig->serial.debug) { DPRINT(DBG_INFO, F("RX ")); DBGPRINT(String(p->data[0])); DBGPRINT(F(" RSSI ")); DBGPRINT(String(p->rssi)); DBGPRINT(F("dBm | ")); ah::dumpBuf(&p->data[1], p->data[0]); } mStat.frmCnt++; Inverter<> *iv = mSys.findInverter(&p->data[2]); if(NULL != iv) { if((iv->ivGen == IV_HMS) || (iv->ivGen == IV_HMT)) mHmsPayload.add(iv, p); } mCmtRadio.mBufCtrl.pop(); yield(); } mHmsPayload.process(false); //true } #endif mPayload.loop(); mMiPayload.loop(); #if defined(ESP32) mHmsPayload.loop(); #endif if (mMqttEnabled) mMqtt.loop(); } //----------------------------------------------------------------------------- void app::loopWifi(void) { ah::Scheduler::loop(); yield(); } //----------------------------------------------------------------------------- void app::onWifi(bool gotIp) { DPRINTLN(DBG_DEBUG, F("onWifi")); ah::Scheduler::resetTicker(); regularTickers(); // reinstall regular tickers if (gotIp) { mInnerLoopCb = std::bind(&app::loopStandard, this); every(std::bind(&app::tickSend, this), mConfig->nrf.sendInterval, "tSend"); #if defined(ESP32) if(mConfig->cmt.enabled) everySec(std::bind(&CmtRadioType::tickSecond, &mCmtRadio), "tsCmt"); #endif mMqttReconnect = true; mSunrise = 0; // needs to be set to 0, to reinstall sunrise and ivComm tickers! once(std::bind(&app::tickNtpUpdate, this), 2, "ntp2"); if (WIFI_AP == WiFi.getMode()) { mMqttEnabled = false; everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL"); } } else { mInnerLoopCb = std::bind(&app::loopWifi, this); everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL"); } } //----------------------------------------------------------------------------- void app::regularTickers(void) { DPRINTLN(DBG_DEBUG, F("regularTickers")); everySec(std::bind(&WebType::tickSecond, &mWeb), "webSc"); // Plugins if (mConfig->plugin.display.type != 0) everySec(std::bind(&DisplayType::tickerSecond, &mDisplay), "disp"); every(std::bind(&PubSerialType::tick, &mPubSerial), mConfig->serial.interval, "uart"); // every([this]() {mPayload.simulation();}, 15, "simul"); } //----------------------------------------------------------------------------- void app::tickNtpUpdate(void) { uint32_t nxtTrig = 5; // default: check again in 5 sec bool isOK = mWifi.getNtpTime(); if (isOK || mTimestamp != 0) { if (mMqttReconnect && mMqttEnabled) { mMqtt.tickerSecond(); everySec(std::bind(&PubMqttType::tickerSecond, &mMqtt), "mqttS"); everyMin(std::bind(&PubMqttType::tickerMinute, &mMqtt), "mqttM"); } // only install schedulers once even if NTP wasn't successful in first loop if (mMqttReconnect) { // @TODO: mMqttReconnect is variable which scope has changed if (mConfig->inst.rstValsNotAvail) everyMin(std::bind(&app::tickMinute, this), "tMin"); if (mConfig->inst.rstYieldMidNight) { uint32_t localTime = gTimezone.toLocal(mTimestamp); uint32_t midTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time onceAt(std::bind(&app::tickMidnight, this), midTrig, "midNi"); } } nxtTrig = isOK ? 43200 : 60; // depending on NTP update success check again in 12 h or in 1 min if ((mSunrise == 0) && (mConfig->sun.lat) && (mConfig->sun.lon)) { mCalculatedTimezoneOffset = (int8_t)((mConfig->sun.lon >= 0 ? mConfig->sun.lon + 7.5 : mConfig->sun.lon - 7.5) / 15) * 3600; tickCalcSunrise(); } // immediately start communicating // @TODO: leads to reboot loops? not sure #674 if (isOK && mSendFirst) { mSendFirst = false; once(std::bind(&app::tickSend, this), 2, "senOn"); } mMqttReconnect = false; } once(std::bind(&app::tickNtpUpdate, this), nxtTrig, "ntp"); } //----------------------------------------------------------------------------- void