You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1047 lines
50 KiB

//-----------------------------------------------------------------------------
// 2024 Ahoy, https://github.com/lumpapu/ahoy
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/4.0/deed
//-----------------------------------------------------------------------------
#ifndef __COMMUNICATION_H__
#define __COMMUNICATION_H__
#include <array>
#include "CommQueue.h"
#include <Arduino.h>
#include "../utils/crc.h"
#include "../utils/timemonitor.h"
#include "Heuristic.h"
#define MAX_BUFFER 200
typedef std::function<void(uint8_t, Inverter<> *)> payloadListenerType;
typedef std::function<void(Inverter<> *)> powerLimitAckListenerType;
typedef std::function<void(Inverter<> *)> alarmListenerType;
class Communication : public CommQueue<> {
public:
void setup(uint32_t *timestamp, bool *serialDebug, bool *privacyMode, bool *printWholeTrace) {
mTimestamp = timestamp;
mPrivacyMode = privacyMode;
mSerialDebug = serialDebug;
mPrintWholeTrace = printWholeTrace;
}
void addImportant(Inverter<> *iv, uint8_t cmd) {
mState = States::RESET; // cancel current operation
CommQueue::addImportant(iv, cmd);
}
void addPayloadListener(payloadListenerType cb) {
mCbPayload = cb;
}
void addPowerLimitAckListener(powerLimitAckListenerType cb) {
mCbPwrAck = cb;
}
void addAlarmListener(alarmListenerType cb) {
mCbAlarm = cb;
}
void loop() {
get([this](bool valid, const queue_s *q) {
if(!valid) {
if(mPrintSequenceDuration) {
mPrintSequenceDuration = false;
DPRINT(DBG_INFO, F("com loop duration: "));
DBGPRINT(String(millis() - mLastEmptyQueueMillis));
DBGPRINTLN(F("ms"));
DBGPRINTLN(F("-----"));
}
return; // empty
}
if(!mPrintSequenceDuration) // entry was added to the queue
mLastEmptyQueueMillis = millis();
mPrintSequenceDuration = true;
innerLoop(q);
});
}
private:
inline void innerLoop(const queue_s *q) {
switch(mState) {
case States::RESET:
if (!mWaitTime.isTimeout())
return;
mMaxFrameId = 0;
for(uint8_t i = 0; i < MAX_PAYLOAD_ENTRIES; i++) {
mLocalBuf[i].len = 0;
}
if(*mSerialDebug)
mHeu.printStatus(q->iv);
mHeu.getTxCh(q->iv);
q->iv->mGotFragment = false;
q->iv->mGotLastMsg = false;
q->iv->curFrmCnt = 0;
q->iv->radioStatistics.txCnt++;
mIsRetransmit = false;
if(NULL == q->iv->radio)
cmdDone(false); // can't communicate while radio is not defined!
mFirstTry = (INV_RADIO_TYPE_NRF == q->iv->ivRadioType) && (q->iv->isAvailable());
q->iv->mCmd = q->cmd;
q->iv->mIsSingleframeReq = false;
mFramesExpected = getFramesExpected(q); // function to get expected frame count.
mTimeout = DURATION_TXFRAME + mFramesExpected*DURATION_ONEFRAME + duration_reserve[q->iv->ivRadioType];
if((q->iv->ivGen == IV_MI) && ((q->cmd == MI_REQ_CH1) || (q->cmd == MI_REQ_4CH)))
incrAttempt(q->iv->channels); // 2 more attempts for 2ch, 4 more for 4ch
mState = States::START;
break;
case States::START:
setTs(mTimestamp);
if(INV_RADIO_TYPE_CMT == q->iv->ivRadioType) {
// frequency was changed during runtime
if(q->iv->curCmtFreq != q->iv->config->frequency) {
if(q->iv->radio->switchFrequencyCh(q->iv, q->iv->curCmtFreq, q->iv->config->frequency))
q->iv->curCmtFreq = q->iv->config->frequency;
}
}
if(q->isDevControl) {
if(ActivePowerContr == q->cmd)
q->iv->powerLimitAck = false;
q->iv->radio->sendControlPacket(q->iv, q->cmd, q->iv->powerLimit, false);
} else
q->iv->radio->prepareDevInformCmd(q->iv, q->cmd, q->ts, q->iv->alarmLastId, false);
//q->iv->radioStatistics.txCnt++;
q->iv->radio->mRadioWaitTime.startTimeMonitor(mTimeout);
if((!mIsRetransmit && (q->cmd == AlarmData)) || (q->cmd == GridOnProFilePara))
incrAttempt((q->cmd == AlarmData)? MORE_ATTEMPS_ALARMDATA : MORE_ATTEMPS_GRIDONPROFILEPARA);
mIsRetransmit = false;
setAttempt();
mState = States::WAIT;
break;
case States::WAIT:
if (!q->iv->radio->mRadioWaitTime.isTimeout())
return;
mState = States::CHECK_FRAMES;
break;
case States::CHECK_FRAMES: {
