You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

614 lines
21 KiB

//-----------------------------------------------------------------------------
// 2023 Ahoy, https://ahoydtu.de
// Creative Commons - https://creativecommons.org/licenses/by-nc-sa/4.0/deed
//-----------------------------------------------------------------------------
#include "app.h"
#include <ArduinoJson.h>
#include "utils/sun.h"
#include "plugins/SML_OBIS_Parser.h"
#ifndef min
#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif
//-----------------------------------------------------------------------------
app::app() : ah::Scheduler() {}
//-----------------------------------------------------------------------------
void app::setup() {
#ifdef AHOY_SML_OBIS_SUPPORT
/* Assumptions made:
Electricity meter sends SML telegrams via IR interface (9600,8,n,1) without being asked (typical behaviour).
An IR sensor is connected to the UART0 of AHOY DTU. Connected pins: GND-GND, 3V3-VCC, RX-RX, TX-TX.
*/
#ifdef ESP32
Serial.begin(9600, SERIAL_8N1, RX, -1);
#else
Serial.begin(9600, SERIAL_8N1, SERIAL_RX_ONLY);
#endif
#else
Serial.begin(115200);
#endif
while (!Serial)
yield();
ah::Scheduler::setup();
resetSystem();
mSettings.setup();
mSettings.getPtr(mConfig);
DPRINT(DBG_INFO, F("Settings valid: "));
if (mSettings.getValid())
DBGPRINTLN(F("true"));
else
DBGPRINTLN(F("false"));
mSys.setup(&mTimestamp);
mNrfRadio.setup (mConfig->nrf.amplifierPower, mConfig->nrf.pinIrq, mConfig->nrf.pinCe, mConfig->nrf.pinCs, mConfig->nrf.pinSclk, mConfig->nrf.pinMosi, mConfig->nrf.pinMiso);
mNrfRadio.enableDebug();
#if defined(AP_ONLY)
mInnerLoopCb = std::bind(&app::loopStandard, this);
#else
mInnerLoopCb = std::bind(&app::loopWifi, this);
#endif
mWifi.setup(mConfig, &mTimestamp, std::bind(&app::onWifi, this, std::placeholders::_1));
#if !defined(AP_ONLY)
everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL");
#endif
mSys.addInverters(&mConfig->inst);
mPayload.setup(this, &mSys, &mNrfRadio, &mStat, mConfig->nrf.maxRetransPerPyld, &mTimestamp);
mPayload.enableSerialDebug(mConfig->serial.debug);
mPayload.addPayloadListener(std::bind(&app::payloadEventListener, this, std::placeholders::_1));
mMiPayload.setup(this, &mSys, &mNrfRadio, &mStat, mConfig->nrf.maxRetransPerPyld, &mTimestamp);
mMiPayload.enableSerialDebug(mConfig->serial.debug);
mMiPayload.addPayloadListener(std::bind(&app::payloadEventListener, this, std::placeholders::_1));
// DBGPRINTLN("--- after payload");
// DBGPRINTLN(String(ESP.getFreeHeap()));
// DBGPRINTLN(String(ESP.getHeapFragmentation()));
// DBGPRINTLN(String(ESP.getMaxFreeBlockSize()));
if (!mNrfRadio.isChipConnected())
DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
// when WiFi is in client mode, then enable mqtt broker
#if !defined(AP_ONLY) && defined (AHOY_MQTT_SUPPORT)
mMqttEnabled = (mConfig->mqtt.broker[0] > 0);
if (mMqttEnabled) {
mMqtt.setup(&mConfig->mqtt, mConfig->sys.deviceName, mVersion, &mSys, &mTimestamp);
mMqtt.setSubscriptionCb(std::bind(&app::mqttSubRxCb, this, std::placeholders::_1));
mPayload.addAlarmListener(std::bind(&PubMqttType::alarmEventListener, &mMqtt, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3));
mMiPayload.addAlarmListener(std::bind(&PubMqttType::alarmEventListener, &mMqtt, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3));
}
#endif
setupLed();
mWeb.setup(this, &mSys, mConfig);
mWeb.setProtection(strlen(mConfig->sys.adminPwd) != 0);
mApi.setup(this, &mSys, &mNrfRadio, mWeb.getWebSrvPtr(), mConfig);
// Plugins
if (mConfig->plugin.display.type != 0)
mDisplay.setup(&mConfig->plugin.display, &mSys, &mTimestamp, mVersion);
