You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1461 lines
58 KiB

//-----------------------------------------------------------------------------
// 2022 Ahoy, https://www.mikrocontroller.net/topic/525778
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
#include "app.h"
#include "html/h/hoymiles_html.h"
#include <ArduinoJson.h>
//-----------------------------------------------------------------------------
app::app() {
DPRINTLN(DBG_VERBOSE, F("app::app"));
mDns = new DNSServer();
mWeb = new ESP8266WebServer(80);
mUdp = new WiFiUDP();
memset(&config, 0, sizeof(config_t));
config.apActive = true;
mWifiSettingsValid = false;
mSettingsValid = false;
mLimit = 10;
mNextTryTs = 0;
mApLastTick = 0;
// default config
snprintf(config.version, 12, "%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH);
config.apActive = false;
config.sendInterval = SEND_INTERVAL;
mEep = new eep();
Serial.begin(115200);
DPRINTLN(DBG_VERBOSE, F("Main::Main"));
mUptimeSecs = 0;
mUptimeTicker = 0xffffffff;
mUptimeInterval = 1000;
#ifdef AP_ONLY
mTimestamp = 1;
#else
mTimestamp = 0;
#endif
mHeapStatCnt = 0;
mSendTicker = 0xffff;
mMqttTicker = 0xffff;
mMqttInterval = MQTT_INTERVAL;
mSerialTicker = 0xffff;
mSerialInterval = SERIAL_INTERVAL;
mMqttActive = false;
mTicker = 0;
mRxTicker = 0;
mSendLastIvId = 0;
mShowRebootRequest = false;
mSerialValues = true;
mSerialDebug = false;
memset(mPayload, 0, (MAX_NUM_INVERTERS * sizeof(invPayload_t)));
mRxFailed = 0;
mRxSuccess = 0;
mFrameCnt = 0;
mLastPacketId = 0x00;
mSys = new HmSystemType();
}
//-----------------------------------------------------------------------------
app::~app(void) {
}
//-----------------------------------------------------------------------------
void app::setup(uint32_t timeout) {
DPRINTLN(DBG_VERBOSE, F("app::setup"));
Mainsetup(timeout);
//mWeb->on("/setup", std::bind(&app::showSetup, this));
//mWeb->on("/save", std::bind(&app::showSave, this));
mWeb->on("/cmdstat", std::bind(&app::showStatistics, this));
mWeb->on("/hoymiles", std::bind(&app::showHoymiles, this));
mWeb->on("/livedata", std::bind(&app::showLiveData, this));
mWeb->on("/json", std::bind(&app::showJSON, this));
mWeb->on("/api",HTTP_POST, std::bind(&app::webapi, this));
if(mSettingsValid) {
mEep->read(ADDR_INV_INTERVAL, &config.sendInterval);
if(config.sendInterval < MIN_SEND_INTERVAL)
config.sendInterval = MIN_SEND_INTERVAL;
mSendTicker = config.sendInterval;
// inverter
uint64_t invSerial;
char name[MAX_NAME_LENGTH + 1] = {0};
uint16_t modPwr[4];
Inverter<> *iv;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) {
mEep->read(ADDR_INV_ADDR + (i * 8), &invSerial);
mEep->read(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), name, MAX_NAME_LENGTH);
mEep->read(ADDR_INV_CH_PWR + (i * 2 * 4), modPwr, 4);
if(0ULL != invSerial) {
iv = mSys->addInverter(name, invSerial, modPwr);
if(NULL != iv) {
mEep->read(ADDR_INV_PWR_LIM + (i * 2),(uint16_t *)&(iv->powerLimit[0]));
if (iv->powerLimit[0] != 0xffff) { // only set it, if it is changed by user. Default value in the html setup page is -1 = 0xffff
iv->powerLimit[1] = 0x0001; // set the limit as persistent
iv->devControlCmd = ActivePowerContr; // set active power limit
iv->devControlRequest = true; // set to true to update the active power limit from setup html page
DPRINTLN(DBG_INFO, F("add inverter: ") + String(name) + ", SN: " + String(invSerial, HEX) + ", Power Limit: " + String(iv->powerLimit[0]));
}
for(uint8_t j = 0; j < 4; j++) {
mEep->read(ADDR_INV_CH_NAME + (i * 4 * MAX_NAME_LENGTH) + j * MAX_NAME_LENGTH, iv->chName[j], MAX_NAME_LENGTH);
}
}
mMqttInterval += config.sendInterval;
}
}
mEep->read(ADDR_INV_MAX_RTRY, &config.maxRetransPerPyld);
if(0 == config.maxRetransPerPyld)
config.maxRetransPerPyld = DEF_MAX_RETRANS_PER_PYLD;
// pinout
mEep->read(ADDR_PINOUT, &mSys->Radio.pinCs);
mEep->read(ADDR_PINOUT+1, &mSys->Radio.pinCe);
mEep->read(ADDR_PINOUT+2, &mSys->Radio.pinIrq);
if(mSys->Radio.pinCs == mSys->Radio.pinCe) {
mSys->Radio.pinCs = RF24_CS_PIN;
mSys->Radio.pinCe = RF24_CE_PIN;
mSys->Radio.pinIrq = RF24_IRQ_PIN;
}
// nrf24 amplifier power
mEep->read(ADDR_RF24_AMP_PWR, &mSys->Radio.AmplifierPower);
// serial console
uint8_t tmp;
mEep->read(ADDR_SER_INTERVAL, &mSerialInterval);
if(mSerialInterval < MIN_SERIAL_INTERVAL)
mSerialInterval = MIN_SERIAL_INTERVAL;
mEep->read(ADDR_SER_ENABLE, &tmp);
mSerialValues = (tmp == 0x01);
mEep->read(ADDR_SER_DEBUG, &tmp);
mSerialDebug = (tmp == 0x01);
mSys->Radio.mSerialDebug = mSerialDebug;
// ntp
char ntpAddr[NTP_ADDR_LEN];
uint16_t ntpPort;
mEep->read(ADDR_NTP_ADDR, ntpAddr, NTP_ADDR_LEN);
mEep->read(ADDR_NTP_PORT, &ntpPort);
// TODO set ntpAddr & ntpPort in main
// mqtt
uint16_t mqttPort;
char mqttAddr[MQTT_ADDR_LEN];
char mqttUser[MQTT_USER_LEN];
char mqttPwd[MQTT_PWD_LEN];
char mqttTopic[MQTT_TOPIC_LEN];
char mqttDevName[DEVNAME_LEN];
mEep->read(ADDR_MQTT_ADDR, mqttAddr, MQTT_ADDR_LEN);
mEep->read(ADDR_MQTT_USER, mqttUser, MQTT_USER_LEN);
mEep->read(ADDR_MQTT_PWD, mqttPwd, MQTT_PWD_LEN);
mEep->read(ADDR_MQTT_TOPIC, mqttTopic, MQTT_TOPIC_LEN);
mEep->read(ADDR_DEVNAME, mqttDevName, DEVNAME_LEN);
//mEep->read(ADDR_MQTT_INTERVAL, &mMqttInterval);
mEep->read(ADDR_MQTT_PORT, &mqttPort);
if(mqttAddr[0] > 0) {
mMqttActive = true;
if(mMqttInterval < MIN_MQTT_INTERVAL)
mMqttInterval = MIN_MQTT_INTERVAL;
}
else
mMqttInterval = 0xffff;
if(0 == mqttPort)
mqttPort = 1883;