if((q->iv->radio->mBufCtrl.empty() && !mIsRetransmit) ) { // || (0 == q->attempts)) { // radio buffer empty. No more answers will be checked later
if(*mSerialDebug) {
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINT(F("request timeout: "));
DBGPRINT(String(q->iv->radio->mRadioWaitTime.getRunTime()));
DBGPRINTLN(F("ms"));
}
if(!q->iv->mGotFragment) {
if(INV_RADIO_TYPE_CMT == q->iv->ivRadioType) {
#if defined(ESP32)
if(!q->iv->radio->switchFrequency(q->iv, q->iv->radio->getBootFreqMhz() * 1000, (q->iv->config->frequency*FREQ_STEP_KHZ + q->iv->radio->getBaseFreqMhz() * 1000))) {
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINTLN(F("switch frequency failed!"));
}
mWaitTime.startTimeMonitor(1000);
#endif
} else {
mHeu.setIvRetriesBad(q->iv);
if(IV_MI == q->iv->ivGen)
q->iv->mIvTxCnt++;
if(mFirstTry) {
if(q->attempts < 3 || !q->iv->isProducing())
mFirstTry = false;
mHeu.evalTxChQuality(q->iv, false, 0, 0);
mHeu.getTxCh(q->iv);
q->iv->radioStatistics.retransmits++;
q->iv->radio->mRadioWaitTime.stopTimeMonitor();
mState = States::START;
return;
}
}
}
closeRequest(q, false);
break;
}
mFirstTry = false; // for correct reset
if((IV_MI != q->iv->ivGen) || (0 == q->attempts))
mIsRetransmit = false;
while(!q->iv->radio->mBufCtrl.empty()) {
packet_t *p = &q->iv->radio->mBufCtrl.front();
if(validateIvSerial(&p->packet[1], q->iv)) {
printRxInfo(q, p);
q->iv->radioStatistics.frmCnt++;
q->iv->mDtuRxCnt++;
if (p->packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command
if(parseFrame(p)) {
q->iv->curFrmCnt++;
if(!mIsRetransmit && ((p->packet[9] == 0x02) || (p->packet[9] == 0x82)) && (p->millis < LIMIT_FAST_IV))
mHeu.setIvRetriesGood(q->iv,p->millis < LIMIT_VERYFAST_IV);
}
} else if (p->packet[0] == (TX_REQ_DEVCONTROL + ALL_FRAMES)) { // response from dev control command
if(parseDevCtrl(p, q))
closeRequest(q, true);
else
closeRequest(q, false);
q->iv->radio->mBufCtrl.pop();
return; // don't wait for empty buffer
} else if(IV_MI == q->iv->ivGen) {
parseMiFrame(p, q);
q->iv->curFrmCnt++;
}
} //else -> serial does not match
q->iv->radio->mBufCtrl.pop();
yield();
}
if(q->iv->ivGen != IV_MI) {
mState = States::CHECK_PACKAGE;
} else {
if(q->iv->miMultiParts < 6) {
mState = States::WAIT;
if(q->iv->radio->mRadioWaitTime.isTimeout() && q->attempts) {
miRepeatRequest(q);
return;
}
} else {
mHeu.evalTxChQuality(q->iv, true, (q->attemptsMax - 1 - q->attempts), q->iv->curFrmCnt);
if(((q->cmd == 0x39) && (q->iv->type == INV_TYPE_4CH))
|| ((q->cmd == MI_REQ_CH2) && (q->iv->type == INV_TYPE_2CH))
|| ((q->cmd == MI_REQ_CH1) && (q->iv->type == INV_TYPE_1CH))) {
miComplete(q->iv);
}
if(*mSerialDebug) {
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINTLN(F("Payload (MI got all)"));
}
closeRequest(q, true);
}
}
}
break;
case States::CHECK_PACKAGE:
uint8_t framnr = 0;
if(0 == mMaxFrameId) {
uint8_t i = 0;
while(i < MAX_PAYLOAD_ENTRIES) {
if(mLocalBuf[i].len == 0) {
framnr = i+1;
break;
}
i++;
}
}
if(!framnr) {
for(uint8_t i = 0; i < mMaxFrameId; i++) {
if(mLocalBuf[i].len == 0) {
framnr = i+1;
break;
}
}
}
if(framnr) {
if(0 == q->attempts) {
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINTLN(F("timeout, no attempts left"));
closeRequest(q, false);
return;
}
//count missing frames
if(!q->iv->mIsSingleframeReq && (q->iv->ivRadioType == INV_RADIO_TYPE_NRF)) { // already checked?
uint8_t missedFrames = 0;
for(uint8_t i = 0; i < q->iv->radio->mFramesExpected; i++) {
if(mLocalBuf[i].len == 0)
missedFrames++;
}
if(missedFrames > 3 || (q->cmd == RealTimeRunData_Debug && missedFrames > 1) || ((missedFrames > 1) && ((missedFrames + 2) > q->attempts))) {
if(*mSerialDebug) {
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINT(String(missedFrames));
DBGPRINT(F(" frames missing "));
DBGPRINTLN(F("-> complete retransmit"));
}
mHeu.evalTxChQuality(q->iv, false, (q->attemptsMax - 1 - q->attempts), q->iv->curFrmCnt, true);