mPubSerial.setup(mConfig, &mSys, &mTimestamp);
#ifdef AHOY_SML_OBIS_SUPPORT
sml_setup (this, &mTimestamp);
#endif
regularTickers();
// DBGPRINTLN("--- end setup");
// DBGPRINTLN(String(ESP.getFreeHeap()));
// DBGPRINTLN(String(ESP.getHeapFragmentation()));
// DBGPRINTLN(String(ESP.getMaxFreeBlockSize()));
}
//-----------------------------------------------------------------------------
void app::loop(void) {
mInnerLoopCb();
}
//-----------------------------------------------------------------------------
void app::loopStandard(void) {
if (!mNrfRadio.isTxPending ()) {
ah::Scheduler::loop();
}
if (mNrfRadio.loop()) {
while (!mNrfRadio.mBufCtrl.empty()) {
packet_t *p = &mNrfRadio.mBufCtrl.front();
if (mConfig->serial.debug) {
#ifdef undef
DPRINT(DBG_INFO, "RX (Ch " + String (p->ch) + "), " +
String (p->len) + " Bytes, ");
mNrfRadio.dumpBuf(p->packet, p->len);
#else
DPRINTLN(DBG_INFO, "RX (Ch " + String (p->ch) + "), " +
String (p->len) + " Bytes");
#endif
}
mStat.frmCnt++;
Inverter<> *iv = mSys.findInverter(&p->packet[1]);
if (NULL != iv) {
if (IV_HM == iv->ivGen)
mPayload.add(iv, p);
else
mMiPayload.add(iv, p);
}
mNrfRadio.mBufCtrl.pop();
yield();
}
mPayload.process(true);
mMiPayload.process(true);
}
mPayload.loop();
mMiPayload.loop();
#ifdef AHOY_MQTT_SUPPORT
if (!mNrfRadio.isTxPending () && mMqttEnabled) {
mMqtt.loop();
}
#endif
#ifdef AHOY_SML_OBIS_SUPPORT
if (!mNrfRadio.isTxPending () && mConfig->sml_obis.ir_connected) {
sml_loop ();
}
#endif
#ifdef undef
#define LITTLEFS_TEST_FILE_SIZE 1024 + 64 + 12
// testing!!!
uint32_t cur_uptime;
static uint32_t last_uptime;
static size_t test_size;
static File test_file_1, test_file_2;
if (((cur_uptime = getUptime()) > 30) && (last_uptime != cur_uptime) && (test_size < (LITTLEFS_TEST_FILE_SIZE))) {
FSInfo info;
uint32_t start_millis;
if (!last_uptime) {
if ((test_file_1 = LittleFS.open ("/hist/test_1.bin", "r"))) {
DPRINTLN (DBG_INFO, "Old File 1, size " + String (test_file_1.size()));
test_file_1.close();
test_file_1 = (File)NULL;
}
if ((test_file_2 = LittleFS.open ("/hist/test_2.bin", "r"))) {
DPRINTLN (DBG_INFO, "Old File 2, size " + String (test_file_2.size()));
test_file_2.close();
test_file_2 = (File)NULL;
}
LittleFS.remove ("/hist/test_1.bin");
LittleFS.remove ("/hist/test_2.bin");
//test_file_1 = LittleFS.open ("/hist/test_1.bin", "a");
//test_file_2 = LittleFS.open ("/hist/test_2.bin", "a");
}
#ifdef undef
last_uptime = cur_uptime;
start_millis = millis();
if (test_file_1) {
test_file_1.write ("ABCD");
test_size = test_file_1.size ();
test_file_1.flush ();
}
if (test_file_2) {
test_file_2.write ("EFGH");
test_file_2.flush ();
}
LittleFS.info (info);
DPRINTLN (DBG_INFO, "FS Info, total " + String (info.totalBytes) +
", used " + String (info.usedBytes) +
", size " + String (test_size) +
", time " + String (millis() - start_millis));
#endif
} else if (test_size >= LITTLEFS_TEST_FILE_SIZE) {
if (test_file_1) {
test_file_1.close ();
test_file_1 = (File)NULL;
}
if (test_file_2) {
test_file_2.close ();
test_file_2 = (File)NULL;
}
}
#endif
}
//-----------------------------------------------------------------------------
void app::loopWifi(void) {
ah::Scheduler::loop();
yield();
}
//-----------------------------------------------------------------------------
void app::onWifi(bool gotIp) {
DPRINTLN(DBG_DEBUG, F("onWifi"));
ah::Scheduler::resetTicker();
regularTickers(); // reinstall regular tickers
if (gotIp) {
mInnerLoopCb = std::bind(&app::loopStandard, this);
every(std::bind(&app::tickSend, this), mConfig->nrf.sendInterval, "tSend");
mMqttReconnect = true;
mSunrise = 0; // needs to be set to 0, to reinstall sunrise and ivComm tickers!