mMqtt.setup(mqttAddr, mqttTopic, mqttUser, mqttPwd, mqttDevName, mqttPort);
mMqtt.setCallback(std::bind(&app::cbMqtt, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3));
mMqttTicker = 0;
#ifdef __MQTT_TEST__
// für mqtt test
mMqttTicker = mMqttInterval -10;
#endif
mSerialTicker = 0;
if(mqttAddr[0] > 0) {
char topic[30];
mMqtt.sendMsg("device", mqttDevName);
mMqtt.sendMsg("version", config.version);
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) {
iv = mSys->getInverterByPos(i);
if(NULL != iv) {
for(uint8_t i = 0; i < 4; i++) {
if(0 != iv->chName[i][0]) {
snprintf(topic, 30, "%s/ch%d/%s", iv->name, i+1, "name");
mMqtt.sendMsg(topic, iv->chName[i]);
yield();
}
}
}
}
}
}
else {
DPRINTLN(DBG_DEBUG, F("CRC pos: ") + String(ADDR_SETTINGS_CRC));
DPRINTLN(DBG_DEBUG, F("NXT pos: ") + String(ADDR_NEXT));
DPRINTLN(DBG_INFO, F("Settings not valid, erasing ..."));
eraseSettings();
saveValues(false);
delay(100);
DPRINTLN(DBG_INFO, F("... restarting ..."));
delay(100);
ESP.restart();
}
mSys->setup();
if(!mWifiSettingsValid)
DPRINTLN(DBG_WARN, F("your settings are not valid! check [IP]/setup"));
else {
DPRINTLN(DBG_INFO, F("\n\n----------------------------------------"));
DPRINTLN(DBG_INFO, F("Welcome to AHOY!"));
DPRINT(DBG_INFO, F("\npoint your browser to http://"));
if(config.apActive)
DBGPRINTLN(F("192.168.1.1"));
else
DBGPRINTLN(WiFi.localIP());
DPRINTLN(DBG_INFO, F("to configure your device"));
DPRINTLN(DBG_INFO, F("----------------------------------------\n"));
}
}
//-----------------------------------------------------------------------------
void app::loop(void) {
DPRINTLN(DBG_VERBOSE, F("app::loop"));
MainLoop();
mSys->Radio.loop();
yield();
if(checkTicker(&mRxTicker, 5)) {
//DPRINTLN(DBG_VERBOSE, F("app_loops =") + String(app_loops));
app_loops=0;
DPRINT(DBG_VERBOSE, F("a"));
bool rxRdy = mSys->Radio.switchRxCh();
if(!mSys->BufCtrl.empty()) {
uint8_t len;
packet_t *p = mSys->BufCtrl.getBack();
if(mSys->Radio.checkPaketCrc(p->packet, &len, p->rxCh)) {
// process buffer only on first occurrence
if(mSerialDebug) {
DPRINT(DBG_INFO, "RX " + String(len) + "B Ch" + String(p->rxCh) + " | ");
mSys->Radio.dumpBuf(NULL, p->packet, len);
}
mFrameCnt++;
if(0 != len) {
Inverter<> *iv = mSys->findInverter(&p->packet[1]);
if(NULL != iv && p->packet[0] == (TX_REQ_INFO + 0x80)) { // response from get information command
DPRINTLN(DBG_DEBUG, F("Response from info request received"));
switch (mSys->InfoCmd){
case InverterDevInform_Simple:
{
DPRINT(DBG_INFO, "Response from inform simple\n");
mSys->InfoCmd = RealTimeRunData_Debug; // Set back to default
break;
}
case InverterDevInform_All:
{
DPRINT(DBG_INFO, "Response from inform all\n");
mSys->InfoCmd = RealTimeRunData_Debug; // Set back to default
break;
}
case GetLossRate:
{
DPRINT(DBG_INFO, "Response from get loss rate\n");
mSys->InfoCmd = RealTimeRunData_Debug; // Set back to default
break;
}
case AlarmData:
{
DPRINT(DBG_INFO, "Response from AlarmData\n");
mSys->InfoCmd = RealTimeRunData_Debug; // Set back to default
break;
}
case AlarmUpdate:
{
DPRINT(DBG_INFO, "Response from AlarmUpdate\n");
mSys->InfoCmd = RealTimeRunData_Debug; // Set back to default
break;
}
case RealTimeRunData_Debug:
{
uint8_t *pid = &p->packet[9];
if (*pid == 0x00) {
DPRINT(DBG_DEBUG, "fragment number zero received and ignored");
} else {
if((*pid & 0x7F) < 5) {
memcpy(mPayload[iv->id].data[(*pid & 0x7F) - 1], &p->packet[10], len-11);
mPayload[iv->id].len[(*pid & 0x7F) - 1] = len-11;
}
if((*pid & 0x80) == 0x80) { // Last packet
if((*pid & 0x7f) > mPayload[iv->id].maxPackId) {
mPayload[iv->id].maxPackId = (*pid & 0x7f);
if(*pid > 0x81)
mLastPacketId = *pid;
}
}
}
break;
}
}
}
if(NULL != iv && p->packet[0] == (TX_REQ_DEVCONTROL + 0x80)) { // response from dev control command
DPRINTLN(DBG_DEBUG, F("Response from devcontrol request received"));
iv->devControlRequest = false;
switch (p->packet[12]){
case ActivePowerContr:
if (iv->devControlCmd >= ActivePowerContr && iv->devControlCmd <= PFSet){ // ok inverter accepted the set point copy it to dtu eeprom
if (iv->powerLimit[1]>0){ // User want to have it persistent
mEep->write(ADDR_INV_PWR_LIM + iv->id * 2,iv->powerLimit[0]);
updateCrc();
mEep->commit();
DPRINTLN(DBG_INFO, F("Inverter has accepted power limit set point, written to dtu eeprom"));
} else {
DPRINTLN(DBG_INFO, F("Inverter has accepted power limit set point"));
}
iv->devControlCmd = Init;
}
break;
default:
if (iv->devControlCmd == ActivePowerContr){
//case inverter did not accept the sent limit; set back to last stored limit
mEep->read(ADDR_INV_PWR_LIM + iv->id * 2, (uint16_t *)&(iv->powerLimit[0]));
DPRINTLN(DBG_INFO, F("Inverter has not accepted power limit set point"));
}
iv->devControlCmd = Init;
break;
}
}
}
}
mSys->BufCtrl.popBack();
}
yield();
if(rxRdy) {
processPayload(true);
}
}
if(mMqttActive)
mMqtt.loop();
if(checkTicker(&mTicker, 1000)) {
if((++mMqttTicker >= mMqttInterval) && (mMqttInterval != 0xffff)) {
mMqttTicker = 0;
mMqtt.isConnected(true);
char topic[30], val[10];
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
if(iv->isAvailable(mTimestamp)) {
for(uint8_t i = 0; i < iv->listLen; i++) {
snprintf(topic, 30, "%s/ch%d/%s", iv->name, iv->assign[i].ch, fields[iv->assign[i].fieldId]);
snprintf(val, 10, "%.3f", iv->getValue(i));
mMqtt.sendMsg(topic, val);
yield();
}
}
}
}
snprintf(val, 10, "%ld", millis()/1000);
#ifndef __MQTT_NO_DISCOVERCONFIG__
// MQTTDiscoveryConfig nur wenn nicht abgeschaltet.