q->iv->radioStatistics.txCnt--;
q->iv->radioStatistics.retransmits++;
mCompleteRetry = true;
mState = States::RESET;
return;
}
}
setAttempt();
if(*mSerialDebug) {
DPRINT_IVID(DBG_WARN, q->iv->id);
DBGPRINT(F("frame "));
DBGPRINT(String(framnr));
DBGPRINT(F(" missing: request retransmit ("));
DBGPRINT(String(q->attempts));
DBGPRINTLN(F(" attempts left)"));
}
if (!mIsRetransmit)
q->iv->mIsSingleframeReq = true;
sendRetransmit(q, (framnr-1));
mIsRetransmit = true;
return;
}
if(compilePayload(q)) {
if((NULL != mCbPayload) && (GridOnProFilePara != q->cmd) && (GetLossRate != q->cmd))
(mCbPayload)(q->cmd, q->iv);
closeRequest(q, true);
} else
closeRequest(q, false);
break;
}
}
inline void printRxInfo(const queue_s *q, packet_t *p) {
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINT(F("RX "));
if(p->millis < 100)
DBGPRINT(F(" "));
DBGPRINT(String(p->millis));
DBGPRINT(F("ms | "));
DBGPRINT(String(p->len));
if(INV_RADIO_TYPE_NRF == q->iv->ivRadioType) {
DBGPRINT(F(" CH"));
if(3 == p->ch)
DBGPRINT(F("0"));
DBGPRINT(String(p->ch));
DBGPRINT(F(" "));
} else {
DBGPRINT(F(" "));
DBGPRINT(String(p->rssi));
DBGPRINT(F("dBm "));
}
if(*mPrintWholeTrace) {
DBGPRINT(F("| "));
if(*mPrivacyMode)
ah::dumpBuf(p->packet, p->len, 1, 8);
else
ah::dumpBuf(p->packet, p->len);
} else {
DBGPRINT(F("| "));
DHEX(p->packet[0]);
DBGPRINT(F(" "));
DBGHEXLN(p->packet[9]);
}
}
inline uint8_t getFramesExpected(const queue_s *q) {
if(q->isDevControl)
return 1;
if(q->iv->ivGen != IV_MI) {
if (q->cmd == RealTimeRunData_Debug) {
uint8_t framecnt[4] = {2, 3, 4, 7};
return framecnt[q->iv->type];
}
switch (q->cmd) {
case InverterDevInform_All:
case GetLossRate:
case SystemConfigPara:
return 1;
case AlarmData: return 0x0c;
case GridOnProFilePara: return 6;
/*HardWareConfig = 3, // 0x03
SimpleCalibrationPara = 4, // 0x04
RealTimeRunData_Reality = 12, // 0x0c
RealTimeRunData_A_Phase = 13, // 0x0d
RealTimeRunData_B_Phase = 14, // 0x0e
RealTimeRunData_C_Phase = 15, // 0x0f
AlarmUpdate = 18, // 0x12, Alarm data - all pending alarms
RecordData = 19, // 0x13
InternalData = 20, // 0x14
GetSelfCheckState = 30, // 0x1e
*/
default: return 8; // for the moment, this should result in sth. like a default timeout of 500ms
}
} else { //MI
switch (q->cmd) {
case MI_REQ_CH1:
case MI_REQ_CH2:
return 2;
case 0x0f: return 3;
default: return 1;
}
}
}
inline bool validateIvSerial(const uint8_t buf[], Inverter<> *iv) {
uint8_t tmp[4];
CP_U32_BigEndian(tmp, iv->radioId.u64 >> 8);
for(uint8_t i = 0; i < 4; i++) {
if(tmp[i] != buf[i]) {
/*DPRINT(DBG_WARN, F("Inverter serial does not match, got: 0x"));
DHEX(buf[0]);DHEX(buf[1]);DHEX(buf[2]);DHEX(buf[3]);
DBGPRINT(F(", expected: 0x"));
DHEX(tmp[0]);DHEX(tmp[1]);DHEX(tmp[2]);DHEX(tmp[3]);
DBGPRINTLN("");*/
return false;
}
}
return true;
}
inline bool checkFrameCrc(uint8_t buf[], uint8_t len) {
return (ah::crc8(buf, len - 1) == buf[len-1]);
}
inline bool parseFrame(packet_t *p) {
uint8_t *frameId = &p->packet[9];
if(0x00 == *frameId) {
DPRINTLN(DBG_WARN, F("invalid frameId 0x00"));
return false; // skip current packet
}
if((*frameId & 0x7f) > MAX_PAYLOAD_ENTRIES) {
DPRINTLN(DBG_WARN, F("local buffer to small for payload fragments"));
return false; // local storage is to small for id
}
if(!checkFrameCrc(p->packet, p->len)) {
DPRINTLN(DBG_WARN, F("frame CRC is wrong"));
return false; // CRC8 is wrong, frame invalid
}
if((*frameId & ALL_FRAMES) == ALL_FRAMES) {
mMaxFrameId = (*frameId & 0x7f);
if(mMaxFrameId > 8) // large payloads, e.g. AlarmData
incrAttempt(mMaxFrameId - 6);
}
frame_t *f = &mLocalBuf[(*frameId & 0x7f) - 1];
memcpy(f->buf, &p->packet[10], p->len-11);
f->len = p->len - 11;
f->rssi = p->rssi;
return true;
}
inline void parseMiFrame(packet_t *p, const queue_s *q) {
if((!mIsRetransmit && p->packet[9] == 0x00) && (p->millis < LIMIT_FAST_IV_MI)) //first frame is fast?