once(std::bind(&app::tickNtpUpdate, this), 2, "ntp2");
if (WIFI_AP == WiFi.getMode()) {
#ifdef AHOY_MQTT_SUPPORT
mMqttEnabled = false;
#endif
everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL");
}
} else {
mInnerLoopCb = std::bind(&app::loopWifi, this);
everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL");
}
}
//-----------------------------------------------------------------------------
void app::regularTickers(void) {
DPRINTLN(DBG_DEBUG, F("regularTickers"));
everySec(std::bind(&WebType::tickSecond, &mWeb), "webSc");
// Plugins
if (mConfig->plugin.display.type != 0)
everySec(std::bind(&DisplayType::tickerSecond, &mDisplay), "disp");
every(std::bind(&PubSerialType::tick, &mPubSerial), mConfig->serial.interval, "uart");
}
//-----------------------------------------------------------------------------
void app::tickNtpUpdate(void) {
uint32_t nxtTrig = 5; // default: check again in 5 sec
bool isOK = mWifi.getNtpTime();
if (isOK || mTimestamp != 0) {
#ifdef AHOY_MQTT_SUPPORT
if (mMqttReconnect && mMqttEnabled) {
mMqtt.tickerSecond();
everySec(std::bind(&PubMqttType::tickerSecond, &mMqtt), "mqttS");
everyMin(std::bind(&PubMqttType::tickerMinute, &mMqtt), "mqttM");
}
#endif
// only install schedulers once even if NTP wasn't successful in first loop
if (mMqttReconnect) { // @TODO: mMqttReconnect is variable which scope has changed
if (mConfig->inst.rstValsNotAvail)
everyMin(std::bind(&app::tickMinute, this), "tMin");
uint32_t localTime = gTimezone.toLocal(mTimestamp);
uint32_t midTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time
onceAt(std::bind(&app::tickMidnight, this), midTrig, "midNi");
mSys.cleanup_history();
#ifdef AHOY_SML_OBIS_SUPPORT
// design: allways try to clean up
sml_cleanup_history ();
#endif
}
nxtTrig = isOK ? 43200 : 60; // depending on NTP update success check again in 12 h or in 1 min
if ((mSunrise == 0) && (mConfig->sun.lat) && (mConfig->sun.lon)) {
mCalculatedTimezoneOffset = (int8_t)((mConfig->sun.lon >= 0 ? mConfig->sun.lon + 7.5 : mConfig->sun.lon - 7.5) / 15) * 3600;
tickCalcSunrise();
}
// immediately start communicating
// @TODO: leads to reboot loops? not sure #674
if (isOK && mSendFirst) {
mSendFirst = false;
once(std::bind(&app::tickSend, this), 2, "senOn");
}
mMqttReconnect = false;
}
once(std::bind(&app::tickNtpUpdate, this), nxtTrig, "ntp");
}
//-----------------------------------------------------------------------------
void app::tickCalcSunrise(void) {
if (mSunrise == 0) // on boot/reboot calc sun values for current time
ah::calculateSunriseSunset(mTimestamp, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset);
if (mTimestamp > (mSunset + mConfig->sun.offsetSec)) // current time is past communication stop, calc sun values for next day
ah::calculateSunriseSunset(mTimestamp + 86400, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset);
tickIVCommunication();
uint32_t nxtTrig = mSunset + mConfig->sun.offsetSec + 60; // set next trigger to communication stop, +60 for safety that it is certain past communication stop
onceAt(std::bind(&app::tickCalcSunrise, this), nxtTrig, "Sunri");
#ifdef AHOY_MQTT_SUPPORT
if (mMqttEnabled)
tickSun();
#endif
}
//-----------------------------------------------------------------------------
void app::tickIVCommunication(void) {
mIVCommunicationOn = !mConfig->sun.disNightCom; // if sun.disNightCom is false, communication is always on
if (!mIVCommunicationOn) { // inverter communication only during the day
uint32_t nxtTrig;
if (mTimestamp < (mSunrise - mConfig->sun.offsetSec)) { // current time is before communication start, set next trigger to communication start