app::tickCalcSunrise(void) { if (mSunrise == 0) // on boot/reboot calc sun values for current time ah::calculateSunriseSunset(mTimestamp, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset); if (mTimestamp > (mSunset + mConfig->sun.offsetSec)) // current time is past communication stop, calc sun values for next day ah::calculateSunriseSunset(mTimestamp + 86400, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset); tickIVCommunication(); uint32_t nxtTrig = mSunset + mConfig->sun.offsetSec + 60; // set next trigger to communication stop, +60 for safety that it is certain past communication stop onceAt(std::bind(&app::tickCalcSunrise, this), nxtTrig, "Sunri"); if (mMqttEnabled) tickSun(); } //----------------------------------------------------------------------------- void app::tickIVCommunication(void) { mIVCommunicationOn = !mConfig->sun.disNightCom; // if sun.disNightCom is false, communication is always on if (!mIVCommunicationOn) { // inverter communication only during the day uint32_t nxtTrig; if (mTimestamp < (mSunrise - mConfig->sun.offsetSec)) { // current time is before communication start, set next trigger to communication start nxtTrig = mSunrise - mConfig->sun.offsetSec; } else { if (mTimestamp >= (mSunset + mConfig->sun.offsetSec)) { // current time is past communication stop, nothing to do. Next update will be done at midnight by tickCalcSunrise nxtTrig = 0; } else { // current time lies within communication start/stop time, set next trigger to communication stop mIVCommunicationOn = true; nxtTrig = mSunset + mConfig->sun.offsetSec; } } if (nxtTrig != 0) onceAt(std::bind(&app::tickIVCommunication, this), nxtTrig, "ivCom"); } tickComm(); } //----------------------------------------------------------------------------- void app::tickSun(void) { // only used and enabled by MQTT (see setup()) if (!mMqtt.tickerSun(mSunrise, mSunset, mConfig->sun.offsetSec, mConfig->sun.disNightCom)) once(std::bind(&app::tickSun, this), 1, "mqSun"); // MQTT not connected, retry } //----------------------------------------------------------------------------- void app::tickComm(void) { if ((!mIVCommunicationOn) && (mConfig->inst.rstValsCommStop)) once(std::bind(&app::tickZeroValues, this), mConfig->nrf.sendInterval, "tZero"); if (mMqttEnabled) { if (!mMqtt.tickerComm(!mIVCommunicationOn)) once(std::bind(&app::tickComm, this), 5, "mqCom"); // MQTT not connected, retry after 5s } } //----------------------------------------------------------------------------- void app::tickZeroValues(void) { Inverter<> *iv; bool changed = false; // set values to zero, except yields for (uint8_t id = 0; id < mSys.getNumInverters(); id++) { iv = mSys.getInverterByPos(id); if (NULL == iv) continue; // skip to next inverter mPayload.zeroInverterValues(iv); changed = true; } if(changed) payloadEventListener(RealTimeRunData_Debug, NULL); } //----------------------------------------------------------------------------- void app::tickMinute(void) { // only triggered if 'reset values on no avail is enabled' Inverter<> *iv; bool changed = false; // set values to zero, except yields for (uint8_t id = 0; id < mSys.getNumInverters(); id++) { iv = mSys.getInverterByPos(id); if (NULL == iv) continue; // skip to next inverter if (!iv->isAvailable(mTimestamp) && !iv->isProducing(mTimestamp) && iv->config->enabled) { mPayload.zeroInverterValues(iv); changed = true; } } if(changed) payloadEventListener(RealTimeRunData_Debug, NULL); } //----------------------------------------------------------------------------- void app::tickMidnight(void) { // only