mHeu.setIvRetriesGood(q->iv,p->millis < LIMIT_VERYFAST_IV_MI);
if ((p->packet[0] == MI_REQ_CH1 + ALL_FRAMES)
|| (p->packet[0] == MI_REQ_CH2 + ALL_FRAMES)
|| ((p->packet[0] >= (MI_REQ_4CH + ALL_FRAMES))
&& (p->packet[0] < (0x39 + SINGLE_FRAME))
)) {
// small MI or MI 1500 data responses to 0x09, 0x11, 0x36, 0x37, 0x38 and 0x39
miDataDecode(p, q);
} else if (p->packet[0] == (0x0f + ALL_FRAMES)) {
miHwDecode(p, q);
} else if (p->packet[0] == ( 0x10 + ALL_FRAMES)) {
// MI response from get Grid Profile information request
miGPFDecode(p, q);
}
else if ((p->packet[0] == 0x88) || (p->packet[0] == 0x92)) {
record_t<> *rec = q->iv->getRecordStruct(RealTimeRunData_Debug); // choose the record structure
rec->ts = q->ts;
miStsConsolidate(q, ((p->packet[0] == 0x88) ? 1 : 2), rec, p->packet[10], p->packet[12], p->packet[9], p->packet[11]);
}
}
inline bool parseDevCtrl(const packet_t *p, const queue_s *q) {
switch(p->packet[12]) {
case ActivePowerContr:
if(p->packet[13] != 0x00)
return false;
break;
case TurnOn: [[fallthrough]];
case TurnOff: [[fallthrough]];
case Restart:
return true;
break;
default:
DPRINT(DBG_WARN, F("unknown dev ctrl: "));
DBGHEXLN(p->packet[12]);
break;
}
bool accepted = true;
if((p->packet[10] == 0x00) && (p->packet[11] == 0x00))
q->iv->powerLimitAck = true;
else
accepted = false;
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINT(F("has "));
if(!accepted) DBGPRINT(F("not "));
DBGPRINT(F("accepted power limit set point "));
DBGPRINT(String((float)q->iv->powerLimit[0]/10.0));
DBGPRINT(F(" with PowerLimitControl "));
DBGPRINTLN(String(q->iv->powerLimit[1]));
q->iv->actPowerLimit = 0xffff; // unknown, readback current value
(mCbPwrAck)(q->iv);
return accepted;
}
inline bool compilePayload(const queue_s *q) {
uint16_t crc = 0xffff, crcRcv = 0x0000;
for(uint8_t i = 0; i < mMaxFrameId; i++) {
if(i == (mMaxFrameId - 1)) {
crc = ah::crc16(mLocalBuf[i].buf, mLocalBuf[i].len - 2, crc);
crcRcv = (mLocalBuf[i].buf[mLocalBuf[i].len-2] << 8);
crcRcv |= mLocalBuf[i].buf[mLocalBuf[i].len-1];
} else
crc = ah::crc16(mLocalBuf[i].buf, mLocalBuf[i].len, crc);
}
if(crc != crcRcv) {
DPRINT_IVID(DBG_WARN, q->iv->id);
DBGPRINT(F("CRC Error "));
if(q->attempts == 0) {
DBGPRINTLN(F("-> Fail"));
} else
DBGPRINTLN(F("-> complete retransmit"));
mCompleteRetry = true;
mState = States::RESET;
return false;
}
mPayload.fill(0);
int8_t rssi = -127;
uint8_t len = 0;
for(uint8_t i = 0; i < mMaxFrameId; i++) {
if(mLocalBuf[i].len + len > MAX_BUFFER) {
DPRINTLN(DBG_ERROR, F("payload buffer to small!"));
return true;
}
memcpy(&mPayload[len], mLocalBuf[i].buf, mLocalBuf[i].len);
len += mLocalBuf[i].len;
// get worst RSSI (high value is better)
if(mLocalBuf[i].rssi > rssi)
rssi = mLocalBuf[i].rssi;
}
len -= 2;
if(*mSerialDebug) {
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINT(F("Payload ("));
DBGPRINT(String(len));
if(*mPrintWholeTrace) {
DBGPRINT(F("): "));
ah::dumpBuf(mPayload.data(), len);
} else
DBGPRINTLN(F(")"));
}
if(GridOnProFilePara == q->cmd) {
q->iv->addGridProfile(mPayload.data(), len);
return true;
}
record_t<> *rec = q->iv->getRecordStruct(q->cmd);
if(NULL == rec) {
if(GetLossRate == q->cmd) {
q->iv->parseGetLossRate(mPayload.data(), len);
return true;
} else
DPRINTLN(DBG_ERROR, F("record is NULL!"));
return false;
}
if((rec->pyldLen != len) && (0 != rec->pyldLen)) {
if(*mSerialDebug) {
DPRINT(DBG_ERROR, F("plausibility check failed, expected "));
DBGPRINT(String(rec->pyldLen));
DBGPRINTLN(F(" bytes"));
}
return false;
}
rec->ts = q->ts;
for (uint8_t i = 0; i < rec->length; i++) {
q->iv->addValue(i, mPayload.data(), rec);
}
rec->mqttSentStatus = MqttSentStatus::NEW_DATA;
q->iv->rssi = rssi;
q->iv->doCalculations();
if(AlarmData == q->cmd) {
uint8_t i = 0;
while(1) {
if(0 == q->iv->parseAlarmLog(i++, mPayload.data(), len))
break;
if (NULL != mCbAlarm)
(mCbAlarm)(q->iv);
yield();
}
}
return true;
}
void sendRetransmit(const queue_s *q, uint8_t i) {
mFramesExpected = 1;
q->iv->radio->setExpectedFrames(mFramesExpected);
q->iv->radio->sendCmdPacket(q->iv, TX_REQ_INFO, (SINGLE_FRAME + i), true);
q->iv->radioStatistics.retransmits++;
q->iv->radio->mRadioWaitTime.startTimeMonitor(DURATION_TXFRAME + DURATION_ONEFRAME + duration_reserve[q->iv->ivRadioType]);
mState = States::WAIT;
}
private:
void closeRequest(const queue_s *q, bool crcPass) {
mHeu.evalTxChQuality(q->iv, crcPass, (q->attemptsMax - 1 - q->attempts), q->iv->curFrmCnt);
if(crcPass)
q->iv->radioStatistics.rxSuccess++;
else if(q->iv->mGotFragment || mCompleteRetry)
q->iv->radioStatistics.rxFail++; // got no complete payload
else
q->iv->radioStatistics.rxFailNoAnswer++; // got nothing
mWaitTime.startTimeMonitor(1); // maybe remove, side effects unknown
bool keep = false;
if(q->isDevControl)
keep = !crcPass;
cmdDone(keep);
q->iv->mGotFragment = false;
q->iv->mGotLastMsg = false;
q->iv->miMultiParts = 0;
mIsRetransmit = false;
mCompleteRetry = false;
mState = States::RESET;
DBGPRINTLN(F("-----"));
}
inline void miHwDecode(packet_t *p, const queue_s *q) {
