You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

659 lines
25 KiB

//-----------------------------------------------------------------------------
// 2022 Ahoy, https://ahoydtu.de
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
// https://bert.emelis.net/espMqttClient/
#ifndef __PUB_MQTT_H__
#define __PUB_MQTT_H__
#ifdef ESP8266
#include <ESP8266WiFi.h>
#elif defined(ESP32)
#include <WiFi.h>
#endif
#include "../utils/dbg.h"
#include "../utils/ahoyTimer.h"
#include "../config/config.h"
#include <espMqttClient.h>
#include <ArduinoJson.h>
#include "../defines.h"
#include "../hm/hmSystem.h"
#define QOS_0 0
typedef std::function<void(JsonObject)> subscriptionCb;
struct alarm_t {
uint16_t code;
uint32_t start;
uint32_t end;
alarm_t(uint16_t c, uint32_t s, uint32_t e) : code(c), start(s), end(e) {}
};
template<class HMSYSTEM>
class PubMqtt {
public:
PubMqtt() {
mRxCnt = 0;
mTxCnt = 0;
mSubscriptionCb = NULL;
mIvAvail = true;
memset(mLastIvState, 0xff, MAX_NUM_INVERTERS);
}
~PubMqtt() { }
void setup(cfgMqtt_t *cfg_mqtt, const char *devName, const char *version, HMSYSTEM *sys, uint32_t *utcTs) {
mCfgMqtt = cfg_mqtt;
mDevName = devName;
mVersion = version;
mSys = sys;
mUtcTimestamp = utcTs;
mIntervalTimeout = 1;
mReconnectRequest = false;
snprintf(mLwtTopic, MQTT_TOPIC_LEN + 5, "%s/mqtt", mCfgMqtt->topic);
if((strlen(mCfgMqtt->user) > 0) && (strlen(mCfgMqtt->pwd) > 0))
mClient.setCredentials(mCfgMqtt->user, mCfgMqtt->pwd);
mClient.setClientId(mDevName); // TODO: add mac?
mClient.setServer(mCfgMqtt->broker, mCfgMqtt->port);
mClient.setWill(mLwtTopic, QOS_0, true, mLwtOffline);
mClient.onConnect(std::bind(&PubMqtt::onConnect, this, std::placeholders::_1));
mClient.onDisconnect(std::bind(&PubMqtt::onDisconnect, this, std::placeholders::_1));
mClient.onMessage(std::bind(&PubMqtt::onMessage, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, std::placeholders::_4, std::placeholders::_5, std::placeholders::_6));
}
void loop() {
#if defined(ESP8266)
mClient.loop();
#endif
}
void connect() {
mReconnectRequest = false;
if(!mClient.connected())
mClient.connect();
}
void tickerSecond() {
if(0 == mCfgMqtt->interval) // no fixed interval, publish once new data were received (from inverter)
sendIvData();
else { // send mqtt data in a fixed interval
if(--mIntervalTimeout == 0) {
mIntervalTimeout = mCfgMqtt->interval;
mSendList.push(RealTimeRunData_Debug);
sendIvData();
}
}
if(mReconnectRequest) {
connect();
return;
}
}
void tickerMinute() {
processIvStatus();
char val[12];
snprintf(val, 12, "%ld", millis() / 1000);
publish("uptime", val);
publish("wifi_rssi", String(WiFi.RSSI()).c_str());
publish("free_heap", String(ESP.getFreeHeap()).c_str());
}
bool tickerSun(uint32_t sunrise, uint32_t sunset, uint32_t offs, bool disNightCom) {
if (!mClient.connected())
return false;
publish("sunrise", String(sunrise).c_str(), true);
publish("sunset", String(sunset).c_str(), true);
publish("comm_start", String(sunrise - offs).c_str(), true);
publish("comm_stop", String(sunset + offs).c_str(), true);
publish("dis_night_comm", ((disNightCom) ? "true" : "false"), true);
return true;
}
