You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

448 lines
19 KiB

//-----------------------------------------------------------------------------
// 2024 Ahoy, https://github.com/lumpapu/ahoy
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/4.0/deed
//-----------------------------------------------------------------------------
#ifndef __HM_RADIO_H__
#define __HM_RADIO_H__
#include <RF24.h>
#include "SPI.h"
#include "radio.h"
#include "../config/config.h"
#if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL)
#include "nrfHal.h"
#endif
#define SPI_SPEED 1000000
#define RF_CHANNELS 5
const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"};
#define TX_REQ_DREDCONTROL 0x50
#define DRED_A5 0xa5
#define DRED_5A 0x5a
#define DRED_AA 0xaa
#define DRED_55 0x55
//-----------------------------------------------------------------------------
// HM Radio class
//-----------------------------------------------------------------------------
template <uint8_t IRQ_PIN = DEF_NRF_IRQ_PIN, uint8_t CE_PIN = DEF_NRF_CE_PIN, uint8_t CS_PIN = DEF_NRF_CS_PIN, uint8_t AMP_PWR = RF24_PA_LOW, uint8_t SCLK_PIN = DEF_NRF_SCLK_PIN, uint8_t MOSI_PIN = DEF_NRF_MOSI_PIN, uint8_t MISO_PIN = DEF_NRF_MISO_PIN, uint32_t DTU_SN = 0x81001765>
class HmRadio : public Radio {
public:
HmRadio() {
mDtuSn = DTU_SN;
mIrqRcvd = false;
#if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL)
//mNrf24.reset(new RF24());
#else
mNrf24.reset(new RF24(CE_PIN, CS_PIN, SPI_SPEED));
#endif
}
~HmRadio() {}
void setup(bool *serialDebug, bool *privacyMode, bool *printWholeTrace, uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN, uint8_t sclk = SCLK_PIN, uint8_t mosi = MOSI_PIN, uint8_t miso = MISO_PIN) {
DPRINTLN(DBG_VERBOSE, F("hmRadio.h:setup"));
pinMode(irq, INPUT_PULLUP);
mSerialDebug = serialDebug;
mPrivacyMode = privacyMode;
mPrintWholeTrace = printWholeTrace;
generateDtuSn();
DTU_RADIO_ID = ((uint64_t)(((mDtuSn >> 24) & 0xFF) | ((mDtuSn >> 8) & 0xFF00) | ((mDtuSn << 8) & 0xFF0000) | ((mDtuSn << 24) & 0xFF000000)) << 8) | 0x01;
#ifdef ESP32
#if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL)
mNrfHal.init(mosi, miso, sclk, cs, ce, SPI_SPEED);
mNrf24.reset(new RF24(&mNrfHal));
#else
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
mSpi.reset(new SPIClass(HSPI));
#else
mSpi.reset(new SPIClass(VSPI));
#endif
mSpi->begin(sclk, miso, mosi, cs);
#endif
#else
//the old ESP82xx cannot freely place their SPI pins
mSpi.reset(new SPIClass());
mSpi->begin();
#endif
#if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL)
mNrf24->begin();
#else
mNrf24->begin(mSpi.get(), ce, cs);
#endif
mNrf24->setRetries(3, 15); // wait 3*250 = 750us, 16 * 250us -> 4000us = 4ms
mNrf24->setDataRate(RF24_250KBPS);
//mNrf24->setAutoAck(true); // enabled by default
//mNrf24->enableDynamicAck();
mNrf24->enableDynamicPayloads();
mNrf24->setCRCLength(RF24_CRC_16);
mNrf24->setAddressWidth(5);
mNrf24->openReadingPipe(1, reinterpret_cast<uint8_t*>(&DTU_RADIO_ID));
mNrf24->maskIRQ(false, false, false); // enable all receiving interrupts
mNrf24->setPALevel(1); // low is default
if(mNrf24->isChipConnected()) {
DPRINTLN(DBG_INFO, F("Radio Config:"));
mNrf24->printPrettyDetails();
DPRINT(DBG_INFO, F("DTU_SN: "));
DBGPRINTLN(String(mDtuSn, HEX));
} else
DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
}
// returns true if communication is active
bool loop(void) {
if (!mIrqRcvd && !mNRFisInRX)
return false; // first quick check => nothing to do at all here
if(NULL == mLastIv) // prevent reading on NULL object!
