You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

467 lines
21 KiB

//-----------------------------------------------------------------------------
// 2024 Ahoy, https://github.com/lumpapu/ahoy
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/4.0/deed
//-----------------------------------------------------------------------------
#ifndef __HM_RADIO_H__
#define __HM_RADIO_H__
#include <RF24.h>
#include "SPI.h"
#include "radio.h"
#include "../config/config.h"
#if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL)
#include "nrfHal.h"
#endif
#define SPI_SPEED 1000000
#define RF_CHANNELS 5
const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"};
#define TX_REQ_DREDCONTROL 0x50
#define DRED_A5 0xa5
#define DRED_5A 0x5a
#define DRED_AA 0xaa
#define DRED_55 0x55
//-----------------------------------------------------------------------------
// HM Radio class
//-----------------------------------------------------------------------------
template <uint8_t IRQ_PIN = DEF_NRF_IRQ_PIN, uint8_t CE_PIN = DEF_NRF_CE_PIN, uint8_t CS_PIN = DEF_NRF_CS_PIN, uint8_t AMP_PWR = RF24_PA_LOW, uint8_t SCLK_PIN = DEF_NRF_SCLK_PIN, uint8_t MOSI_PIN = DEF_NRF_MOSI_PIN, uint8_t MISO_PIN = DEF_NRF_MISO_PIN, uint32_t DTU_SN = 0x81001765>
class HmRadio : public Radio {
public:
HmRadio() {
mDtuSn = DTU_SN;
mIrqRcvd = false;
#if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL)
//mNrf24.reset(new RF24());
#else
mNrf24.reset(new RF24(CE_PIN, CS_PIN, SPI_SPEED));
#endif
}
~HmRadio() {}
void setup(bool *serialDebug, bool *privacyMode, bool *printWholeTrace, uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN, uint8_t sclk = SCLK_PIN, uint8_t mosi = MOSI_PIN, uint8_t miso = MISO_PIN) {
DPRINTLN(DBG_VERBOSE, F("hmRadio.h:setup"));
pinMode(irq, INPUT_PULLUP);
mSerialDebug = serialDebug;
mPrivacyMode = privacyMode;
mPrintWholeTrace = printWholeTrace;
generateDtuSn();
DTU_RADIO_ID = ((uint64_t)(((mDtuSn >> 24) & 0xFF) | ((mDtuSn >> 8) & 0xFF00) | ((mDtuSn << 8) & 0xFF0000) | ((mDtuSn << 24) & 0xFF000000)) << 8) | 0x01;
#ifdef ESP32
#if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL)
mNrfHal.init(mosi, miso, sclk, cs, ce, SPI_SPEED);
mNrf24.reset(new RF24(&mNrfHal));
#else
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
mSpi.reset(new SPIClass(HSPI));
#else
mSpi.reset(new SPIClass(VSPI));
#endif
mSpi->begin(sclk, miso, mosi, cs);
#endif
#else
//the old ESP82xx cannot freely place their SPI pins
mSpi.reset(new SPIClass());
mSpi->begin();
#endif
#if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL)
mNrf24->begin();
#else
mNrf24->begin(mSpi.get(), ce, cs);
#endif
mNrf24->setRetries(3, 9); // wait 3*250 = 750us, 16 * 250us -> 4000us = 4ms
mNrf24->setDataRate(RF24_250KBPS);
//mNrf24->setAutoAck(true); // enabled by default
//mNrf24->enableDynamicAck();
mNrf24->enableDynamicPayloads();
mNrf24->setCRCLength(RF24_CRC_16);
mNrf24->setAddressWidth(5);
mNrf24->openReadingPipe(1, reinterpret_cast<uint8_t*>(&DTU_RADIO_ID));
mNrf24->maskIRQ(false, false, false); // enable all receiving interrupts
mNrf24->setPALevel(1); // low is default
if(mNrf24->isChipConnected()) {
DPRINTLN(DBG_INFO, F("Radio Config:"));
mNrf24->printPrettyDetails();
DPRINT(DBG_INFO, F("DTU_SN: "));
DBGPRINTLN(String(mDtuSn, HEX));
} else
DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
}
// returns true if communication is active
bool loop(void) {
if (!mIrqRcvd && !mNRFisInRX)
return false; // first quick check => nothing to do at all here
if(NULL == mLastIv) // prevent reading on NULL object!
return false;
if(!mIrqRcvd) { // no news from nRF, check timers
if ((millis() - mTimeslotStart) < innerLoopTimeout)
return true; // nothing to do, still waiting
if (mRadioWaitTime.isTimeout()) { // timeout reached!