bool tickerComm(bool disabled) {
if (!mClient.connected())
return false;
publish("comm_disabled", ((disabled) ? "true" : "false"), true);
publish("comm_dis_ts", String(*mUtcTimestamp).c_str(), true);
if(disabled && (mCfgMqtt->rstValsCommStop))
zeroAllInverters();
return true;
}
void tickerMidnight() {
Inverter<> *iv;
record_t<> *rec;
char topic[7 + MQTT_TOPIC_LEN], val[4];
// set YieldDay to zero
for (uint8_t id = 0; id < mSys->getNumInverters(); id++) {
iv = mSys->getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
rec = iv->getRecordStruct(RealTimeRunData_Debug);
uint8_t pos = iv->getPosByChFld(CH0, FLD_YD, rec);
iv->setValue(pos, rec, 0.0f);
snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/ch0/%s", iv->config->name, fields[FLD_YD]);
snprintf(val, 4, "0.0");
publish(topic, val, true);
}
}
void payloadEventListener(uint8_t cmd) {
if(mClient.connected()) { // prevent overflow if MQTT broker is not reachable but set
if((0 == mCfgMqtt->interval) || (RealTimeRunData_Debug != cmd)) // no interval or no live data
mSendList.push(cmd);
}
}
void alarmEventListener(uint16_t code, uint32_t start, uint32_t endTime) {
if(mClient.connected()) {
mAlarmList.push(alarm_t(code, start, endTime));
}
}
void publish(const char *subTopic, const char *payload, bool retained = false, bool addTopic = true) {
if(!mClient.connected())
return;
String topic = "";
if(addTopic)
topic = String(mCfgMqtt->topic) + "/";
topic += String(subTopic);
do {
if(0 != mClient.publish(topic.c_str(), QOS_0, retained, payload))
break;
if(!mClient.connected())
break;
#if defined(ESP8266)
mClient.loop();
#endif
yield();
} while(1);
mTxCnt++;
}
void subscribe(const char *subTopic) {
char topic[MQTT_TOPIC_LEN + 20];
snprintf(topic, (MQTT_TOPIC_LEN + 20), "%s/%s", mCfgMqtt->topic, subTopic);
mClient.subscribe(topic, QOS_0);
}
void setSubscriptionCb(subscriptionCb cb) {
mSubscriptionCb = cb;
}
inline bool isConnected() {
return mClient.connected();
}
inline uint32_t getTxCnt(void) {
return mTxCnt;
}
inline uint32_t getRxCnt(void) {
return mRxCnt;
}
void sendDiscoveryConfig(void) {
DPRINTLN(DBG_VERBOSE, F("sendMqttDiscoveryConfig"));
char topic[64], name[32], uniq_id[32];
DynamicJsonDocument doc(256);
uint8_t fldTotal[4] = {FLD_PAC, FLD_YT, FLD_YD, FLD_PDC};
const char* unitTotal[4] = {"W", "kWh", "Wh", "W"};
String node_mac = WiFi.macAddress().substring(12,14)+ WiFi.macAddress().substring(15,17);
String node_id = "AHOY_DTU_" + node_mac;
bool total = false;
for (uint8_t id = 0; id < mSys->getNumInverters() ; id++) {
doc.clear();
if (total) // total become true at iv = NULL next cycle
continue;
Inverter<> *iv = mSys->getInverterByPos(id);
if (NULL == iv)
total = true;
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
if (!total) {
doc[F("name")] = iv->config->name;
doc[F("ids")] = String(iv->config->serial.u64, HEX);
doc[F("mdl")] = iv->config->name;
}
else {
doc[F("name")] = node_id;
doc[F("ids")] = node_id;
doc[F("mdl")] = node_id;
}
doc[F("cu")] = F("http://") + String(WiFi.localIP().toString());
doc[F("mf")] = F("Hoymiles");
JsonObject deviceObj = doc.as<JsonObject>(); // deviceObj is only pointer!?