record_t<> *rec = q->iv->getRecordStruct(InverterDevInform_All); // choose the record structure
rec->ts = q->ts;
/*
Polling the device software and hardware version number command
start byte Command word routing address target address User data check end byte
byte[0] byte[1] byte[2] byte[3] byte[4] byte[5] byte[6] byte[7] byte[8] byte[9] byte[10] byte[11] byte[12]
0x7e 0x0f xx xx xx xx YY YY YY YY 0x00 CRC 0x7f
Command Receipt - First Frame
start byte Command word target address routing address Multi-frame marking User data User data User data User data User data User data User data User data User data User data User data User data User data User data User data User data check end byte
byte[0] byte[1] byte[2] byte[3] byte[4] byte[5] byte[6] byte[7] byte[8] byte[9] byte[10] byte[11] byte[12] byte[13] byte[14] byte[15] byte[16] byte[17] byte[18] byte[19] byte[20] byte[21] byte[22] byte[23] byte[24] byte[25] byte[26] byte[27] byte[28]
0x7e 0x8f YY YY YY YY xx xx xx xx 0x00 USFWBuild_VER APPFWBuild_VER APPFWBuild_YYYY APPFWBuild_MMDD APPFWBuild_HHMM APPFW_PN HW_VER CRC 0x7f
Command Receipt - Second Frame
start byte Command word target address routing address Multi-frame marking User data User data User data User data User data User data User data User data User data User data User data User data User data User data User data User data check end byte
byte[0] byte[1] byte[2] byte[3] byte[4] byte[5] byte[6] byte[7] byte[8] byte[9] byte[10] byte[11] byte[12] byte[13] byte[14] byte[15] byte[16] byte[17] byte[18] byte[19] byte[20] byte[21] byte[22] byte[23] byte[24] byte[25] byte[26] byte[27] byte[28]
0x7e 0x8f YY YY YY YY xx xx xx xx 0x01 HW_PN HW_FB_TLmValue HW_FB_ReSPRT HW_GridSamp_ResValule HW_ECapValue Matching_APPFW_PN CRC 0x7f
Command receipt - third frame
start byte Command word target address routing address Multi-frame marking User data User data User data User data User data User data User data User data check end byte
byte[0] byte[1] byte[2] byte[3] byte[4] byte[5] byte[6] byte[7] byte[8] byte[9] byte[10] byte[11] byte[12] byte[13] byte[14] byte[15] byte[16] byte[15] byte[16] byte[17] byte[18]
0x7e 0x8f YY YY YY YY xx xx xx xx 0x12 APPFW_MINVER HWInfoAddr PNInfoCRC_gusv PNInfoCRC_gusv CRC 0x7f
*/
/*
case InverterDevInform_All:
rec->length = (uint8_t)(HMINFO_LIST_LEN);
rec->assign = (byteAssign_t *)InfoAssignment;
rec->pyldLen = HMINFO_PAYLOAD_LEN;
break;
const byteAssign_t InfoAssignment[] = {
{ FLD_FW_VERSION, UNIT_NONE, CH0, 0, 2, 1 },
{ FLD_FW_BUILD_YEAR, UNIT_NONE, CH0, 2, 2, 1 },
{ FLD_FW_BUILD_MONTH_DAY, UNIT_NONE, CH0, 4, 2, 1 },
{ FLD_FW_BUILD_HOUR_MINUTE, UNIT_NONE, CH0, 6, 2, 1 },
{ FLD_BOOTLOADER_VER, UNIT_NONE, CH0, 8, 2, 1 }
};
*/
if ( p->packet[9] == 0x00 ) { //first frame
//FLD_FW_VERSION
for (uint8_t i = 0; i < 5; i++) {
q->iv->setValue(i, rec, (float) ((p->packet[(12+2*i)] << 8) + p->packet[(13+2*i)])/1);
}
if(*mSerialDebug) {
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINT(F("HW_VER is "));
DBGPRINTLN(String((p->packet[24] << 8) + p->packet[25]));
}
rec = q->iv->getRecordStruct(InverterDevInform_Simple); // choose the record structure
rec->ts = q->ts;
q->iv->setValue(1, rec, (uint32_t) ((p->packet[24] << 8) + p->packet[25])/1);
q->iv->miMultiParts +=4;
rec->mqttSentStatus = MqttSentStatus::NEW_DATA;
} else if ( p->packet[9] == 0x01 || p->packet[9] == 0x10 ) {//second frame for MI, 3rd gen. answers in 0x10
DPRINT_IVID(DBG_INFO, q->iv->id);
if ( p->packet[9] == 0x01 ) {
DBGPRINTLN(F("got 2nd frame (hw info)"));
/* according to xlsx (different start byte -1!)
byte[11] to byte[14] HW_PN
byte[15] byte[16] HW_FB_TLmValue
byte[17] byte[18] HW_FB_ReSPRT
byte[19] byte[20] HW_GridSamp_ResValule
byte[21] byte[22] HW_ECapValue
byte[23] to byte[26] Matching_APPFW_PN*/
DPRINT(DBG_INFO,F("HW_PartNo "));
DBGPRINTLN(String((uint32_t) (((p->packet[10] << 8) | p->packet[11]) << 8 | p->packet[12]) << 8 | p->packet[13]));
rec = q->iv->getRecordStruct(InverterDevInform_Simple); // choose the record structure
rec->ts = q->ts;
q->iv->setValue(0, rec, (uint32_t) ((((p->packet[10] << 8) | p->packet[11]) << 8 | p->packet[12]) << 8 | p->packet[13])/1);
rec->mqttSentStatus = MqttSentStatus::NEW_DATA;
if(*mSerialDebug) {
DPRINT(DBG_INFO,F("HW_FB_TLmValue "));
DBGPRINTLN(String((p->packet[14] << 8) + p->packet[15]));
DBGPRINT(F("HW_FB_ReSPRT "));
DBGPRINTLN(String((p->packet[16] << 8) + p->packet[17]));
DBGPRINT(F("HW_GridSamp_ResValule "));
DBGPRINTLN(String((p->packet[18] << 8) + p->packet[19]));
DBGPRINT(F("HW_ECapValue "));
DBGPRINTLN(String((p->packet[20] << 8) + p->packet[21]));
DBGPRINT(F("Matching_APPFW_PN "));
DBGPRINTLN(String((uint32_t) (((p->packet[22] << 8) | p->packet[23]) << 8 | p->packet[24]) << 8 | p->packet[25]));
}
if(NULL != mCbPayload)
(mCbPayload)(InverterDevInform_All, q->iv);
q->iv->miMultiParts +=2;
} else {
DBGPRINTLN(F("3rd gen. inverter!"));
}
} else if ( p->packet[9] == 0x12 ) {//3rd frame
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINTLN(F("got 3rd frame (hw info)"));
/* according to xlsx (different start byte -1!)