mNRFisInRX = false;
rx_ready = false;
return false;
}
// otherwise switch to next RX channel
mTimeslotStart = millis();
if(!mNRFloopChannels && ((mTimeslotStart - mLastIrqTime) > (DURATION_TXFRAME))) //(DURATION_TXFRAME+DURATION_ONEFRAME)))
mNRFloopChannels = true;
mRxPendular = !mRxPendular;
innerLoopTimeout = DURATION_LISTEN_MIN;
if(mNRFloopChannels)
tempRxChIdx = (tempRxChIdx + 4) % RF_CHANNELS;
else
tempRxChIdx = (mRxChIdx + mRxPendular*4) % RF_CHANNELS;
mNrf24->setChannel(mRfChLst[tempRxChIdx]);
isRxInit = false;
return true; // communicating, but changed RX channel
} else {
// here we got news from the nRF
mIrqRcvd = false;
mNrf24->whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
mLastIrqTime = millis();
if(tx_ok || tx_fail) { // tx related interrupt, basically we should start listening
mNrf24->flush_tx(); // empty TX FIFO
//mTxSetupTime = millis() - mMillis;
if(mNRFisInRX) {
DPRINTLN(DBG_WARN, F("unexpected tx irq!"));
return false;
}
mNRFisInRX = true;
if(tx_ok)
mLastIv->mAckCount++;
//#ifdef DYNAMIC_OFFSET
mRxChIdx = (mTxChIdx + mLastIv->rxOffset) % RF_CHANNELS;
/*#else
mRxChIdx = (mTxChIdx + 2) % RF_CHANNELS;
#endif*/
mNrf24->setChannel(mRfChLst[mRxChIdx]);
mNrf24->startListening();
mTimeslotStart = millis();
tempRxChIdx = mRxChIdx; // might be better to start off with one channel less?
mRxPendular = false;
mNRFloopChannels = (mLastIv->ivGen == IV_MI);
//innerLoopTimeout = mLastIv->ivGen != IV_MI ? DURATION_TXFRAME : DURATION_ONEFRAME;
//innerLoopTimeout = mLastIv->ivGen != IV_MI ? DURATION_LISTEN_MIN : 4;
//innerLoopTimeout = (mLastIv->mIsSingleframeReq || mLastIv->ivGen == IV_MI) ? DURATION_LISTEN_MIN : DURATION_TXFRAME;
innerLoopTimeout = DURATION_LISTEN_MIN;
}
if(rx_ready) {
if (getReceived()) { // check what we got, returns true for last package or success for single frame request
mNRFisInRX = false;
rx_ready = false;
mRadioWaitTime.startTimeMonitor(DURATION_PAUSE_LASTFR); // let the inverter first end his transmissions
mNrf24->stopListening();
return false;
} else {
innerLoopTimeout = DURATION_LISTEN_MIN;
mTimeslotStart = millis();
if (!mNRFloopChannels) {
if (isRxInit) {
isRxInit = false;
tempRxChIdx = (mRxChIdx + 4) % RF_CHANNELS;
mNrf24->setChannel(mRfChLst[tempRxChIdx]);
} else
mRxChIdx = tempRxChIdx;
}
return true;
}
rx_ready = false; // reset
return mNRFisInRX;
}
}
return false;
}
bool isChipConnected(void) const {
return mNrf24->isChipConnected();
}
void sendControlPacket(Inverter<> *iv, uint8_t cmd, uint16_t *data, bool isRetransmit) {
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("sendControlPacket cmd: "));
DBGHEXLN(cmd);
initPacket(iv->radioId.u64, TX_REQ_DEVCONTROL, SINGLE_FRAME);
uint8_t cnt = 10;
if (IV_MI != iv->ivGen) {
mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor
mTxBuf[cnt++] = 0x00;
if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet
mTxBuf[cnt++] = (data[0] >> 8) & 0xff; // power limit, multiplied by 10 (because of fraction)
mTxBuf[cnt++] = (data[0] ) & 0xff; // power limit
mTxBuf[cnt++] = (data[1] >> 8) & 0xff; // setting for persistens handlings
mTxBuf[cnt++] = (data[1] ) & 0xff; // setting for persistens handling
}
} else { //MI 2nd gen. specific
uint16_t powerMax = ((iv->powerLimit[1] == RelativNonPersistent) ? 0 : iv->getMaxPower());
switch (cmd) {
case Restart:
case TurnOn:
mTxBuf[9] = DRED_55;
mTxBuf[10] = DRED_AA;
break;
case TurnOff:
mTxBuf[9] = DRED_AA;
mTxBuf[10] = DRED_55;
break;
case ActivePowerContr:
if (data[1]<256) { // non persistent
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_5A;
//Testing only! Original NRF24_DTUMIesp.ino code #L612-L613:
//UsrData[0]=0x5A;UsrData[1]=0x5A;UsrData[2]=100;//0x0a;// 10% limit
//UsrData[3]=((Limit*10) >> 8) & 0xFF; UsrData[4]= (Limit*10) & 0xFF; //WR needs 1 dec= zB 100.1 W
if (!data[1]) { // AbsolutNonPersistent
mTxBuf[++cnt] = 100; //10% limit, seems to be necessary to send sth. at all, but for MI-1500 this has no effect
//works (if ever!) only for absulute power limits!