sendMqttDiscoveryConfig();
#endif
mMqtt.sendMsg("uptime", val);
#ifdef __MQTT_TEST__
// für einfacheren Test mit MQTT, den MQTT abschnitt in 10 Sekunden wieder ausführen
mMqttTicker = mMqttInterval -10;
#endif
}
if(mSerialValues) {
if(++mSerialTicker >= mSerialInterval) {
mSerialTicker = 0;
char topic[30], val[10];
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
if(iv->isAvailable(mTimestamp)) {
DPRINTLN(DBG_INFO, "Inverter: " + String(id));
for(uint8_t i = 0; i < iv->listLen; i++) {
if(0.0f != iv->getValue(i)) {
snprintf(topic, 30, "%s/ch%d/%s", iv->name, iv->assign[i].ch, iv->getFieldName(i));
snprintf(val, 10, "%.3f %s", iv->getValue(i), iv->getUnit(i));
DPRINTLN(DBG_INFO, String(topic) + ": " + String(val));
}
yield();
}
DPRINTLN(DBG_INFO, "");
}
}
}
}
}
if(++mSendTicker >= config.sendInterval) {
mSendTicker = 0;
if(0 != mTimestamp) {
if(mSerialDebug)
DPRINTLN(DBG_DEBUG, F("Free heap: 0x") + String(ESP.getFreeHeap(), HEX));
if(!mSys->BufCtrl.empty()) {
if(mSerialDebug)
DPRINTLN(DBG_DEBUG, F("recbuf not empty! #") + String(mSys->BufCtrl.getFill()));
}
int8_t maxLoop = MAX_NUM_INVERTERS;
Inverter<> *iv = mSys->getInverterByPos(mSendLastIvId);
do {
if(NULL != iv)
mPayload[iv->id].requested = false;
mSendLastIvId = ((MAX_NUM_INVERTERS-1) == mSendLastIvId) ? 0 : mSendLastIvId + 1;
iv = mSys->getInverterByPos(mSendLastIvId);
} while((NULL == iv) && ((maxLoop--) > 0));
if(NULL != iv) {
if(!mPayload[iv->id].complete)
processPayload(false);
if(!mPayload[iv->id].complete) {
mRxFailed++;
if(mSerialDebug) {
DPRINT(DBG_INFO, F("Inverter #") + String(iv->id) + " ");
DPRINTLN(DBG_INFO, F("no Payload received! (retransmits: ") + String(mPayload[iv->id].retransmits) + ")");
}
}
// reset payload data
memset(mPayload[iv->id].len, 0, MAX_PAYLOAD_ENTRIES);
mPayload[iv->id].retransmits = 0;
mPayload[iv->id].maxPackId = 0;
mPayload[iv->id].complete = false;
mPayload[iv->id].requested = true;
mPayload[iv->id].ts = mTimestamp;
yield();
if(mSerialDebug)
DPRINTLN(DBG_DEBUG, F("app:loop WiFi WiFi.status ") + String(WiFi.status()) );
DPRINTLN(DBG_INFO, F("Requesting Inverter SN ") + String(iv->serial.u64, HEX));
if(iv->devControlRequest && iv->powerLimit[0] > 0){ // prevent to "switch off"
if(mSerialDebug)
DPRINTLN(DBG_INFO, F("Devcontrol request ") + String(iv->devControlCmd) + F(" power limit ") + String(iv->powerLimit[0]));
mSys->Radio.sendControlPacket(iv->radioId.u64,iv->devControlCmd ,iv->powerLimit);
} else {
mSys->Radio.sendTimePacket(iv->radioId.u64, mSys->InfoCmd, mPayload[iv->id].ts,iv->alarmMesIndex);
mRxTicker = 0;
}
}
}
else if(mSerialDebug)
DPRINTLN(DBG_WARN, F("time not set, can't request inverter!"));
yield();
}
}
}
//-----------------------------------------------------------------------------
void app::handleIntr(void) {
DPRINTLN(DBG_VERBOSE, F("app::handleIntr"));
mSys->Radio.handleIntr();
}
//-----------------------------------------------------------------------------
bool app::buildPayload(uint8_t id) {
DPRINTLN(DBG_VERBOSE, F("app::buildPayload"));
uint16_t crc = 0xffff, crcRcv = 0x0000;
if(mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES)
mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES;
for(uint8_t i = 0; i < mPayload[id].maxPackId; i ++) {
if(mPayload[id].len[i] > 0) {
if(i == (mPayload[id].maxPackId-1)) {
crc = crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc);
crcRcv = (mPayload[id].data[i][mPayload[id].len[i] - 2] << 8)
| (mPayload[id].data[i][mPayload[id].len[i] - 1]);
}
else
crc = crc16(mPayload[id].data[i], mPayload[id].len[i], crc);
}
yield();
}
if(crc == crcRcv)
return true;
return false;
}
//-----------------------------------------------------------------------------
void app::processPayload(bool retransmit) {
#ifdef __MQTT_AFTER_RX__
boolean doMQTT = false;
#endif
DPRINTLN(DBG_VERBOSE, F("app::processPayload"));
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
if(!mPayload[iv->id].complete) {
if(!buildPayload(iv->id)) {
if(mPayload[iv->id].requested) {
if(retransmit) {
if(mPayload[iv->id].retransmits < config.maxRetransPerPyld) {
mPayload[iv->id].retransmits++;
if(mPayload[iv->id].maxPackId != 0) {
for(uint8_t i = 0; i < (mPayload[iv->id].maxPackId-1); i ++) {
if(mPayload[iv->id].len[i] == 0) {
if(mSerialDebug)
DPRINTLN(DBG_ERROR, F("while retrieving data: Frame ") + String(i+1) + F(" missing: Request Retransmit"));
mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, (SINGLE_FRAME+i), true);
break; // only retransmit one frame per loop
}
yield();
}
}
else {
if(mSerialDebug)
DPRINTLN(DBG_ERROR, F("while retrieving data: last frame missing: Request Retransmit"));
if(0x00 != mLastPacketId)
mSys->Radio.sendCmdPacket(iv->radioId.u64, TX_REQ_INFO, mLastPacketId, true);
else
mSys->Radio.sendTimePacket(iv->radioId.u64, mSys->InfoCmd, mPayload[iv->id].ts,iv->alarmMesIndex);
}
mSys->Radio.switchRxCh(100);
}
}
}
}
else {
mPayload[iv->id].complete = true;
iv->ts = mPayload[iv->id].ts;
uint8_t payload[128] = {0};
uint8_t offs = 0;
for(uint8_t i = 0; i < (mPayload[iv->id].maxPackId); i ++) {
memcpy(&payload[offs], mPayload[iv->id].data[i], (mPayload[iv->id].len[i]));
offs += (mPayload[iv->id].len[i]);
yield();
}
offs-=2;
if(mSerialDebug) {
DPRINT(DBG_INFO, F("Payload (") + String(offs) + "): ");
mSys->Radio.dumpBuf(NULL, payload, offs);
}
mRxSuccess++;
for(uint8_t i = 0; i < iv->listLen; i++) {
iv->addValue(i, payload);
yield();
}
iv->doCalculations();
#ifdef __MQTT_AFTER_RX__
doMQTT = true;
#endif
}
}
yield();
}
}
#ifdef __MQTT_AFTER_RX__
// ist MQTT aktiviert und es wurden Daten vom einem oder mehreren WR aufbereitet ( doMQTT = true)
// dann die den mMqttTicker auf mMqttIntervall -2 setzen, also
// MQTT aussenden in 2 sek aktivieren
// dies sollte noch über einen Schalter im Setup aktivier / deaktivierbar gemacht werden
if( (mMqttInterval != 0xffff) && doMQTT ) {
++mMqttTicker = mMqttInterval -2;
DPRINT(DBG_DEBUG, F("MQTTticker auf Intervall -2 sec ")) ;
}
#endif
}
//-----------------------------------------------------------------------------
/*void app::showSetup(void) {
DPRINTLN(DBG_VERBOSE, F("app::showSetup"));