triggered if 'reset values at midnight is enabled' uint32_t localTime = gTimezone.toLocal(mTimestamp); uint32_t nxtTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time onceAt(std::bind(&app::tickMidnight, this), nxtTrig, "mid2"); Inverter<> *iv; bool changed = false; // set values to zero, except yield total for (uint8_t id = 0; id < mSys.getNumInverters(); id++) { iv = mSys.getInverterByPos(id); if (NULL == iv) continue; // skip to next inverter mPayload.zeroInverterValues(iv, false); changed = true; } if(changed) payloadEventListener(RealTimeRunData_Debug, NULL); if (mMqttEnabled) mMqtt.tickerMidnight(); } //----------------------------------------------------------------------------- void app::tickSend(void) { if(mConfig->nrf.enabled) { if(!mNrfRadio.isChipConnected()) { DPRINTLN(DBG_WARN, F("NRF24 not connected!")); return; } } if (mIVCommunicationOn) { if (!mNrfRadio.mBufCtrl.empty()) { if (mConfig->serial.debug) { DPRINT(DBG_DEBUG, F("recbuf not empty! #")); DBGPRINTLN(String(mNrfRadio.mBufCtrl.size())); } } #if defined(ESP32) if (!mCmtRadio.mBufCtrl.empty()) { if (mConfig->serial.debug) { DPRINT(DBG_INFO, F("recbuf not empty! #")); DBGPRINTLN(String(mCmtRadio.mBufCtrl.size())); } } #endif int8_t maxLoop = MAX_NUM_INVERTERS; Inverter<> *iv = mSys.getInverterByPos(mSendLastIvId); do { mSendLastIvId = ((MAX_NUM_INVERTERS - 1) == mSendLastIvId) ? 0 : mSendLastIvId + 1; iv = mSys.getInverterByPos(mSendLastIvId); } while ((NULL == iv) && ((maxLoop--) > 0)); if (NULL != iv) { if (iv->config->enabled) { if(mConfig->nrf.enabled) { if (iv->ivGen == IV_HM) mPayload.ivSend(iv); else if(iv->ivGen == IV_MI) mMiPayload.ivSend(iv); } #if defined(ESP32) if(mConfig->cmt.enabled) { if((iv->ivGen == IV_HMS) || (iv->ivGen == IV_HMT)) mHmsPayload.ivSend(iv); } #endif } } } else { if (mConfig->serial.debug) DPRINTLN(DBG_WARN, F("Time not set or it is night time, therefore no communication to the inverter!")); } yield(); updateLed(); } //----------------------------------------------------------------------------- void app::resetSystem(void) { snprintf(mVersion, 12, "%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH); #ifdef AP_ONLY mTimestamp = 1; #endif mSendFirst = true; mSunrise = 0; mSunset = 0; mMqttEnabled = false; mSendLastIvId = 0; mShowRebootRequest = false; mIVCommunicationOn = true; mSavePending = false; mSaveReboot = false; memset(&mStat, 0, sizeof(statistics_t)); } //----------------------------------------------------------------------------- void app::mqttSubRxCb(JsonObject obj) { mApi.ctrlRequest(obj); } //----------------------------------------------------------------------------- void app::setupLed(void) { uint8_t led_off = (mConfig->led.led_high_active) ? LOW : HIGH; if (mConfig->led.led0 != 0xff) { pinMode(mConfig->led.led0, OUTPUT); digitalWrite(mConfig->led.led0, led_off); } if (mConfig->led.led1 != 0xff) { pinMode(mConfig->led.led1, OUTPUT); digitalWrite(mConfig->led.led1, led_off); } } //----------------------------------------------------------------------------- void app::updateLed(void) { uint8_t led_off = (mConfig->led.led_high_active) ? LOW : HIGH; uint8_t led_on = (mConfig->led.led_high_active) ? HIGH : LOW; if (mConfig->led.led0 != 0xff) { Inverter<> *iv = mSys.getInverterByPos(0); if (NULL != iv) { if (iv->isProducing(mTimestamp)) digitalWrite(mConfig->led.led0, led_on); else digitalWrite(mConfig->led.led0, led_off); } } if (mConfig->led.led1 != 0xff) { if (getMqttIsConnected()) { digitalWrite(mConfig->led.led1, led_on); } else { digitalWrite(mConfig->led.led1, led_off); } } }