mTxBuf[++cnt] = ((data[0] * 10) >> 8) & 0xff; // power limit in W
mTxBuf[++cnt] = ((data[0] * 10) ) & 0xff; // power limit in W
} else if (powerMax) { //relative, but 4ch-MI (if ever) only accepts absolute values
mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10?
mTxBuf[++cnt] = ((data[0] * 10 * powerMax) >> 8) & 0xff; // power limit
mTxBuf[++cnt] = ((data[0] * 10 * powerMax) ) & 0xff; // power limit
} else { // might work for 1/2ch MI (if ever)
mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10?
}
} else { // persistent power limit needs to be translated in DRED command (?)
/* DRED instruction
Order Function
0x55AA Boot without DRM restrictions
0xA5A5 DRM0 shutdown
0x5A5A DRM5 power limit 0%
0xAA55 DRM6 power limit 50%
0x5A55 DRM8 unlimited power operation
*/
mTxBuf[0] = TX_REQ_DREDCONTROL;
if (data[1] == 256UL) { // AbsolutPersistent
if (data[0] == 0 && !powerMax) {
mTxBuf[9] = DRED_A5;
mTxBuf[10] = DRED_A5;
} else if (data[0] == 0 || !powerMax || data[0] < powerMax/4 ) {
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_5A;
} else if (data[0] <= powerMax/4*3) {
mTxBuf[9] = DRED_AA;
mTxBuf[10] = DRED_55;
} else if (data[0] <= powerMax) {
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_55;
} else if (data[0] > powerMax*2) {
mTxBuf[9] = DRED_55;
mTxBuf[10] = DRED_AA;
}
}
}
break;
default:
return;
}
cnt++;
}
sendPacket(iv, cnt, isRetransmit, (IV_MI != iv->ivGen));
}
uint8_t getDataRate(void) const {
if(!mNrf24->isChipConnected())
return 3; // unknown
return mNrf24->getDataRate();
}
bool isPVariant(void) const {
return mNrf24->isPVariant();
}
private:
inline bool getReceived(void) {
bool isLastPackage = false;
bool isRetransmitAnswer = false;
rx_ready = false; // reset for ACK case
while(mNrf24->available()) {
uint8_t len = mNrf24->getDynamicPayloadSize(); // payload size > 32 -> corrupt payload
if (len > 0) {
packet_t p;
p.ch = mRfChLst[tempRxChIdx];
p.len = (len > MAX_RF_PAYLOAD_SIZE) ? MAX_RF_PAYLOAD_SIZE : len;
p.rssi = mNrf24->testRPD() ? -64 : -75;
p.millis = millis() - mMillis;
mNrf24->read(p.packet, p.len);
if (p.packet[0] != 0x00) {
if(!checkIvSerial(p.packet, mLastIv)) {
DPRINT(DBG_WARN, "RX other inverter ");
if(!*mPrivacyMode)
ah::dumpBuf(p.packet, p.len);
} else {
mLastIv->mGotFragment = true;
mBufCtrl.push(p);
if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command
isLastPackage = (p.packet[9] > ALL_FRAMES); // > ALL_FRAMES indicates last packet received
if(mLastIv->mIsSingleframeReq) // we only expect one frame here...
isRetransmitAnswer = true;
if(isLastPackage)
setExpectedFrames(p.packet[9] - ALL_FRAMES);
#ifdef DYNAMIC_OFFSET
if(p.packet[9] == 1 && p.millis < DURATION_ONEFRAME)
mLastIv->rxOffset = (RF_CHANNELS + mTxChIdx - tempRxChIdx + 1) % RF_CHANNELS;
else if(mNRFloopChannels && mLastIv->rxOffset > RF_CHANNELS) { // unsure setting?