// overrides same method in main.cpp
String html = FPSTR(setup_html);
html.replace(F("{SSID}"), mStationSsid);
// PWD will be left at the default value (for protection)
// -> the PWD will only be changed if it does not match the placeholder "{PWD}"
html.replace(F("{DEVICE}"), String(mDeviceName));
html.replace(F("{VERSION}"), String(mVersion));
if(mApActive)
html.replace(F("{IP}"), String(F("http://192.168.1.1")));
else
html.replace(F("{IP}"), ("http://" + String(WiFi.localIP().toString())));
String inv;
uint64_t invSerial;
char name[MAX_NAME_LENGTH + 1] = {0};
uint16_t modPwr[4];
uint16_t invActivePowerLimit = -1;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) {
mEep->read(ADDR_INV_ADDR + (i * 8), &invSerial);
mEep->read(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), name, MAX_NAME_LENGTH);
mEep->read(ADDR_INV_CH_PWR + (i * 2 * 4), modPwr, 4);
mEep->read(ADDR_INV_PWR_LIM + (i * 2),(uint16_t *) &invActivePowerLimit);
inv += F("<p class=\"subdes\">Inverter ") + String(i) + "</p>";
inv += F("<label for=\"inv") + String(i) + F("Addr\">Address</label>");
inv += F("<input type=\"text\" class=\"text\" name=\"inv") + String(i) + F("Addr\" value=\"");
if(0ULL != invSerial)
inv += String(invSerial, HEX);
inv += F("\"/ maxlength=\"12\" onkeyup=\"checkSerial()\">");
inv += F("<label for=\"inv") + String(i) + F("Name\">Name</label>");
inv += F("<input type=\"text\" class=\"text\" name=\"inv") + String(i) + F("Name\" value=\"");
inv += String(name);
inv += F("\"/ maxlength=\"") + String(MAX_NAME_LENGTH) + "\">";
inv += F("<label for=\"inv") + String(i) + F("ActivePowerLimit\">Active Power Limit (W)</label>");
inv += F("<input type=\"text\" class=\"text\" name=\"inv") + String(i) + F("ActivePowerLimit\" value=\"");
if (name[0] == 0){
// If this value will be "saved" on next reboot the command to set the power limit will not be executed.
inv += String(65535);
} else {
inv += String(invActivePowerLimit);
}
inv += F("\"/ maxlength=\"") + String(6) + "\">";
inv += F("<label for=\"inv") + String(i) + F("ModPwr0\" name=\"lbl") + String(i);
inv += F("ModPwr\">Max Module Power (Wp)</label>");
for(uint8_t j = 0; j < 4; j++) {
inv += F("<input type=\"text\" class=\"text sh\" name=\"inv") + String(i) + F("ModPwr") + String(j) + F("\" value=\"");
inv += String(modPwr[j]);
inv += F("\"/ maxlength=\"4\">");
}
inv += F("<br/><label for=\"inv") + String(i) + F("ModName0\" name=\"lbl") + String(i);
inv += F("ModName\">Module Name</label>");
for(uint8_t j = 0; j < 4; j++) {
mEep->read(ADDR_INV_CH_NAME + (i * 4 * MAX_NAME_LENGTH) + j * MAX_NAME_LENGTH, name, MAX_NAME_LENGTH);
inv += F("<input type=\"text\" class=\"text sh\" name=\"inv") + String(i) + F("ModName") + String(j) + F("\" value=\"");
inv += String(name);
inv += F("\"/ maxlength=\"") + String(MAX_NAME_LENGTH) + "\">";
}
}
html.replace(F("{INVERTERS}"), String(inv));
// pinout
String pinout;
for(uint8_t i = 0; i < 3; i++) {
pinout += F("<label for=\"") + String(pinArgNames[i]) + "\">" + String(pinNames[i]) + F("</label>");
pinout += F("<select name=\"") + String(pinArgNames[i]) + "\">";
for(uint8_t j = 0; j <= 16; j++) {
pinout += F("<option value=\"") + String(j) + "\"";
switch(i) {
default: if(j == mSys->Radio.pinCs) pinout += F(" selected"); break;
case 1: if(j == mSys->Radio.pinCe) pinout += F(" selected"); break;
case 2: if(j == mSys->Radio.pinIrq) pinout += F(" selected"); break;
}
pinout += ">" + String(wemosPins[j]) + F("</option>");
}
pinout += F("</select>");
}
html.replace(F("{PINOUT}"), String(pinout));
// nrf24l01+
String rf24;
for(uint8_t i = 0; i <= 3; i++) {
rf24 += F("<option value=\"") + String(i) + "\"";
if(i == mSys->Radio.AmplifierPower)
rf24 += F(" selected");
rf24 += ">" + String(rf24AmpPower[i]) + F("</option>");
}
html.replace(F("{RF24}"), String(rf24));
if(mSettingsValid) {
html.replace(F("{INV_INTVL}"), String(mSendInterval));
html.replace(F("{INV_RETRIES}"), String(maxRetransPerPyld));
uint8_t tmp;
mEep->read(ADDR_SER_ENABLE, &tmp);
html.replace(F("{SER_INTVL}"), String(mSerialInterval));
html.replace(F("{SER_VAL_CB}"), (tmp == 0x01) ? "checked" : "");
mEep->read(ADDR_SER_DEBUG, &tmp);
html.replace(F("{SER_DBG_CB}"), (tmp == 0x01) ? "checked" : "");
char ntpAddr[NTP_ADDR_LEN] = {0};
uint16_t ntpPort;
mEep->read(ADDR_NTP_ADDR, ntpAddr, NTP_ADDR_LEN);
mEep->read(ADDR_NTP_PORT, &ntpPort);
html.replace(F("{NTP_ADDR}"), String(ntpAddr));
html.replace(F("{NTP_PORT}"), String(ntpPort));
char mqttAddr[MQTT_ADDR_LEN] = {0};
uint16_t mqttPort;
mEep->read(ADDR_MQTT_ADDR, mqttAddr, MQTT_ADDR_LEN);
mEep->read(ADDR_MQTT_PORT, &mqttPort);
html.replace(F("{MQTT_ADDR}"), String(mqttAddr));
html.replace(F("{MQTT_PORT}"), String(mMqtt.getPort()));
html.replace(F("{MQTT_USER}"), String(mMqtt.getUser()));
html.replace(F("{MQTT_PWD}"), String(mMqtt.getPwd()));
html.replace(F("{MQTT_TOPIC}"), String(mMqtt.getTopic()));
html.replace(F("{MQTT_INTVL}"), String(mMqttInterval));
}
mWeb->send(200, F("text/html"), html);
}
//-----------------------------------------------------------------------------
void app::showSave(void) {
DPRINTLN(DBG_VERBOSE, F("app::showSave"));
//saveValues(true);
}*/
//-----------------------------------------------------------------------------
void app::cbMqtt(char* topic, byte* payload, unsigned int length) {
// callback handling on subscribed devcontrol topic
DPRINTLN(DBG_INFO, F("app::cbMqtt"));
// subcribed topics are mTopic + "/devcontrol/#" where # is <inverter_id>/<subcmd in dec>
// eg. mypvsolar/devcontrol/1/11 with payload "400" --> inverter 1 active power limit 400 Watt
const char *token = strtok(topic, "/");
while (token != NULL)
{
if (std::strcmp(token,"devcontrol")==0){
token = strtok(NULL, "/");
uint8_t iv_id = std::stoi(token);
if (iv_id >= 0 && iv_id <= MAX_NUM_INVERTERS){
Inverter<> *iv = this->mSys->getInverterByPos(iv_id);
if(NULL != iv) {
if (!iv->devControlRequest) { // still pending
token = strtok(NULL, "/");
switch ( std::stoi(token) ){
case ActivePowerContr: // Active Power Control
if (true){ // if (std::stoi((char*)payload) > 0) error handling powerlimit needed?