return false;
if(!mIrqRcvd) { // no news from nRF, check timers
if ((millis() - mTimeslotStart) < innerLoopTimeout)
return true; // nothing to do, still waiting
if (mRadioWaitTime.isTimeout()) { // timeout reached!
mNRFisInRX = false;
return false;
}
// otherwise switch to next RX channel
mTimeslotStart = millis();
if(!mNRFloopChannels && ((mTimeslotStart - mLastIrqTime) > (DURATION_TXFRAME+DURATION_ONEFRAME)))
mNRFloopChannels = true;
rxPendular = !rxPendular;
//innerLoopTimeout = (rxPendular ? 1 : 2)*DURATION_LISTEN_MIN;
innerLoopTimeout = DURATION_LISTEN_MIN;
if(mNRFloopChannels)
tempRxChIdx = (tempRxChIdx + 4) % RF_CHANNELS;
else
tempRxChIdx = (mRxChIdx + rxPendular*4) % RF_CHANNELS;
mNrf24->setChannel(mRfChLst[tempRxChIdx]);
isRxInit = false;
return true; // communicating, but changed RX channel
} else {
// here we got news from the nRF
mIrqRcvd = false;
mNrf24->whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
mLastIrqTime = millis();
if(tx_ok || tx_fail) { // tx related interrupt, basically we should start listening
mNrf24->flush_tx(); // empty TX FIFO
mTxSetupTime = millis() - mMillis;
if(mNRFisInRX) {
DPRINTLN(DBG_WARN, F("unexpected tx irq!"));
return false;
}
mNRFisInRX = true;
if(tx_ok)
mLastIv->mAckCount++;
mRxChIdx = (mTxChIdx + 2) % RF_CHANNELS;
mNrf24->setChannel(mRfChLst[mRxChIdx]);
mNrf24->startListening();
mTimeslotStart = millis();
tempRxChIdx = mRxChIdx;
rxPendular = false;
mNRFloopChannels = (mLastIv->ivGen == IV_MI);
innerLoopTimeout = mLastIv->ivGen != IV_MI ? DURATION_TXFRAME : DURATION_ONEFRAME;
}
if(rx_ready) {
if (getReceived()) { // check what we got, returns true for last package
mNRFisInRX = false;
rx_ready = false;
mRadioWaitTime.startTimeMonitor(DURATION_PAUSE_LASTFR); // let the inverter first end his transmissions
mNrf24->stopListening();
} else {
innerLoopTimeout = DURATION_LISTEN_MIN;
mTimeslotStart = millis();
if (!mNRFloopChannels) {
//rxPendular = true; // stay longer on the next rx channel
if (isRxInit) {
isRxInit = false;
tempRxChIdx = (mRxChIdx + 4) % RF_CHANNELS;
mNrf24->setChannel(mRfChLst[tempRxChIdx]);
} else
mRxChIdx = tempRxChIdx;
}
}
return mNRFisInRX;
} /*else if(tx_fail) {
mNRFisInRX = false;
return false;
}*/
}
return false;
}
bool isChipConnected(void) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:isChipConnected"));
return mNrf24->isChipConnected();
}
void sendControlPacket(Inverter<> *iv, uint8_t cmd, uint16_t *data, bool isRetransmit) {
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("sendControlPacket cmd: "));
DBGHEXLN(cmd);
initPacket(iv->radioId.u64, TX_REQ_DEVCONTROL, SINGLE_FRAME);
uint8_t cnt = 10;
if (IV_MI != iv->ivGen) {
mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor
mTxBuf[cnt++] = 0x00;
if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet
mTxBuf[cnt++] = (data[0] >> 8) & 0xff; // power limit, multiplied by 10 (because of fraction)
mTxBuf[cnt++] = (data[0] ) & 0xff; // power limit
mTxBuf[cnt++] = (data[1] >> 8) & 0xff; // setting for persistens handlings
mTxBuf[cnt++] = (data[1] ) & 0xff; // setting for persistens handling
}
} else { //MI 2nd gen. specific
uint16_t powerMax = ((iv->powerLimit[1] == RelativNonPersistent) ? 0 : iv->getMaxPower());
switch (cmd) {
case Restart:
case TurnOn:
mTxBuf[9] = DRED_55;
mTxBuf[10] = DRED_AA;
break;
case TurnOff:
mTxBuf[9] = DRED_AA;
mTxBuf[10] = DRED_55;
break;
case ActivePowerContr:
if (data[1]<256) { // non persistent
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_5A;
//Testing only! Original NRF24_DTUMIesp.ino code #L612-L613:
//UsrData[0]=0x5A;UsrData[1]=0x5A;UsrData[2]=100;//0x0a;// 10% limit
//UsrData[3]=((Limit*10) >> 8) & 0xFF; UsrData[4]= (Limit*10) & 0xFF; //WR needs 1 dec= zB 100.1 W
if (!data[1]) { // AbsolutNonPersistent
mTxBuf[++cnt] = 100; //10% limit, seems to be necessary to send sth. at all, but for MI-1500 this has no effect
//works (if ever!) only for absulute power limits!