mLastIv->rxOffset = (RF_CHANNELS + mTxChIdx - tempRxChIdx + (isLastPackage ? mFramesExpected : p.packet[9])); // make clear it's not sure, start with one more offset
mNRFloopChannels = false;
}
#endif
}
if(IV_MI == mLastIv->ivGen) {
if (p.packet[0] == (0x0f + ALL_FRAMES)) // response from MI get information command
isLastPackage = (p.packet[9] > 0x10); // > 0x10 indicates last packet received
else if ((p.packet[0] != 0x88) && (p.packet[0] != 0x92)) // ignore MI status messages //#0 was p.packet[0] != 0x00 &&
isLastPackage = true; // response from dev control command
#ifdef DYNAMIC_OFFSET
if(p.packet[9] == 0x00 && p.millis < DURATION_ONEFRAME)
mLastIv->rxOffset = (RF_CHANNELS + mTxChIdx - tempRxChIdx - 1) % RF_CHANNELS;
#endif
}
rx_ready = true; //reset in case we first read messages from other inverter or ACK zero payloads
}
}
}
yield();
}
if(isLastPackage)
mLastIv->mGotLastMsg = true;
return isLastPackage || isRetransmitAnswer;
}
void sendPacket(Inverter<> *iv, uint8_t len, bool isRetransmit, bool appendCrc16=true) {
mNrf24->setPALevel(iv->config->powerLevel & 0x03);
updateCrcs(&len, appendCrc16);
// set TX and RX channels
mTxChIdx = iv->heuristics.txRfChId;
if(*mSerialDebug) {
/*if(!isRetransmit) {
DPRINT(DBG_INFO, "last tx setup: ");
DBGPRINT(String(mTxSetupTime));
DBGPRINTLN("ms");
}*/
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("TX "));
DBGPRINT(String(len));
DBGPRINT(" CH");
if(mTxChIdx == 0)
DBGPRINT("0");
DBGPRINT(String(mRfChLst[mTxChIdx]));
DBGPRINT(F(", "));
DBGPRINT(String(mTxRetriesNext));
//DBGPRINT(F(" retries | "));
//#ifdef DYNAMIC_OFFSET
DBGPRINT(F(" ret., rx offset: "));
DBGPRINT(String(iv->rxOffset));
DBGPRINT(F(" | "));
/*#else
DBGPRINT(F(" ret. | "));
#endif*/
if(*mPrintWholeTrace) {
if(*mPrivacyMode)
ah::dumpBuf(mTxBuf, len, 1, 4);
else
ah::dumpBuf(mTxBuf, len);
} else {
DHEX(mTxBuf[0]);
DBGPRINT(F(" "));
DHEX(mTxBuf[10]);
DBGPRINT(F(" "));
DBGHEXLN(mTxBuf[9]);
}
}
mNrf24->stopListening();
mNrf24->flush_rx();
if(!isRetransmit && mTxRetries != mTxRetriesNext) {
mNrf24->setRetries(3, mTxRetriesNext);
mTxRetries = mTxRetriesNext;
}
mNrf24->setChannel(mRfChLst[mTxChIdx]);
mNrf24->openWritingPipe(reinterpret_cast<uint8_t*>(&iv->radioId.u64));
mNrf24->startWrite(mTxBuf, len, false); // false = request ACK response
mMillis = millis();
mLastIv = iv;
iv->mDtuTxCnt++;
mNRFisInRX = false;
}
uint64_t getIvId(Inverter<> *iv) const {
return iv->radioId.u64;
}
uint8_t getIvGen(Inverter<> *iv) const {
return iv->ivGen;
}
inline bool checkIvSerial(uint8_t buf[], Inverter<> *iv) {
for(uint8_t i = 1; i < 5; i++) {
if(buf[i] != iv->radioId.b[i])
return false;
}
return true;
}
uint64_t DTU_RADIO_ID;
uint8_t mRfChLst[RF_CHANNELS] = {03, 23, 40, 61, 75}; // channel List:2403, 2423, 2440, 2461, 2475MHz
uint8_t mTxChIdx = 0;
uint8_t mRxChIdx = 0;
uint8_t tempRxChIdx = mRxChIdx;
bool mGotLastMsg = false;
uint32_t mMillis;
bool tx_ok, tx_fail, rx_ready = false;
unsigned long mTimeslotStart = 0;
unsigned long mLastIrqTime = 0;
bool mNRFloopChannels = false;
bool mNRFisInRX = false;
bool isRxInit = true;
bool mRxPendular = false;
uint32_t innerLoopTimeout = DURATION_LISTEN_MIN;
//uint8_t mTxSetupTime = 0;
uint8_t mTxRetries = 15; // memorize last setting for mNrf24->setRetries(3, 15);
std::unique_ptr<SPIClass> mSpi;
std::unique_ptr<RF24> mNrf24;
#if defined(CONFIG_IDF_TARGET_ESP32S3) && defined(SPI_HAL)
nrfHal mNrfHal;
#endif
Inverter<> *mLastIv = NULL;
};
#endif /*__HM_RADIO_H__*/