byte[11] byte[12] APPFW_MINVER
byte[13] byte[14] HWInfoAddr
byte[15] byte[16] PNInfoCRC_gusv
byte[15] byte[16] PNInfoCRC_gusv (this really is double mentionned in xlsx...)
*/
if(*mSerialDebug) {
DPRINT(DBG_INFO,F("APPFW_MINVER "));
DBGPRINTLN(String((p->packet[10] << 8) + p->packet[11]));
DBGPRINT(F("HWInfoAddr "));
DBGPRINTLN(String((p->packet[12] << 8) + p->packet[13]));
DBGPRINT(F("PNInfoCRC_gusv "));
DBGPRINTLN(String((p->packet[14] << 8) + p->packet[15]));
}
if(NULL != mCbPayload)
(mCbPayload)(InverterDevInform_Simple, q->iv);
q->iv->miMultiParts++;
}
}
inline void miGPFDecode(packet_t *p, const queue_s *q) {
record_t<> *rec = q->iv->getRecordStruct(InverterDevInform_Simple); // choose the record structure
rec->ts = q->ts;
rec->mqttSentStatus = MqttSentStatus::NEW_DATA;
q->iv->setValue(2, rec, (uint32_t) (((p->packet[10] << 8) | p->packet[11]))); //FLD_GRID_PROFILE_CODE
q->iv->setValue(3, rec, (uint32_t) (((p->packet[12] << 8) | p->packet[13]))); //FLD_GRID_PROFILE_VERSION
/* according to xlsx (different start byte -1!)
Polling Grid-connected Protection Parameter File Command - Receipt
byte[10] ST1 indicates the status of the grid-connected protection file. ST1=1 indicates the default grid-connected protection file, ST=2 indicates that the grid-connected protection file is configured and normal, ST=3 indicates that the grid-connected protection file cannot be recognized, ST=4 indicates that the grid-connected protection file is damaged
byte[11] byte[12] CountryStd variable indicates the national standard code of the grid-connected protection file
byte[13] byte[14] Version indicates the version of the grid-connected protection file
byte[15] byte[16]
*/
/*if(mSerialDebug) {
DPRINT(DBG_INFO,F("ST1 "));
DBGPRINTLN(String(p->packet[9]));
DPRINT(DBG_INFO,F("CountryStd "));
DBGPRINTLN(String((p->packet[10] << 8) + p->packet[11]));
DPRINT(DBG_INFO,F("Version "));
DBGPRINTLN(String((p->packet[12] << 8) + p->packet[13]));
}*/
q->iv->miMultiParts = 7; // indicate we are ready
}
inline void miDataDecode(packet_t *p, const queue_s *q) {
record_t<> *rec = q->iv->getRecordStruct(RealTimeRunData_Debug); // choose the parser
rec->ts = q->ts;
//mState = States::RESET;
if(q->iv->miMultiParts < 6)
q->iv->miMultiParts += 6;
uint8_t datachan = ( p->packet[0] == (MI_REQ_CH1 + ALL_FRAMES) || p->packet[0] == (MI_REQ_4CH + ALL_FRAMES) ) ? CH1 :
( p->packet[0] == (MI_REQ_CH2 + ALL_FRAMES) || p->packet[0] == (0x37 + ALL_FRAMES) ) ? CH2 :
p->packet[0] == (0x38 + ALL_FRAMES) ? CH3 :
CH4;
// count in RF_communication_protocol.xlsx is with offset = -1
q->iv->setValue(q->iv->getPosByChFld(datachan, FLD_UDC, rec), rec, (float)((p->packet[9] << 8) + p->packet[10])/10);
q->iv->setValue(q->iv->getPosByChFld(datachan, FLD_IDC, rec), rec, (float)((p->packet[11] << 8) + p->packet[12])/10);
q->iv->setValue(q->iv->getPosByChFld(0, FLD_UAC, rec), rec, (float)((p->packet[13] << 8) + p->packet[14])/10);
q->iv->setValue(q->iv->getPosByChFld(0, FLD_F, rec), rec, (float) ((p->packet[15] << 8) + p->packet[16])/100);
q->iv->setValue(q->iv->getPosByChFld(datachan, FLD_PDC, rec), rec, (float)((p->packet[17] << 8) + p->packet[18])/10);
q->iv->setValue(q->iv->getPosByChFld(datachan, FLD_YD, rec), rec, (float)((p->packet[19] << 8) + p->packet[20])/1);
q->iv->setValue(q->iv->getPosByChFld(0, FLD_T, rec), rec, (float) ((int16_t)(p->packet[21] << 8) + p->packet[22])/10);
q->iv->setValue(q->iv->getPosByChFld(0, FLD_IRR, rec), rec, (float) (calcIrradiation(q->iv, datachan)));
if (datachan == 1)
q->iv->rssi = p->rssi;
else if(q->iv->rssi > p->rssi)
q->iv->rssi = p->rssi;
if (p->packet[0] >= (MI_REQ_4CH + ALL_FRAMES) ) {
/*For MI1500:
if (MI1500) {
STAT = (uint8_t)(p->packet[25] );
FCNT = (uint8_t)(p->packet[26]);
FCODE = (uint8_t)(p->packet[27]);
}*/
miStsConsolidate(q, datachan, rec, p->packet[23], p->packet[24]);
if (p->packet[0] < (0x39 + ALL_FRAMES) ) {
miNextRequest((p->packet[0] - ALL_FRAMES + 1), q);
} else {
q->iv->miMultiParts = 7; // indicate we are ready
}
} else if((p->packet[0] == (MI_REQ_CH1 + ALL_FRAMES)) && (q->iv->type == INV_TYPE_2CH)) {
miNextRequest(MI_REQ_CH2, q);
q->iv->mIvRxCnt++; // statistics workaround...