mTxBuf[++cnt] = ((data[0] * 10) >> 8) & 0xff; // power limit in W
mTxBuf[++cnt] = ((data[0] * 10) ) & 0xff; // power limit in W
} else if (powerMax) { //relative, but 4ch-MI (if ever) only accepts absolute values
mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10?
mTxBuf[++cnt] = ((data[0] * 10 * powerMax) >> 8) & 0xff; // power limit
mTxBuf[++cnt] = ((data[0] * 10 * powerMax) ) & 0xff; // power limit
} else { // might work for 1/2ch MI (if ever)
mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10?
}
} else { // persistent power limit needs to be translated in DRED command (?)
/* DRED instruction
Order Function
0x55AA Boot without DRM restrictions
0xA5A5 DRM0 shutdown
0x5A5A DRM5 power limit 0%
0xAA55 DRM6 power limit 50%
0x5A55 DRM8 unlimited power operation
*/
mTxBuf[0] = TX_REQ_DREDCONTROL;
if (data[1] == 256UL) { // AbsolutPersistent
if (data[0] == 0 && !powerMax) {
mTxBuf[9] = DRED_A5;
mTxBuf[10] = DRED_A5;
} else if (data[0] == 0 || !powerMax || data[0] < powerMax/4 ) {
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_5A;
} else if (data[0] <= powerMax/4*3) {
mTxBuf[9] = DRED_AA;
mTxBuf[10] = DRED_55;
} else if (data[0] <= powerMax) {
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_55;
} else if (data[0] > powerMax*2) {
mTxBuf[9] = DRED_55;
mTxBuf[10] = DRED_AA;
}
}
}
break;
default:
return;
}
cnt++;
}
sendPacket(iv, cnt, isRetransmit, (IV_MI != iv->ivGen));
}
uint8_t getDataRate(void) {
if(!mNrf24->isChipConnected())
return 3; // unknown
return mNrf24->getDataRate();
}
bool isPVariant(void) {
return mNrf24->isPVariant();
}
/*uint8_t getARC(void) {
return mNrf24->getARC();
}
uint8_t getPLOS(void) {
return mNrf24->getPLOS();
}*/
private:
inline bool getReceived(void) {
bool isLastPackage = false;
rx_ready = false; // reset for ACK case
while(mNrf24->available()) {
uint8_t len = mNrf24->getDynamicPayloadSize(); // payload size > 32 -> corrupt payload
if (len > 0) {
packet_t p;
p.ch = mRfChLst[tempRxChIdx];
p.len = (len > MAX_RF_PAYLOAD_SIZE) ? MAX_RF_PAYLOAD_SIZE : len;
p.rssi = mNrf24->testRPD() ? -64 : -75;
p.millis = millis() - mMillis;
//p.arc = mNrf24->getARC();
//p.plos = mNrf24->getPLOS();
mNrf24->read(p.packet, p.len);
if (p.packet[0] != 0x00) {
if(!checkIvSerial(p.packet, mLastIv)) {
DPRINT(DBG_WARN, "RX other inverter ");
if(!*mPrivacyMode)
ah::dumpBuf(p.packet, p.len);
} else {
mLastIv->mGotFragment = true;
mBufCtrl.push(p);
if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES)) // response from get information command
isLastPackage = (p.packet[9] > ALL_FRAMES); // > ALL_FRAMES indicates last packet received
if(IV_MI == mLastIv->ivGen) {
if (p.packet[0] == (0x0f + ALL_FRAMES)) // response from MI get information command
isLastPackage = (p.packet[9] > 0x10); // > 0x10 indicates last packet received
else if ((p.packet[0] != 0x88) && (p.packet[0] != 0x92)) // ignore MI status messages //#0 was p.packet[0] != 0x00 &&
isLastPackage = true; // response from dev control command
}
rx_ready = true; //reset in case we first read messages from other inverter or ACK zero payloads
}
}
}
yield();
}
if(isLastPackage)
mLastIv->mGotLastMsg = true;
return isLastPackage;
}
void sendPacket(Inverter<> *iv, uint8_t len, bool isRetransmit, bool appendCrc16=true) {
mNrf24->setPALevel(iv->config->powerLevel & 0x03);
updateCrcs(&len, appendCrc16);
// set TX and RX channels
mTxChIdx = iv->heuristics.txRfChId;
if(*mSerialDebug) {
/* remark rejoe2: imo this has no added value here.