for (uint8_t i = 0; i < ((!total) ? (rec->length) : (4) ) ; i++) {
const char *devCls, *stateCls;
if (!total) {
if (rec->assign[i].ch == CH0)
snprintf(name, 32, "%s %s", iv->config->name, iv->getFieldName(i, rec));
else
snprintf(name, 32, "%s CH%d %s", iv->config->name, rec->assign[i].ch, iv->getFieldName(i, rec));
snprintf(topic, 64, "/ch%d/%s", rec->assign[i].ch, iv->getFieldName(i, rec));
snprintf(uniq_id, 32, "ch%d_%s", rec->assign[i].ch, iv->getFieldName(i, rec));
devCls = getFieldDeviceClass(rec->assign[i].fieldId);
stateCls = getFieldStateClass(rec->assign[i].fieldId);
}
else { // total values
snprintf(name, 32, "Total %s", fields[fldTotal[i]]);
snprintf(topic, 64, "/%s", fields[fldTotal[i]]);
snprintf(uniq_id, 32, "total_%s", fields[fldTotal[i]]);
devCls = getFieldDeviceClass(fldTotal[i]);
stateCls = getFieldStateClass(fldTotal[i]);
}
DynamicJsonDocument doc2(512);
doc2[F("name")] = name;
doc2[F("stat_t")] = String(mCfgMqtt->topic) + "/" + ((!total) ? String(iv->config->name) : "total" ) + String(topic);
doc2[F("unit_of_meas")] = ((!total) ? (iv->getUnit(i,rec)) : (unitTotal[i]));
doc2[F("uniq_id")] = ((!total) ? (String(iv->config->serial.u64, HEX)) : (node_id)) + "_" + uniq_id;
doc2[F("dev")] = deviceObj;
if (!(total && String(stateCls) == String("total_increasing")))
doc2[F("exp_aft")] = MQTT_INTERVAL + 5; // add 5 sec if connection is bad or ESP too slow @TODO: stimmt das wirklich als expire!?
if (devCls != NULL)
doc2[F("dev_cla")] = String(devCls);
if (stateCls != NULL)
doc2[F("stat_cla")] = String(stateCls);
if (!total)
snprintf(topic, 64, "%s/sensor/%s/ch%d_%s/config", MQTT_DISCOVERY_PREFIX, iv->config->name, rec->assign[i].ch, iv->getFieldName(i, rec));
else // total values
snprintf(topic, 64, "%s/sensor/%s/total_%s/config", MQTT_DISCOVERY_PREFIX, node_id.c_str(),fields[fldTotal[i]]);
size_t size = measureJson(doc2) + 1;
char *buf = new char[size];
memset(buf, 0, size);
serializeJson(doc2, buf, size);
publish(topic, buf, true, false);
delete[] buf;
}
yield();
}
}
void setPowerLimitAck(Inverter<> *iv) {
if (NULL != iv) {
char topic[7 + MQTT_TOPIC_LEN];
snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/ack_pwr_limit", iv->config->name);
publish(topic, "true", true);
}
}
private:
void onConnect(bool sessionPreset) {
DPRINTLN(DBG_INFO, F("MQTT connected"));
publish("version", mVersion, true);
publish("device", mDevName, true);
publish("ip_addr", WiFi.localIP().toString().c_str(), true);
tickerMinute();
publish(mLwtTopic, mLwtOnline, true, false);
subscribe("ctrl/#");
subscribe("setup/#");
//subscribe("status/#");
}
void onDisconnect(espMqttClientTypes::DisconnectReason reason) {
DPRINT(DBG_INFO, F("MQTT disconnected, reason: "));
switch (reason) {
case espMqttClientTypes::DisconnectReason::TCP_DISCONNECTED:
DBGPRINTLN(F("TCP disconnect"));
mReconnectRequest = true;
break;
case espMqttClientTypes::DisconnectReason::MQTT_UNACCEPTABLE_PROTOCOL_VERSION:
DBGPRINTLN(F("wrong protocol version"));
break;
case espMqttClientTypes::DisconnectReason::MQTT_IDENTIFIER_REJECTED:
DBGPRINTLN(F("identifier rejected"));
break;
case espMqttClientTypes::DisconnectReason::MQTT_SERVER_UNAVAILABLE:
DBGPRINTLN(F("broker unavailable"));
break;
case espMqttClientTypes::DisconnectReason::MQTT_MALFORMED_CREDENTIALS:
DBGPRINTLN(F("malformed credentials"));
break;
case espMqttClientTypes::DisconnectReason::MQTT_NOT_AUTHORIZED:
DBGPRINTLN(F("not authorized"));
break;
default:
DBGPRINTLN(F("unknown"));
}
}
void onMessage(const espMqttClientTypes::MessageProperties& properties, const char* topic, const uint8_t* payload, size_t len, size_t index, size_t total) {
