You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

335 lines
11 KiB

//-----------------------------------------------------------------------------
// 2022 Ahoy, https://www.mikrocontroller.net/topic/525778
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
#ifndef __HM_INVERTER_H__
#define __HM_INVERTER_H__
#include "hmDefines.h"
/**
* For values which are of interest and not transmitted by the inverter can be
* calculated automatically.
* A list of functions can be linked to the assignment and will be executed
* automatically. Their result does not differ from original read values.
*/
// forward declaration of class
template <class RECORDTYPE=float>
class Inverter;
// prototypes
template<class T=float>
static T calcYieldTotalCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcYieldDayCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcUdcCh(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcPowerDcCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcEffiencyCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcIrradiation(Inverter<> *iv, uint8_t arg0);
template<class T=float>
using func_t = T (Inverter<> *, uint8_t);
template<class T=float>
struct calcFunc_t {
uint8_t funcId; // unique id
func_t<T>* func; // function pointer
} ;
// list of all available functions, mapped in hmDefines.h
template<class T=float>
const calcFunc_t<T> calcFunctions[] = {
{ CALC_YT_CH0, &calcYieldTotalCh0 },
{ CALC_YD_CH0, &calcYieldDayCh0 },
{ CALC_UDC_CH, &calcUdcCh },
{ CALC_PDC_CH0, &calcPowerDcCh0 },
{ CALC_EFF_CH0, &calcEffiencyCh0 },
{ CALC_IRR_CH, &calcIrradiation }
};
template <class RECORDTYPE>
class Inverter {
public:
uint8_t id; // unique id
char name[MAX_NAME_LENGTH]; // human readable name, eg. "HM-600.1"
uint8_t type; // integer which refers to inverter type
byteAssign_t* assign; // type of inverter
uint8_t listLen; // length of assignments
uint16_t alarmMesIndex; // Last recorded Alarm Message Index
uint16_t fwVersion; // Firmware Version from Info Command Request
uint16_t powerLimit[2]; // limit power output
uint8_t devControlCmd; // carries the requested cmd
bool devControlRequest; // true if change needed
serial_u serial; // serial number as on barcode
serial_u radioId; // id converted to modbus
uint8_t channels; // number of PV channels (1-4)
uint32_t ts; // timestamp of last received payload
RECORDTYPE *record; // pointer for values
uint16_t chMaxPwr[4]; // maximum power of the modules (Wp)
char chName[4][MAX_NAME_LENGTH]; // human readable name for channel
bool initialized; // needed to check if the inverter was correctly added (ESP32 specific - union types are never null)
Inverter() {
ts = 0;
powerLimit[0] = 0xffff; // 65535 W Limit -> unlimited
powerLimit[1] = 0x0000; //
devControlRequest = false;
devControlCmd = 0xff;
initialized = false;
fwVersion = 0;
}
~Inverter() {
// TODO: cleanup
}
void init(void) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:init"));
getAssignment();
toRadioId();
record = new RECORDTYPE[listLen];
memset(name, 0, MAX_NAME_LENGTH);
memset(chName, 0, MAX_NAME_LENGTH * 4);
memset(record, 0, sizeof(RECORDTYPE) * listLen);
initialized = true;
}
uint8_t getPosByChFld(uint8_t channel, uint8_t fieldId) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getPosByChFld"));
uint8_t pos = 0;
for(; pos < listLen; pos++) {
if((assign[pos].ch == channel) && (assign[pos].fieldId == fieldId))
break;
}
return (pos >= listLen) ? 0xff : pos;
}
const char *getFieldName(uint8_t pos) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getFieldName"));
return fields[assign[pos].fieldId];
}
const char *getUnit(uint8_t pos) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getUnit"));
return units[assign[pos].unitId];
}
uint8_t getChannel(uint8_t pos) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getChannel"));
return assign[pos].ch;
}
void addValue(uint8_t pos, uint8_t buf[],uint8_t cmd) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:addValue"));
uint8_t ptr = assign[pos].start;
uint8_t end = ptr + assign[pos].num;
uint16_t div = assign[pos].div;
if(CMD_CALC != div) {
uint32_t val = 0;
do {
val <<= 8;
val |= buf[ptr];
} while(++ptr != end);
record[pos] = (RECORDTYPE)(val) / (RECORDTYPE)(div);
}
if (cmd == RealTimeRunData_Debug) {
// get last alarm message index and save it in the inverter object
if (getPosByChFld(0, FLD_ALARM_MES_ID) == pos){