iv->devControlCmd = ActivePowerContr;
iv->powerLimit[0] = std::stoi((char*)payload);
iv->powerLimit[1] = 0x0000; // if power limit is set via external interface --> set it temporay
DPRINTLN(DBG_DEBUG, F("Power limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("W") );
}
iv->devControlRequest = true;
break;
case TurnOn: // Turn On
iv->devControlCmd = TurnOn;
DPRINTLN(DBG_INFO, F("Turn on inverter ") + String(iv->id) );
iv->devControlRequest = true;
break;
case TurnOff: // Turn Off
iv->devControlCmd = TurnOff;
DPRINTLN(DBG_INFO, F("Turn off inverter ") + String(iv->id) );
iv->devControlRequest = true;
break;
case Restart: // Restart
iv->devControlCmd = Restart;
DPRINTLN(DBG_INFO, F("Restart inverter ") + String(iv->id) );
iv->devControlRequest = true;
break;
case ReactivePowerContr: // Reactive Power Control
iv->devControlCmd = ReactivePowerContr;
if (true){ // if (std::stoi((char*)payload) > 0) error handling powerlimit needed?
iv->devControlCmd = ReactivePowerContr;
iv->powerLimit[0] = std::stoi((char*)payload);
iv->powerLimit[1] = 0x0000; // if reactivepower limit is set via external interface --> set it temporay
DPRINTLN(DBG_DEBUG, F("Reactivepower limit for inverter ") + String(iv->id) + F(" set to ") + String(iv->powerLimit[0]) + F("W") );
iv->devControlRequest = true;
}
break;
case PFSet: // Set Power Factor
// iv->devControlCmd = PFSet;
// uint16_t power_factor = std::stoi(strtok(NULL, "/"));
DPRINTLN(DBG_INFO, F("Set Power Factor not implemented for inverter ") + String(iv->id) );
break;
default:
DPRINTLN(DBG_INFO, "Not implemented");
break;
}
}
}
}
break;
}
token = strtok(NULL, "/");
}
DPRINTLN(DBG_INFO, F("app::cbMqtt finished"));
}
//-----------------------------------------------------------------------------
void app::showStatistics(void) {
DPRINTLN(DBG_VERBOSE, F("app::showStatistics"));
String content = F("Receive success: ") + String(mRxSuccess) + "\n";
content += F("Receive fail: ") + String(mRxFailed) + "\n";
content += F("Frames received: ") + String(mFrameCnt) + "\n";
content += F("Send Cnt: ") + String(mSys->Radio.mSendCnt) + String("\n\n");
Inverter<> *iv;
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i++) {
iv = mSys->getInverterByPos(i);
if(NULL != iv) {
bool avail = true;
content += F("Inverter '") + String(iv->name) + F("' is ");
if(!iv->isAvailable(mTimestamp)) {
content += F("not ");
avail = false;
}
content += F("available and is ");
if(!iv->isProducing(mTimestamp))
content += F("not ");
content += F("producing\n");
if(!avail) {
if(iv->getLastTs() > 0)
content += F("-> last successful transmission: ") + getDateTimeStr(iv->getLastTs()) + "\n";
}
}
else {
content += F("Inverter ") + String(i) + F(" not (correctly) configured\n");
}
}
if(!mSys->Radio.isChipConnected())
content += F("WARNING! your NRF24 module can't be reached, check the wiring and pinout (<a href=\"/setup\">setup</a>)\n");
if(mShowRebootRequest)
content += F("INFO: reboot your ESP to apply all your configuration changes!\n");
if(!mSettingsValid)
content += F("INFO: your settings are invalid, please switch to <a href=\"/setup\">Setup</a> to correct this.\n");
content += F("MQTT: ");
if(!mMqtt.isConnected())
content += F("not ");
content += F("connected\n");
mWeb->send(200, F("text/plain"), content);
}
//-----------------------------------------------------------------------------
void app::webapi(void) { // ToDo
DPRINTLN(DBG_VERBOSE, F("app::api"));
DPRINTLN(DBG_DEBUG, mWeb->arg("plain"));
const size_t capacity = 200; // Use arduinojson.org/assistant to compute the capacity.