DPRINTLN(DBG_INFO, F("MQTT got topic: ") + String(topic));
if(NULL == mSubscriptionCb)
return;
char *tpc = new char[strlen(topic) + 1];
uint8_t cnt = 0;
DynamicJsonDocument json(128);
JsonObject root = json.to<JsonObject>();
strncpy(tpc, topic, strlen(topic) + 1);
if(len > 0) {
char *pyld = new char[len + 1];
strncpy(pyld, (const char*)payload, len);
pyld[len] = '\0';
root["val"] = atoi(pyld);
delete[] pyld;
}
char *p = strtok(tpc, "/");
p = strtok(NULL, "/"); // remove mCfgMqtt->topic
while(NULL != p) {
if(0 == cnt) {
if(0 == strncmp(p, "ctrl", 4)) {
if(NULL != (p = strtok(NULL, "/"))) {
root[F("path")] = F("ctrl");
root[F("cmd")] = p;
}
} else if(0 == strncmp(p, "setup", 5)) {
if(NULL != (p = strtok(NULL, "/"))) {
root[F("path")] = F("setup");
root[F("cmd")] = p;
}
} else if(0 == strncmp(p, "status", 6)) {
if(NULL != (p = strtok(NULL, "/"))) {
root[F("path")] = F("status");
root[F("cmd")] = p;
}
}
}
else if(1 == cnt) {
root[F("id")] = atoi(p);
}
p = strtok(NULL, "/");
cnt++;
}
delete[] tpc;
/*char out[128];
serializeJson(root, out, 128);
DPRINTLN(DBG_INFO, "json: " + String(out));*/
if(NULL != mSubscriptionCb)
(mSubscriptionCb)(root);
mRxCnt++;
}
const char *getFieldDeviceClass(uint8_t fieldId) {
uint8_t pos = 0;
for (; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) {
if (deviceFieldAssignment[pos].fieldId == fieldId)
break;
}
return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : deviceClasses[deviceFieldAssignment[pos].deviceClsId];
}
const char *getFieldStateClass(uint8_t fieldId) {
uint8_t pos = 0;
for (; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) {
if (deviceFieldAssignment[pos].fieldId == fieldId)
break;
}
return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : stateClasses[deviceFieldAssignment[pos].stateClsId];
}
bool processIvStatus() {
// returns true if all inverters are available
bool allAvail = true;
bool first = true;
bool changed = false;
char topic[7 + MQTT_TOPIC_LEN], val[40];
Inverter<> *iv;
record_t<> *rec;
bool totalComplete = true;
for (uint8_t id = 0; id < mSys->getNumInverters(); id++) {
iv = mSys->getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
rec = iv->getRecordStruct(RealTimeRunData_Debug);
if(first)
mIvAvail = false;
first = false;
// inverter status
uint8_t status = MQTT_STATUS_AVAIL_PROD;
if ((!iv->isAvailable(*mUtcTimestamp)) || (!iv->config->enabled)) {
status = MQTT_STATUS_NOT_AVAIL_NOT_PROD;
if(iv->config->enabled) { // only change all-avail if inverter is enabled!
totalComplete = false;
allAvail = false;
}
}
else {
mIvAvail = true;
if (!iv->isProducing(*mUtcTimestamp)) {
if (MQTT_STATUS_AVAIL_PROD == status)
status = MQTT_STATUS_AVAIL_NOT_PROD;
}
}
if(mLastIvState[id] != status) {
mLastIvState[id] = status;
changed = true;
if(mCfgMqtt->rstValsNotAvail)
zeroValues(iv);
snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/available", iv->config->name);
snprintf(val, 40, "%d", status);
publish(topic, val, true);
snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/last_success", iv->config->name);
snprintf(val, 40, "%d", iv->getLastTs(rec));
publish(topic, val, true);
}
}
if(changed) {
snprintf(val, 32, "%d", ((allAvail) ? MQTT_STATUS_ONLINE : ((mIvAvail) ? MQTT_STATUS_PARTIAL : MQTT_STATUS_OFFLINE)));
publish("status", val, true);
sendIvData(false); // false prevents loop of same function
}
return totalComplete;
}
void sendAlarmData() {
if(mAlarmList.empty())
return;
Inverter<> *iv = mSys->getInverterByPos(0, false);