} else // first data msg for 1ch, 2nd for 2ch
q->iv->miMultiParts += 6; // indicate we are ready
}
void miNextRequest(uint8_t cmd, const queue_s *q) {
mHeu.evalTxChQuality(q->iv, true, (q->attemptsMax - 1 - q->attempts), q->iv->curFrmCnt);
mHeu.getTxCh(q->iv);
q->iv->radioStatistics.ivSent++;
mFramesExpected = getFramesExpected(q);
q->iv->radio->setExpectedFrames(mFramesExpected);
q->iv->radio->sendCmdPacket(q->iv, cmd, 0x00, true);
q->iv->radio->mRadioWaitTime.startTimeMonitor(DURATION_TXFRAME + DURATION_ONEFRAME + duration_reserve[q->iv->ivRadioType]);
q->iv->miMultiParts = 0;
q->iv->mGotFragment = 0;
if(*mSerialDebug) {
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINT(F("next: ("));
DBGPRINT(String(q->attempts));
DBGPRINT(F(" attempts left): 0x"));
DBGHEXLN(cmd);
}
mIsRetransmit = true;
chgCmd(cmd);
//mState = States::WAIT;
}
void miRepeatRequest(const queue_s *q) {
setAttempt(); // if function is called, we got something, and we necessarily need more transmissions for MI types...
q->iv->radio->sendCmdPacket(q->iv, q->cmd, 0x00, true);
q->iv->radioStatistics.retransmits++;
q->iv->radio->mRadioWaitTime.startTimeMonitor(DURATION_TXFRAME + DURATION_ONEFRAME + duration_reserve[q->iv->ivRadioType]);
if(*mSerialDebug) {
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINT(F("resend request ("));
DBGPRINT(String(q->attempts));
DBGPRINT(F(" attempts left): 0x"));
DBGHEXLN(q->cmd);
}
//mIsRetransmit = false;
}
void miStsConsolidate(const queue_s *q, uint8_t stschan, record_t<> *rec, uint8_t uState, uint8_t uEnum, uint8_t lState = 0, uint8_t lEnum = 0) {
//uint8_t status = (p->packet[11] << 8) + p->packet[12];
uint16_t statusMi = 3; // regular status for MI, change to 1 later?
if ( uState == 2 ) {
statusMi = 5050 + stschan; //first approach, needs review!
if (lState)
statusMi += lState*10;
} else if ( uState > 3 ) {
statusMi = uState*1000 + uEnum*10;
if (lState)
statusMi += lState*100; //needs review, esp. for 4ch-8310 state!
//if (lEnum)
statusMi += lEnum;
if (uEnum < 6) {
statusMi += stschan;
}
if (statusMi == 8000)
statusMi = 8310; //trick?
}
uint16_t prntsts = (statusMi == 3) ? 1 : statusMi;
bool stsok = true;
bool changedStatus = false; //if true, raise alarms and send via mqtt (might affect single channel only)
uint8_t oldState = rec->record[q->iv->getPosByChFld(0, FLD_EVT, rec)];
if ( prntsts != oldState ) { // sth.'s changed?
stsok = false;
if( (!oldState) || (!q->iv->alarmCnt) ) { // initial zero value? => just write this channel to main state and raise changed flags
changedStatus = true;
q->iv->alarmCnt = 1; // minimum...
} else {
//sth is or was wrong?
if (q->iv->type == INV_TYPE_1CH) {
changedStatus = true;
if(q->iv->alarmCnt == 2) // we had sth. other than "producing" in the past
q->iv->lastAlarm[1].end = q->ts;
else { // copy old state and mark as ended
q->iv->lastAlarm[1] = alarm_t(q->iv->lastAlarm[0].code, q->iv->lastAlarm[0].start,q->ts);
q->iv->alarmCnt = 2;
}
} else if((prntsts != 1) || (q->iv->alarmCnt > 1) ) { // we had sth. other than "producing" in the past in at least one channel (2 and 4 ch types)
if (q->iv->alarmCnt == 1)
q->iv->alarmCnt = (q->iv->type == INV_TYPE_2CH) ? 5 : 9;
if(q->iv->lastAlarm[stschan].code != prntsts) { // changed?