DynamicJsonDocument payload(capacity);
// Parse JSON object
deserializeJson(payload, mWeb->arg("plain"));
// ToDo: error handling for payload
if (payload["tx_request"] == TX_REQ_INFO){
mSys->InfoCmd = payload["cmd"];
DPRINTLN(DBG_INFO, F("Will make tx-request 0x15 with subcmd ") + String(mSys->InfoCmd));
}
mWeb->send ( 200, "text/json", "{success:true}" );
}
//-----------------------------------------------------------------------------
void app::showHoymiles(void) {
DPRINTLN(DBG_VERBOSE, F("app::showHoymiles"));
String html = FPSTR(hoymiles_html);
html.replace(F("{DEVICE}"), config.deviceName);
html.replace(F("{VERSION}"), config.version);
html.replace(F("{TS}"), String(config.sendInterval) + " ");
html.replace(F("{JS_TS}"), String(config.sendInterval * 1000));
mWeb->send(200, F("text/html"), html);
}
//-----------------------------------------------------------------------------
void app::showLiveData(void) {
DPRINTLN(DBG_VERBOSE, F("app::showLiveData"));
String modHtml;
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
#ifdef LIVEDATA_VISUALIZED
uint8_t modNum, pos;
switch(iv->type) {
default:
case INV_TYPE_1CH: modNum = 1; break;
case INV_TYPE_2CH: modNum = 2; break;
case INV_TYPE_4CH: modNum = 4; break;
}
modHtml += F("<div class=\"iv\">"
"<div class=\"ch-iv\"><span class=\"head\">") + String(iv->name) + F(" Limit ") + String(iv->powerLimit[0]) + F(" W</span>");
uint8_t list[] = {FLD_UAC, FLD_IAC, FLD_PAC, FLD_F, FLD_PCT, FLD_T, FLD_YT, FLD_YD, FLD_PDC, FLD_EFF, FLD_PRA, FLD_ALARM_MES_ID};
for(uint8_t fld = 0; fld < 12; fld++) {
pos = (iv->getPosByChFld(CH0, list[fld]));
if(0xff != pos) {
modHtml += F("<div class=\"subgrp\">");
modHtml += F("<span class=\"value\">") + String(iv->getValue(pos));
modHtml += F("<span class=\"unit\">") + String(iv->getUnit(pos)) + F("</span></span>");
modHtml += F("<span class=\"info\">") + String(iv->getFieldName(pos)) + F("</span>");
modHtml += F("</div>");
}
}
modHtml += "</div>";
for(uint8_t ch = 1; ch <= modNum; ch ++) {
modHtml += F("<div class=\"ch\"><span class=\"head\">");
if(iv->chName[ch-1][0] == 0)
modHtml += F("CHANNEL ") + String(ch);
else
modHtml += String(iv->chName[ch-1]);
modHtml += F("</span>");
for(uint8_t j = 0; j < 6; j++) {
switch(j) {
default: pos = (iv->getPosByChFld(ch, FLD_UDC)); break;
case 1: pos = (iv->getPosByChFld(ch, FLD_IDC)); break;
case 2: pos = (iv->getPosByChFld(ch, FLD_PDC)); break;
case 3: pos = (iv->getPosByChFld(ch, FLD_YD)); break;
case 4: pos = (iv->getPosByChFld(ch, FLD_YT)); break;
case 5: pos = (iv->getPosByChFld(ch, FLD_IRR)); break;
}
if(0xff != pos) {
modHtml += F("<span class=\"value\">") + String(iv->getValue(pos));
modHtml += F("<span class=\"unit\">") + String(iv->getUnit(pos)) + F("</span></span>");
modHtml += F("<span class=\"info\">") + String(iv->getFieldName(pos)) + F("</span>");
}
}
modHtml += "</div>";
yield();
}
modHtml += F("<div class=\"ts\">Last received data requested at: ") + getDateTimeStr(iv->ts) + F("</div>");
modHtml += F("</div>");
#else
// dump all data to web frontend
modHtml = F("<pre>");
char topic[30], val[10];
for(uint8_t i = 0; i < iv->listLen; i++) {
snprintf(topic, 30, "%s/ch%d/%s", iv->name, iv->assign[i].ch, iv->getFieldName(i));
snprintf(val, 10, "%.3f %s", iv->getValue(i), iv->getUnit(i));
modHtml += String(topic) + ": " + String(val) + "\n";
}
modHtml += F("</pre>");
#endif
}
}
mWeb->send(200, F("text/html"), modHtml);
}
//-----------------------------------------------------------------------------
void app::showJSON(void) {
DPRINTLN(DBG_VERBOSE, F("app::showJSON"));
String modJson;
modJson = F("{\n");
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
char topic[40], val[25];
snprintf(topic, 30, "\"%s\": {\n", iv->name);
modJson += String(topic);
for(uint8_t i = 0; i < iv->listLen; i++) {
snprintf(topic, 40, "\t\"ch%d/%s\"", iv->assign[i].ch, iv->getFieldName(i));
snprintf(val, 25, "[%.3f, \"%s\"]", iv->getValue(i), iv->getUnit(i));
modJson += String(topic) + ": " + String(val) + F(",\n");
}
modJson += F("\t\"last_msg\": \"") + getDateTimeStr(iv->ts) + F("\"\n\t},\n");
}
}
modJson += F("\"json_ts\": \"") + String(getDateTimeStr(mTimestamp)) + F("\"\n}\n");
// mWeb->send(200, F("text/json"), modJson);
mWeb->send(200, F("application/json"), modJson); // the preferred content-type (https://stackoverflow.com/questions/22406077/what-is-the-exact-difference-between-content-type-text-json-and-application-jso)
}
//-----------------------------------------------------------------------------
/*void app::saveValues(bool webSend = true) {
DPRINTLN(DBG_VERBOSE, F("app::saveValues"));
Main::saveValues(false); // general configuration
if(mWeb->args() > 0) {
char buf[20] = {0};
uint8_t i = 0;
uint16_t interval;
// pinout
for(uint8_t i = 0; i < 3; i ++) {
uint8_t pin = mWeb->arg(String(pinArgNames[i])).toInt();
mEep->write(ADDR_PINOUT + i, pin);
}
// nrf24 amplifier power
mSys->Radio.AmplifierPower = mWeb->arg("rf24Power").toInt() & 0x03;
mEep->write(ADDR_RF24_AMP_PWR, mSys->Radio.AmplifierPower);
// ntp
char ntpAddr[NTP_ADDR_LEN] = {0};
uint16_t ntpPort;
mWeb->arg("ntpAddr").toCharArray(ntpAddr, NTP_ADDR_LEN);
ntpPort = mWeb->arg("ntpPort").toInt();
mEep->write(ADDR_NTP_ADDR, ntpAddr, NTP_ADDR_LEN);
mEep->write(ADDR_NTP_PORT, ntpPort);
// mqtt
char mqttAddr[MQTT_ADDR_LEN] = {0};
uint16_t mqttPort;
char mqttUser[MQTT_USER_LEN];
char mqttPwd[MQTT_PWD_LEN];
char mqttTopic[MQTT_TOPIC_LEN];
mWeb->arg("mqttAddr").toCharArray(mqttAddr, MQTT_ADDR_LEN);
mWeb->arg("mqttUser").toCharArray(mqttUser, MQTT_USER_LEN);
mWeb->arg("mqttPwd").toCharArray(mqttPwd, MQTT_PWD_LEN);
mWeb->arg("mqttTopic").toCharArray(mqttTopic, MQTT_TOPIC_LEN);
//interval = mWeb->arg("mqttIntvl").toInt();