As this belongs to the last tx cycle, we should print that info
directly when switching from tx to rx. Otherwise we might confuse users.
if(!isRetransmit) {
DPRINT(DBG_INFO, "last tx setup: ");
DBGPRINT(String(mTxSetupTime));
DBGPRINTLN("ms");
}*/
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("TX "));
DBGPRINT(String(len));
DBGPRINT(" CH");
DBGPRINT(String(mRfChLst[mTxChIdx]));
DBGPRINT(F(", "));
DBGPRINT(String(mTxRetriesNext));
DBGPRINT(F(" retries | "));
if(*mPrintWholeTrace) {
if(*mPrivacyMode)
ah::dumpBuf(mTxBuf, len, 1, 4);
else
ah::dumpBuf(mTxBuf, len);
} else {
DHEX(mTxBuf[0]);
DBGPRINT(F(" "));
DHEX(mTxBuf[10]);
DBGPRINT(F(" "));
DBGHEXLN(mTxBuf[9]);
}
}
mNrf24->stopListening();
if(!isRetransmit && mTxRetries != mTxRetriesNext) {
mNrf24->setRetries(3, mTxRetriesNext);
mTxRetries = mTxRetriesNext;
}
mNrf24->setChannel(mRfChLst[mTxChIdx]);
mNrf24->openWritingPipe(reinterpret_cast<uint8_t*>(&iv->radioId.u64));
mNrf24->startWrite(mTxBuf, len, false); // false = request ACK response
mMillis = millis();
mLastIv = iv;
iv->mDtuTxCnt++;
mNRFisInRX = false;
}
uint64_t getIvId(Inverter<> *iv) {
return iv->radioId.u64;
}
uint8_t getIvGen(Inverter<> *iv) {
return iv->ivGen;
}
inline bool checkIvSerial(uint8_t buf[], Inverter<> *iv) {
for(uint8_t i = 1; i < 5; i++) {
if(buf[i] != iv->radioId.b[i])
return false;
}
return true;
}
uint64_t DTU_RADIO_ID;
uint8_t mRfChLst[RF_CHANNELS] = {03, 23, 40, 61, 75}; // channel List:2403, 2423, 2440, 2461, 2475MHz
uint8_t mTxChIdx = 0;
uint8_t mRxChIdx = 0;
uint8_t tempRxChIdx = mRxChIdx;
bool mGotLastMsg = false;
uint32_t mMillis;
bool tx_ok, tx_fail, rx_ready = false;
unsigned long mTimeslotStart = 0;
unsigned long mLastIrqTime = 0;
bool mNRFloopChannels = false;
bool mNRFisInRX = false;
bool isRxInit = true;
bool rxPendular = false;
uint32_t innerLoopTimeout = DURATION_LISTEN_MIN;
uint8_t mTxSetupTime = 0;
uint8_t mTxRetries = 15; // memorize last setting for mNrf24->setRetries(3, 15);
std::unique_ptr<SPIClass> mSpi;
std::unique_ptr<RF24> mNrf24;
#if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL)
nrfHal mNrfHal;
#endif
Inverter<> *mLastIv = NULL;
};
#endif /*__HM_RADIO_H__*/