while(!mAlarmList.empty()) {
alarm_t alarm = mAlarmList.front();
publish("alarm", iv->getAlarmStr(alarm.code).c_str());
publish("alarm_start", String(alarm.start).c_str());
publish("alarm_end", String(alarm.end).c_str());
mAlarmList.pop();
}
}
void sendIvData(bool sendTotals = true) {
if(mSendList.empty())
return;
char topic[7 + MQTT_TOPIC_LEN], val[40];
float total[4];
bool sendTotal = false;
while(!mSendList.empty()) {
memset(total, 0, sizeof(float) * 4);
for (uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
record_t<> *rec = iv->getRecordStruct(mSendList.front());
// data
//if(iv->isAvailable(*mUtcTimestamp, rec) || (0 != mCfgMqtt->interval)) { // is avail or fixed pulish interval was set
for (uint8_t i = 0; i < rec->length; i++) {
bool retained = false;
if (mSendList.front() == RealTimeRunData_Debug) {
switch (rec->assign[i].fieldId) {
case FLD_YT:
case FLD_YD:
retained = true;
break;
}
}
snprintf(topic, 32 + MAX_NAME_LENGTH, "%s/ch%d/%s", iv->config->name, rec->assign[i].ch, fields[rec->assign[i].fieldId]);
snprintf(val, 40, "%g", ah::round3(iv->getValue(i, rec)));
publish(topic, val, retained);
// calculate total values for RealTimeRunData_Debug
if (mSendList.front() == RealTimeRunData_Debug) {
if (CH0 == rec->assign[i].ch) {
switch (rec->assign[i].fieldId) {
case FLD_PAC:
total[0] += iv->getValue(i, rec);
break;
case FLD_YT:
total[1] += iv->getValue(i, rec);
break;
case FLD_YD:
total[2] += iv->getValue(i, rec);
break;
case FLD_PDC:
total[3] += iv->getValue(i, rec);
break;
}
}
sendTotal = true;
}
yield();
}
//}
}
mSendList.pop(); // remove from list once all inverters were processed
if(!sendTotals) // skip total value calculation
continue;
if ((true == sendTotal) && processIvStatus()) {
uint8_t fieldId;
for (uint8_t i = 0; i < 4; i++) {
switch (i) {
default:
case 0:
fieldId = FLD_PAC;
break;
case 1:
fieldId = FLD_YT;
break;
case 2:
fieldId = FLD_YD;
break;
case 3:
fieldId = FLD_PDC;
break;
}
snprintf(topic, 32 + MAX_NAME_LENGTH, "total/%s", fields[fieldId]);
snprintf(val, 40, "%g", ah::round3(total[i]));
publish(topic, val, true);
}
}
}
}
void zeroAllInverters() {
Inverter<> *iv;
// set values to zero, exept yields
for (uint8_t id = 0; id < mSys->getNumInverters(); id++) {
iv = mSys->getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
zeroValues(iv);
}
sendIvData();
}
void zeroValues(Inverter<> *iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
for(uint8_t ch = 0; ch <= iv->channels; ch++) {
uint8_t pos = 0;
uint8_t fld = 0;
while(0xff != pos) {
switch(fld) {
case FLD_YD:
case FLD_YT:
case FLD_FW_VERSION:
case FLD_FW_BUILD_YEAR:
case FLD_FW_BUILD_MONTH_DAY:
case FLD_FW_BUILD_HOUR_MINUTE:
case FLD_HW_ID:
case FLD_ACT_ACTIVE_PWR_LIMIT:
fld++;
continue;
break;
}
pos = iv->getPosByChFld(ch, fld, rec);
iv->setValue(pos, rec, 0.0f);
fld++;
}
}
mSendList.push(RealTimeRunData_Debug);
}
espMqttClient mClient;
cfgMqtt_t *mCfgMqtt;
#if defined(ESP8266)
WiFiEventHandler mHWifiCon, mHWifiDiscon;
#endif
HMSYSTEM *mSys;
uint32_t *mUtcTimestamp;
uint32_t mRxCnt, mTxCnt;
std::queue<uint8_t> mSendList;
std::queue<alarm_t> mAlarmList;
subscriptionCb mSubscriptionCb;
bool mIvAvail; // shows if at least one inverter is available
bool mReconnectRequest;
uint8_t mLastIvState[MAX_NUM_INVERTERS];
uint16_t mIntervalTimeout;
// last will topic and payload must be available trough lifetime of 'espMqttClient'
char mLwtTopic[MQTT_TOPIC_LEN+5];
const char* mLwtOnline = "connected";
const char* mLwtOffline = "not connected";
const char *mDevName, *mVersion;
};
#endif /*__PUB_MQTT_H__*/