alarmMesIndex = record[pos];
}
}
if (cmd == InverterDevInform_All) {
// get at least the firmware version and save it to the inverter object
if (getPosByChFld(0, FLD_FW_VERSION) == pos){
fwVersion = record[pos];
DPRINT(DBG_DEBUG, F("Inverter FW-Version: ") + String(fwVersion));
}
}
}
RECORDTYPE getValue(uint8_t pos) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getValue"));
return record[pos];
}
void doCalculations(uint8_t cmd=RealTimeRunData_Debug) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:doCalculations"));
getAssignment(cmd);
if (cmd == RealTimeRunData_Debug){
for(uint8_t i = 0; i < listLen; i++) {
if(CMD_CALC == assign[i].div) {
record[i] = calcFunctions<RECORDTYPE>[assign[i].start].func(this, assign[i].num);
}
yield();
}
}
}
bool isAvailable(uint32_t timestamp) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:isAvailable"));
return ((timestamp - ts) < INACT_THRES_SEC);
}
bool isProducing(uint32_t timestamp) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:isProducing"));
if(isAvailable(timestamp)) {
uint8_t pos = getPosByChFld(CH0, FLD_PAC);
return (getValue(pos) > INACT_PWR_THRESH);
}
return false;
}
uint32_t getLastTs(void) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getLastTs"));
return ts;
}
void getAssignment(uint8_t cmd=RealTimeRunData_Debug) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getAssignment"));
if(cmd == RealTimeRunData_Debug){
if(INV_TYPE_1CH == type) {
listLen = (uint8_t)(HM1CH_LIST_LEN);
assign = (byteAssign_t*)hm1chAssignment;
channels = 1;
}
else if(INV_TYPE_2CH == type) {
listLen = (uint8_t)(HM2CH_LIST_LEN);
assign = (byteAssign_t*)hm2chAssignment;
channels = 2;
}
else if(INV_TYPE_4CH == type) {
listLen = (uint8_t)(HM4CH_LIST_LEN);
assign = (byteAssign_t*)hm4chAssignment;
channels = 4;
}
else {
listLen = 0;
channels = 0;
assign = NULL;
}
}
if(cmd == InverterDevInform_All){
listLen = (uint8_t)(HMINFO_LIST_LEN);
assign = (byteAssign_t*)InfoAssignment;
}
}
private:
void toRadioId(void) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:toRadioId"));
radioId.u64 = 0ULL;
radioId.b[4] = serial.b[0];
radioId.b[3] = serial.b[1];
radioId.b[2] = serial.b[2];
radioId.b[1] = serial.b[3];
radioId.b[0] = 0x01;
}
};
/**
* To calculate values which are not transmitted by the unit there is a generic
* list of functions which can be linked to the assignment.
* The special command 0xff (CMDFF) must be used.
*/
template<class T=float>
static T calcYieldTotalCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcYieldTotalCh0"));
if(NULL != iv) {
T yield = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t pos = iv->getPosByChFld(i, FLD_YT);
yield += iv->getValue(pos);
}
return yield;
}
return 0.0;
}
template<class T=float>
static T calcYieldDayCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcYieldDayCh0"));
if(NULL != iv) {
T yield = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t pos = iv->getPosByChFld(i, FLD_YD);
yield += iv->getValue(pos);
}
return yield;
}
return 0.0;
}
template<class T=float>
static T calcUdcCh(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcUdcCh"));
// arg0 = channel of source
for(uint8_t i = 0; i < iv->listLen; i++) {
if((FLD_UDC == iv->assign[i].fieldId) && (arg0 == iv->assign[i].ch)) {
return iv->getValue(i);
}
}
return 0.0;
}
template<class T=float>
static T calcPowerDcCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcPowerDcCh0"));
if(NULL != iv) {
T dcPower = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t pos = iv->getPosByChFld(i, FLD_PDC);
dcPower += iv->getValue(pos);
}
return dcPower;
}
return 0.0;
}
template<class T=float>
static T calcEffiencyCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcEfficiencyCh0"));
if(NULL != iv) {
uint8_t pos = iv->getPosByChFld(CH0, FLD_PAC);
T acPower = iv->getValue(pos);
T dcPower = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
pos = iv->getPosByChFld(i, FLD_PDC);
dcPower += iv->getValue(pos);
}
if(dcPower > 0)
return acPower / dcPower * 100.0f;
}
return 0.0;
}
template<class T=float>
static T calcIrradiation(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcIrradiation"));
// arg0 = channel
if(NULL != iv) {
uint8_t pos = iv->getPosByChFld(arg0, FLD_PDC);
if(iv->chMaxPwr[arg0-1] > 0)
return iv->getValue(pos) / iv->chMaxPwr[arg0-1] * 100.0f;
}
return 0.0;
}
#endif /*__HM_INVERTER_H__*/