mqttPort = mWeb->arg("mqttPort").toInt();
mEep->write(ADDR_MQTT_ADDR, mqttAddr, MQTT_ADDR_LEN);
mEep->write(ADDR_MQTT_PORT, mqttPort);
mEep->write(ADDR_MQTT_USER, mqttUser, MQTT_USER_LEN);
mEep->write(ADDR_MQTT_PWD, mqttPwd, MQTT_PWD_LEN);
mEep->write(ADDR_MQTT_TOPIC, mqttTopic, MQTT_TOPIC_LEN);
//mEep->write(ADDR_MQTT_INTERVAL, interval);
// serial console
bool tmp;
interval = mWeb->arg("serIntvl").toInt();
mEep->write(ADDR_SER_INTERVAL, interval);
tmp = (mWeb->arg("serEn") == "on");
mEep->write(ADDR_SER_ENABLE, (uint8_t)((tmp) ? 0x01 : 0x00));
mSerialDebug = (mWeb->arg("serDbg") == "on");
mEep->write(ADDR_SER_DEBUG, (uint8_t)((mSerialDebug) ? 0x01 : 0x00));
DPRINT(DBG_INFO, "Serial debug is ");
if(mSerialDebug) DPRINTLN(DBG_INFO, "on"); else DPRINTLN(DBG_INFO, "off");
mSys->Radio.mSerialDebug = mSerialDebug;
updateCrc();
mEep->commit();
if((mWeb->arg("reboot") == "on"))
showReboot();
else {
mShowRebootRequest = true;
mWeb->send(200, F("text/html"), F("<!doctype html><html><head><title>Setup saved</title><meta http-equiv=\"refresh\" content=\"1; URL=/setup\"></head><body>"
"<p>saved</p></body></html>"));
}
}
else {
updateCrc();
mEep->commit();
mWeb->send(200, F("text/html"), F("<!doctype html><html><head><title>Error</title><meta http-equiv=\"refresh\" content=\"3; URL=/setup\"></head><body>"
"<p>Error while saving</p></body></html>"));
}
}*/
void app::sendMqttDiscoveryConfig(void) {
DPRINTLN(DBG_VERBOSE, F("app::sendMqttDiscoveryConfig"));
char stateTopic[64], discoveryTopic[64], buffer[512], name[32], uniq_id[32];
for(uint8_t id = 0; id < mSys->getNumInverters(); id++) {
Inverter<> *iv = mSys->getInverterByPos(id);
if(NULL != iv) {
if(iv->isAvailable(mTimestamp) && mMqttConfigSendState[id] != true) {
DynamicJsonDocument deviceDoc(128);
deviceDoc["name"] = iv->name;
deviceDoc["ids"] = String(iv->serial.u64, HEX);
deviceDoc["cu"] = F("http://") + String(WiFi.localIP().toString());
JsonObject deviceObj = deviceDoc.as<JsonObject>();
DynamicJsonDocument doc(384);
for(uint8_t i = 0; i < iv->listLen; i++) {
if (iv->assign[i].ch == CH0) {
snprintf(name, 32, "%s %s", iv->name, iv->getFieldName(i));
} else {
snprintf(name, 32, "%s CH%d %s", iv->name, iv->assign[i].ch, iv->getFieldName(i));
}
snprintf(stateTopic, 64, "%s/%s/ch%d/%s", mMqtt.getTopic(), iv->name, iv->assign[i].ch, iv->getFieldName(i));
snprintf(discoveryTopic, 64, "%s/sensor/%s/ch%d_%s/config", MQTT_DISCOVERY_PREFIX, iv->name, iv->assign[i].ch, iv->getFieldName(i));
snprintf(uniq_id, 32, "ch%d_%s", iv->assign[i].ch, iv->getFieldName(i));
const char* devCls = getFieldDeviceClass(iv->assign[i].fieldId);
const char* stateCls = getFieldStateClass(iv->assign[i].fieldId);
doc["name"] = name;
doc["stat_t"] = stateTopic;
doc["unit_of_meas"] = iv->getUnit(i);
doc["uniq_id"] = String(iv->serial.u64, HEX) + "_" + uniq_id;
doc["dev"] = deviceObj;
doc["exp_aft"] = mMqttInterval + 5; // add 5 sec if connection is bad or ESP too slow
if (devCls != NULL) {
doc["dev_cla"] = devCls;
}
if (stateCls != NULL) {
doc["stat_cla"] = stateCls;
}
serializeJson(doc, buffer);
mMqtt.sendMsg2(discoveryTopic, buffer, true);
doc.clear();
yield();
}
mMqttConfigSendState[id] = true;
}
}
}
}
const char* app::getFieldDeviceClass(uint8_t fieldId) {
uint8_t pos = 0;
for(; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) {
if(deviceFieldAssignment[pos].fieldId == fieldId)
break;
}
return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : deviceClasses[deviceFieldAssignment[pos].deviceClsId];
}
const char* app::getFieldStateClass(uint8_t fieldId) {
uint8_t pos = 0;
for(; pos < DEVICE_CLS_ASSIGN_LIST_LEN; pos++) {
if(deviceFieldAssignment[pos].fieldId == fieldId)
break;
}
return (pos >= DEVICE_CLS_ASSIGN_LIST_LEN) ? NULL : stateClasses[deviceFieldAssignment[pos].stateClsId];
}
//-----------------------------------------------------------------------------
void app::Mainsetup(uint32_t timeout) {
DPRINTLN(DBG_VERBOSE, F("Main::setup"));
bool startAp = config.apActive;
mLimit = timeout;
startAp = getConfig();
#ifndef AP_ONLY
if(false == startAp)
startAp = setupStation(timeout);
#endif
config.apActive = startAp;
mStActive = !startAp;
}
//-----------------------------------------------------------------------------
void app::MainLoop(void) {
//DPRINTLN(DBG_VERBOSE, F("M"));
if(config.apActive) {
mDns->processNextRequest();
#ifndef AP_ONLY
if(checkTicker(&mNextTryTs, (WIFI_AP_ACTIVE_TIME * 1000))) {
config.apActive = setupStation(mLimit);
if(config.apActive) {
if(strlen(WIFI_AP_PWD) < 8)
DPRINTLN(DBG_ERROR, F("password must be at least 8 characters long"));
mApLastTick = millis();
mNextTryTs = (millis() + (WIFI_AP_ACTIVE_TIME * 1000));
setupAp(WIFI_AP_SSID, WIFI_AP_PWD);
}
}
else {
if(millis() - mApLastTick > 10000) {
uint8_t cnt = WiFi.softAPgetStationNum();
if(cnt > 0) {
DPRINTLN(DBG_INFO, String(cnt) + F(" clients connected, resetting AP timeout"));
mNextTryTs = (millis() + (WIFI_AP_ACTIVE_TIME * 1000));
}
mApLastTick = millis();
DPRINTLN(DBG_INFO, F("AP will be closed in ") + String((mNextTryTs - mApLastTick) / 1000) + F(" seconds"));
}
}
#endif
}
mWeb->handleClient();
if(checkTicker(&mUptimeTicker, mUptimeInterval)) {
mUptimeSecs++;
if(0 != mTimestamp)
mTimestamp++;
else {
if(!config.apActive) {
mTimestamp = getNtpTime();
DPRINTLN(DBG_INFO, "[NTP]: " + getDateTimeStr(mTimestamp));
}
}
/*if(++mHeapStatCnt >= 10) {
mHeapStatCnt = 0;
stats();
}*/
}
if (WiFi.status() != WL_CONNECTED) {
DPRINTLN(DBG_INFO, "[WiFi]: Connection Lost");
mStActive = false;
}
}
//-----------------------------------------------------------------------------
bool app::getConfig(void) {
DPRINTLN(DBG_VERBOSE, F("app::getConfig"));
config.apActive = false;