nxtTrig = mSunrise - mConfig->sun.offsetSec;
} else {
if (mTimestamp >= (mSunset + mConfig->sun.offsetSec)) { // current time is past communication stop, nothing to do. Next update will be done at midnight by tickCalcSunrise
nxtTrig = 0;
} else { // current time lies within communication start/stop time, set next trigger to communication stop
mIVCommunicationOn = true;
nxtTrig = mSunset + mConfig->sun.offsetSec;
}
}
if (nxtTrig != 0)
onceAt(std::bind(&app::tickIVCommunication, this), nxtTrig, "ivCom");
}
tickComm();
}
#ifdef AHOY_MQTT_SUPPORT
//-----------------------------------------------------------------------------
void app::tickSun(void) {
// only used and enabled by MQTT (see setup())
if (!mMqtt.tickerSun(mSunrise, mSunset, mConfig->sun.offsetSec, mConfig->sun.disNightCom))
once(std::bind(&app::tickSun, this), 1, "mqSun"); // MQTT not connected, retry
}
#endif
//-----------------------------------------------------------------------------
void app::tickComm(void) {
if ((!mIVCommunicationOn) && (mConfig->inst.rstValsCommStop))
once(std::bind(&app::tickZeroValues, this), mConfig->nrf.sendInterval, "tZero");
#ifdef AHOY_MQTT_SUPPORT
if (mMqttEnabled) {
if (!mMqtt.tickerComm(!mIVCommunicationOn))
once(std::bind(&app::tickComm, this), 5, "mqCom"); // MQTT not connected, retry after 5s
}
#endif
}
//-----------------------------------------------------------------------------
void app::tickZeroValues(void) {
Inverter<> *iv;
// set values to zero, except yields
for (uint8_t id = 0; id < mSys.getNumInverters(); id++) {
iv = mSys.getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
mPayload.zeroInverterValues(iv);
}
}
//-----------------------------------------------------------------------------
void app::tickMinute(void) {
// only triggered if 'reset values on no avail is enabled'
Inverter<> *iv;
// set values to zero, except yields
for (uint8_t id = 0; id < mSys.getNumInverters(); id++) {
iv = mSys.getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
if (!iv->isAvailable(mTimestamp) && !iv->isProducing(mTimestamp) && iv->config->enabled)
mPayload.zeroInverterValues(iv);
}
}
//-----------------------------------------------------------------------------
void app::tickMidnight(void) {
Inverter<> *iv;
if (mConfig->inst.rstYieldMidNight) {
// only if 'reset values at midnight is enabled'
uint32_t localTime = gTimezone.toLocal(mTimestamp);
uint32_t nxtTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time
onceAt(std::bind(&app::tickMidnight, this), nxtTrig, "mid2");
// set values to zero, except yield total
for (uint8_t id = 0; id < mSys.getNumInverters(); id++) {
iv = mSys.getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
mPayload.zeroInverterValues(iv);
mPayload.zeroYieldDay(iv);
}
#ifdef AHOY_MQTT_SUPPORT
if (mMqttEnabled)
mMqtt.tickerMidnight();
#endif
}
for (uint8_t id = 0; id < mSys.getNumInverters(); id++) {
if ((iv = mSys.getInverterByPos(id))) {
iv->cleanupRxInfo();
}
}
mSys.cleanup_history();
#ifdef AHOY_SML_OBIS_SUPPORT
// design: allways try to clean up
sml_cleanup_history();
#endif
}
//-----------------------------------------------------------------------------
void app::tickSend(void) {
if (!mNrfRadio.isChipConnected()) {
DPRINTLN(DBG_WARN, F("NRF24 not connected!"));
return;
}
if (mIVCommunicationOn && mTimestamp) {
if (!mNrfRadio.mBufCtrl.empty()) {
if (mConfig->serial.debug) {
DPRINT(DBG_DEBUG, F("recbuf not empty! #"));
DBGPRINTLN(String(mNrfRadio.mBufCtrl.size()));
}
}
int8_t maxLoop = MAX_NUM_INVERTERS;