changedStatus = true;
if(q->iv->lastAlarm[stschan].code) // copy old data and mark as ended (if any)
q->iv->lastAlarm[(stschan + (q->iv->type==INV_TYPE_2CH ? 2 : 4))] = alarm_t(q->iv->lastAlarm[stschan].code, q->iv->lastAlarm[stschan].start,q->ts);
q->iv->lastAlarm[stschan] = alarm_t(prntsts, q->ts,0);
}
if(changedStatus) {
for (uint8_t i = 1; i <= q->iv->channels; i++) { //start with 1
if (q->iv->lastAlarm[i].code == 1) {
stsok = true;
break;
}
}
}
}
}
}
if (!stsok) {
q->iv->setValue(q->iv->getPosByChFld(0, FLD_EVT, rec), rec, prntsts);
q->iv->lastAlarm[0] = alarm_t(prntsts, q->ts, 0);
}
if (changedStatus || !stsok) {
rec->ts = q->ts;
rec->mqttSentStatus = MqttSentStatus::NEW_DATA;
q->iv->alarmLastId = prntsts; //iv->alarmMesIndex;
if (NULL != mCbAlarm)
(mCbAlarm)(q->iv);
if(*mSerialDebug) {
DPRINT(DBG_WARN, F("New state on CH"));
DBGPRINT(String(stschan)); DBGPRINT(F(" ("));
DBGPRINT(String(prntsts)); DBGPRINT(F("): "));
DBGPRINTLN(q->iv->getAlarmStr(prntsts));
}
}
if (q->iv->alarmMesIndex < rec->record[q->iv->getPosByChFld(0, FLD_EVT, rec)]) {
q->iv->alarmMesIndex = rec->record[q->iv->getPosByChFld(0, FLD_EVT, rec)]; // seems there's no status per channel in 3rd gen. models?!?
if (*mSerialDebug) {
DPRINT_IVID(DBG_INFO, q->iv->id);
DBGPRINT(F("alarm ID incremented to "));
DBGPRINTLN(String(q->iv->alarmMesIndex));
}
}
if(!q->iv->miMultiParts)
q->iv->miMultiParts = 1; // indicate we got status info (1+2 ch types)
}
void miComplete(Inverter<> *iv) {
if (iv->mGetLossInterval >= AHOY_GET_LOSS_INTERVAL) { // initially mIvRxCnt = mIvTxCnt = 0
iv->mGetLossInterval = 1;
iv->radioStatistics.ivSent = iv->mIvRxCnt + iv->mDtuTxCnt; // iv->mIvRxCnt is the nr. of additional answer frames, default we expect one frame per request
iv->radioStatistics.ivLoss = iv->radioStatistics.ivSent - iv->mDtuRxCnt; // this is what we didn't receive
iv->radioStatistics.dtuLoss = iv->mIvTxCnt; // this is somehow the requests w/o answers in that periode
iv->radioStatistics.dtuSent = iv->mDtuTxCnt;
if (*mSerialDebug) {
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("DTU loss: ") +
String (iv->radioStatistics.ivLoss) + F("/") +
String (iv->radioStatistics.ivSent) + F(" frames for ") +
String (iv->radioStatistics.dtuSent) + F(" requests"));
if(iv->mAckCount) {
DBGPRINT(F(". ACKs: "));
DBGPRINTLN(String(iv->mAckCount));
iv->mAckCount = 0;
} else
DBGPRINTLN(F(""));
}
iv->mIvRxCnt = 0; // start new interval, iVRxCnt is abused to collect additional possible frames
iv->mIvTxCnt = 0; // start new interval, iVTxCnt is abused to collect nr. of unanswered requests
iv->mDtuRxCnt = 0; // start new interval
iv->mDtuTxCnt = 0; // start new interval
}
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
iv->setValue(iv->getPosByChFld(0, FLD_YD, rec), rec, calcYieldDayCh0(iv,0));
//preliminary AC calculation...
float ac_pow = 0;
if (iv->type == INV_TYPE_1CH) {
if ((!iv->lastAlarm[0].code) || (iv->lastAlarm[0].code == 1))
ac_pow += iv->getValue(iv->getPosByChFld(1, FLD_PDC, rec), rec);
} else {
for(uint8_t i = 1; i <= iv->channels; i++) {
if ((!iv->lastAlarm[i].code) || (iv->lastAlarm[i].code == 1))
ac_pow += iv->getValue(iv->getPosByChFld(i, FLD_PDC, rec), rec);
}
}
ac_pow = (int) (ac_pow*9.5);
iv->setValue(iv->getPosByChFld(0, FLD_PAC, rec), rec, (float) ac_pow/10);
iv->doCalculations();
rec->mqttSentStatus = MqttSentStatus::NEW_DATA;
// update status state-machine,
if (ac_pow)
iv->isProducing();
if(NULL != mCbPayload)
(mCbPayload)(RealTimeRunData_Debug, iv);
}
private:
enum class States : uint8_t {
RESET, START, WAIT, CHECK_FRAMES, CHECK_PACKAGE
};
typedef struct {
uint8_t buf[MAX_RF_PAYLOAD_SIZE];
uint8_t len;
int8_t rssi;
} frame_t;
private:
States mState = States::RESET;
uint32_t *mTimestamp = nullptr;
bool *mPrivacyMode = nullptr, *mSerialDebug = nullptr, *mPrintWholeTrace = nullptr;
TimeMonitor mWaitTime = TimeMonitor(0, true); // start as expired (due to code in RESET state)
std::array<frame_t, MAX_PAYLOAD_ENTRIES> mLocalBuf;
bool mFirstTry = false; // see, if we should do a second try
bool mCompleteRetry = false; // remember if we did request a complete retransmission
bool mIsRetransmit = false; // we already had waited one complete cycle
uint8_t mMaxFrameId = 0;
uint8_t mFramesExpected = 12; // 0x8c was highest last frame for alarm data
uint16_t mTimeout = 0; // calculating that once should be ok
std::array<uint8_t, MAX_BUFFER> mPayload;
payloadListenerType mCbPayload = NULL;
powerLimitAckListenerType mCbPwrAck = NULL;
alarmListenerType mCbAlarm = NULL;
Heuristic mHeu;
uint32_t mLastEmptyQueueMillis = 0;
bool mPrintSequenceDuration = false;
};
#endif /*__COMMUNICATION_H__*/