You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

158 lines
4.3 KiB

/*
CircularBuffer - An Arduino circular buffering library for arbitrary types.
Created by Ivo Pullens, Emmission, 2014 -- www.emmission.nl
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef CircularBuffer_h
#define CircularBuffer_h
#ifdef ESP8266
#define DISABLE_IRQ noInterrupts()
#define RESTORE_IRQ interrupts()
#else
#define DISABLE_IRQ \
uint8_t sreg = SREG; \
cli();
#define RESTORE_IRQ \
SREG = sreg;
#endif
template <class T> class CircularBuffer
{
public:
/** Constructor
* @param buffer Preallocated buffer of at least size records.
* @param size Number of records available in the buffer.
*/
CircularBuffer(T* buffer, const uint8_t size )
: m_size(size), m_buff(buffer)
{
clear();
}
/** Clear all entries in the circular buffer. */
void clear(void)
{
m_front = 0;
m_fill = 0;
}
/** Test if the circular buffer is empty */
inline bool empty(void) const
{
return !m_fill;
}
/** Return the number of records stored in the buffer */
inline uint8_t available(void) const
{
return m_fill;
}
/** Test if the circular buffer is full */
inline bool full(void) const
{
return m_fill == m_size;
}
/** Aquire record on front of the buffer, for writing.
* After filling the record, it has to be pushed to actually
* add it to the buffer.
* @return Pointer to record, or NULL when buffer is full.
*/
T* getFront(void) const
{
DISABLE_IRQ;
T* f = NULL;
if (!full())
f = get(m_front);
RESTORE_IRQ;
return f;
}
/** Push record to front of the buffer
* @param record Record to push. If record was aquired previously (using getFront) its
* data will not be copied as it is already present in the buffer.
* @return True, when record was pushed successfully.
*/
bool pushFront(T* record)
{
bool ok = false;
DISABLE_IRQ;
if (!full())
{
T* f = get(m_front);
if (f != record)
*f = *record;
m_front = (m_front+1) % m_size;
m_fill++;
ok = true;
}
RESTORE_IRQ;
return ok;
}
/** Aquire record on back of the buffer, for reading.
* After reading the record, it has to be pop'ed to actually
* remove it from the buffer.
* @return Pointer to record, or NULL when buffer is empty.
*/
T* getBack(void) const
{
T* b = NULL;
DISABLE_IRQ;
if (!empty())
b = get(back());
RESTORE_IRQ;
return b;
}
/** Remove record from back of the buffer.
* @return True, when record was pop'ed successfully.
*/
bool popBack(void)
{
bool ok = false;
DISABLE_IRQ;
if (!empty())
{
m_fill--;
ok = true;
}
RESTORE_IRQ;
return ok;
}
protected:
inline T * get(const uint8_t idx) const
{
return &(m_buff[idx]);
}
inline uint8_t back(void) const
{
return (m_front - m_fill + m_size) % m_size;
}
const uint8_t m_size; // Total number of records that can be stored in the buffer.
T* const m_buff; // Ptr to buffer holding all records.
volatile uint8_t m_front; // Index of front element (not pushed yet).
volatile uint8_t m_fill; // Amount of records currently pushed.
};
#endif // CircularBuffer_h