Inverter<> *iv = mSys.getInverterByPos(mSendLastIvId);
do {
mSendLastIvId = ((MAX_NUM_INVERTERS - 1) == mSendLastIvId) ? 0 : mSendLastIvId + 1;
iv = mSys.getInverterByPos(mSendLastIvId);
} while ((NULL == iv) && ((maxLoop--) > 0));
if (NULL != iv) {
if (iv->config->enabled) {
if (iv->ivGen == IV_HM)
mPayload.ivSend(iv);
else
mMiPayload.ivSend(iv);
}
}
} else {
if (mConfig->serial.debug)
DPRINTLN(DBG_WARN, F("Time not set or it is night time, therefore no communication to the inverter!"));
}
yield();
updateLed();
}
//-----------------------------------------------------------------------------
void app::resetSystem(void) {
snprintf(mVersion, 12, "%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH);
#ifdef AP_ONLY
mTimestamp = 1;
#endif
mSendFirst = true;
mSunrise = 0;
mSunset = 0;
#ifdef AHOY_MQTT_SUPPORT
mMqttEnabled = false;
#endif
mSendLastIvId = 0;
mShowRebootRequest = false;
mIVCommunicationOn = true;
mSavePending = false;
mSaveReboot = false;
memset(&mStat, 0, sizeof(statistics_t));
}
#ifdef AHOY_MQTT_SUPPORT
//-----------------------------------------------------------------------------
void app::mqttSubRxCb(JsonObject obj) {
mApi.ctrlRequest(obj);
}
#endif
//-----------------------------------------------------------------------------
void app::setupLed(void) {
uint8_t led_off = (mConfig->led.led_high_active) ? LOW : HIGH;
if (mConfig->led.led0 != 0xff) {
pinMode(mConfig->led.led0, OUTPUT);
digitalWrite(mConfig->led.led0, led_off);
}
if (mConfig->led.led1 != 0xff) {
pinMode(mConfig->led.led1, OUTPUT);
digitalWrite(mConfig->led.led1, led_off);
}
}
//-----------------------------------------------------------------------------
void app::updateLed(void) {
uint8_t led_off = (mConfig->led.led_high_active) ? LOW : HIGH;
uint8_t led_on = (mConfig->led.led_high_active) ? HIGH : LOW;
if (mConfig->led.led0 != 0xff) {
Inverter<> *iv = mSys.getInverterByPos(0);
if (NULL != iv) {
if (iv->isProducing(mTimestamp))
digitalWrite(mConfig->led.led0, led_on);
else
digitalWrite(mConfig->led.led0, led_off);
}
}
#ifdef AHOY_MQTT_SUPPORT
if (mConfig->led.led1 != 0xff) {
if (getMqttIsConnected()) {
digitalWrite(mConfig->led.led1, led_on);
} else {
digitalWrite(mConfig->led.led1, led_off);
}
}
#endif
}
//-----------------------------------------------------------------------------
void app::check_hist_file (File file)
{
if (file) {
uint16_t exp_index = AHOY_MIN_PAC_SUN_HOUR * 60 / AHOY_PAC_INTERVAL, index;
unsigned char data[4];
while (file.read (data, sizeof (data)) == sizeof (data)) {
index = data[0] + (data[1] << 8);
if (index != exp_index) {
DPRINTLN (DBG_WARN, "Unexpected " + String (index) + " <-> " + String (exp_index));
}
exp_index = index + 1;
}
file.close();
}
}
//-----------------------------------------------------------------------------
void app::show_history (String path)
{
#ifdef ESP32
File dir = LittleFS.open (path);
File file;
#else
Dir dir = LittleFS.openDir (path);
#endif
DPRINTLN (DBG_INFO, "Enter Dir: " + path);
#ifdef ESP32
if (dir) {
while ((file = dir.openNextFile())) {
if (file.isDirectory()) {
show_history ((char *)file.name());
close (file);
} else {
DPRINTLN (DBG_INFO, "file " + String((char *)file.name()) +
", Size: " + String (file.size()));
// check_hist_file (file); // closes file
}
}
dir.close();
}
#else
while (dir.next()) {
if (dir.isDirectory ()) {
show_history (path + "/" + dir.fileName());
} else {
DPRINTLN (DBG_INFO, "file " + dir.fileName() +
", Size: " + String (dir.fileSize()));
// check_hist_file (dir.openFile ("r"));
}
}
#endif
DPRINTLN (DBG_INFO, "Leave Dir: " + path);
}