mWifiSettingsValid = checkEEpCrc(ADDR_START, ADDR_WIFI_CRC, ADDR_WIFI_CRC);
mSettingsValid = checkEEpCrc(ADDR_START_SETTINGS, ((ADDR_NEXT)-(ADDR_START_SETTINGS)), ADDR_SETTINGS_CRC);
if(mWifiSettingsValid) {
mEep->read(ADDR_SSID, config.stationSsid, SSID_LEN);
mEep->read(ADDR_PWD, config.stationPwd, PWD_LEN);
mEep->read(ADDR_DEVNAME, config.deviceName, DEVNAME_LEN);
}
if((!mWifiSettingsValid) || (config.stationSsid[0] == 0xff)) {
snprintf(config.stationSsid, SSID_LEN, "%s", FB_WIFI_SSID);
snprintf(config.stationPwd, PWD_LEN, "%s", FB_WIFI_PWD);
snprintf(config.deviceName, DEVNAME_LEN, "%s", DEF_DEVICE_NAME);
}
return config.apActive;
}
//-----------------------------------------------------------------------------
void app::setupAp(const char *ssid, const char *pwd) {
DPRINTLN(DBG_VERBOSE, F("app::setupAp"));
IPAddress apIp(192, 168, 1, 1);
DPRINTLN(DBG_INFO, F("\n---------\nAP MODE\nSSID: ")
+ String(ssid) + F("\nPWD: ")
+ String(pwd) + F("\nActive for: ")
+ String(WIFI_AP_ACTIVE_TIME) + F(" seconds")
+ F("\n---------\n"));
DPRINTLN(DBG_DEBUG, String(mNextTryTs));
WiFi.mode(WIFI_AP);
WiFi.softAPConfig(apIp, apIp, IPAddress(255, 255, 255, 0));
WiFi.softAP(ssid, pwd);
mDns->start(mDnsPort, "*", apIp);
/*mWeb->onNotFound([&]() {
showSetup();
});
mWeb->on("/", std::bind(&app::showSetup, this));
mWeb->begin();*/
}
//-----------------------------------------------------------------------------
bool app::setupStation(uint32_t timeout) {
DPRINTLN(DBG_VERBOSE, F("app::setupStation"));
int32_t cnt;
bool startAp = false;
if(timeout >= 3)
cnt = (timeout - 3) / 2 * 10;
else {
timeout = 1;
cnt = 1;
}
WiFi.mode(WIFI_STA);
WiFi.begin(config.stationSsid, config.stationPwd);
if(String(config.deviceName) != "")
WiFi.hostname(config.deviceName);
delay(2000);
DPRINTLN(DBG_INFO, F("connect to network '") + String(config.stationSsid) + F("' ..."));
while (WiFi.status() != WL_CONNECTED) {
delay(100);
if(cnt % 100 == 0)
Serial.println(".");
else
Serial.print(".");
if(timeout > 0) { // limit == 0 -> no limit
if(--cnt <= 0) {
if(WiFi.status() != WL_CONNECTED) {
startAp = true;
WiFi.disconnect();
}
delay(100);
break;
}
}
}
Serial.println(".");
if(false == startAp) {
mWeb->begin();
}
delay(1000);
return startAp;
}
//-----------------------------------------------------------------------------
void app::saveValues(uint32_t saveMask = 0) {
DPRINTLN(DBG_VERBOSE, F("app::saveValues"));
if(CHK_MSK(saveMask, SAVE_SSID))
mEep->write(ADDR_SSID, config.stationSsid, SSID_LEN);
if(CHK_MSK(saveMask, SAVE_PWD))
mEep->write(ADDR_PWD, config.stationPwd, SSID_LEN);
if(CHK_MSK(saveMask, SAVE_DEVICE_NAME))
mEep->write(ADDR_DEVNAME, config.deviceName, DEVNAME_LEN);
Inverter<> *iv;
if(CHK_MSK(saveMask, SAVE_INVERTERS)) {
for(uint8_t i = 0; i < MAX_NUM_INVERTERS; i ++) {
iv = mSys->getInverterByPos(i);
if(NULL != iv) {
mEep->write(ADDR_INV_ADDR + (i * 8), iv->serial.u64);
mEep->write(ADDR_INV_PWR_LIM + i * 2, iv->powerLimit[0]);
mEep->write(ADDR_INV_NAME + (i * MAX_NAME_LENGTH), iv->name, MAX_NAME_LENGTH);
// max channel power / name
for(uint8_t j = 0; j < 4; j++) {
mEep->write(ADDR_INV_CH_PWR + (i * 2 * 4) + (j*2), iv->chMaxPwr[j]);
mEep->write(ADDR_INV_CH_NAME + (i * 4 * MAX_NAME_LENGTH) + j * MAX_NAME_LENGTH, iv->chName[j], MAX_NAME_LENGTH);
}
}
}
}
if(CHK_MSK(saveMask, SAVE_INV_SEND_INTERVAL))
mEep->write(ADDR_INV_INTERVAL, config.sendInterval);
if(CHK_MSK(saveMask, SAVE_INV_RETRY))
mEep->write(ADDR_INV_MAX_RTRY, config.maxRetransPerPyld);
if(saveMask > 0) {
updateCrc();
mEep->commit();
}
}
//-----------------------------------------------------------------------------
time_t app::getNtpTime(void) {
//DPRINTLN(DBG_VERBOSE, F("app::getNtpTime"));
time_t date = 0;
IPAddress timeServer;
uint8_t buf[NTP_PACKET_SIZE];
uint8_t retry = 0;
WiFi.hostByName(NTP_SERVER_NAME, timeServer);
mUdp->begin(NTP_LOCAL_PORT);
sendNTPpacket(timeServer);
while(retry++ < 5) {
int wait = 150;
while(--wait) {
if(NTP_PACKET_SIZE <= mUdp->parsePacket()) {
uint64_t secsSince1900;
mUdp->read(buf, NTP_PACKET_SIZE);
secsSince1900 = (buf[40] << 24);
secsSince1900 |= (buf[41] << 16);
secsSince1900 |= (buf[42] << 8);
secsSince1900 |= (buf[43] );
date = secsSince1900 - 2208988800UL; // UTC time
date += (TIMEZONE + offsetDayLightSaving(date)) * 3600;
break;
}
else
delay(10);
}
}
return date;
}
//-----------------------------------------------------------------------------
void app::sendNTPpacket(IPAddress& address) {
//DPRINTLN(DBG_VERBOSE, F("app::sendNTPpacket"));
uint8_t buf[NTP_PACKET_SIZE] = {0};
buf[0] = B11100011; // LI, Version, Mode
buf[1] = 0; // Stratum
buf[2] = 6; // Max Interval between messages in seconds
buf[3] = 0xEC; // Clock Precision
// bytes 4 - 11 are for Root Delay and Dispersion and were set to 0 by memset
buf[12] = 49; // four-byte reference ID identifying
buf[13] = 0x4E;
buf[14] = 49;
buf[15] = 52;
mUdp->beginPacket(address, 123); // NTP request, port 123
mUdp->write(buf, NTP_PACKET_SIZE);
mUdp->endPacket();
}
//-----------------------------------------------------------------------------
// calculates the daylight saving time for middle Europe. Input: Unixtime in UTC
// from: https://forum.arduino.cc/index.php?topic=172044.msg1278536#msg1278536
time_t app::offsetDayLightSaving (uint32_t local_t) {
//DPRINTLN(DBG_VERBOSE, F("app::offsetDayLightSaving"));
int m = month (local_t);
if(m < 3 || m > 10) return 0; // no DSL in Jan, Feb, Nov, Dez
if(m > 3 && m < 10) return 1; // DSL in Apr, May, Jun, Jul, Aug, Sep
int y = year (local_t);
int h = hour (local_t);
int hToday = (h + 24 * day(local_t));
if((m == 3 && hToday >= (1 + TIMEZONE + 24 * (31 - (5 * y /4 + 4) % 7)))
|| (m == 10 && hToday < (1 + TIMEZONE + 24 * (31 - (5 * y /4 + 1) % 7))) )
return 1;
else
return 0;
}