You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

600 lines
21 KiB

//-----------------------------------------------------------------------------
// 2023 Ahoy, https://ahoydtu.de
// Creative Commons - https://creativecommons.org/licenses/by-nc-sa/4.0/deed
//-----------------------------------------------------------------------------
#include <ArduinoJson.h>
#include "app.h"
#include "utils/sun.h"
//-----------------------------------------------------------------------------
app::app()
: ah::Scheduler {},
mInnerLoopCb {nullptr} {
}
//-----------------------------------------------------------------------------
void app::setup() {
Serial.begin(115200);
while (!Serial)
yield();
resetSystem();
mSettings.setup();
mSettings.getPtr(mConfig);
ah::Scheduler::setup(mConfig->inst.startWithoutTime);
DPRINT(DBG_INFO, F("Settings valid: "));
DSERIAL.flush();
if (mSettings.getValid())
DBGPRINTLN(F("true"));
else
DBGPRINTLN(F("false"));
if(mConfig->nrf.enabled) {
mNrfRadio.setup(mConfig->nrf.amplifierPower, mConfig->nrf.pinIrq, mConfig->nrf.pinCe, mConfig->nrf.pinCs, mConfig->nrf.pinSclk, mConfig->nrf.pinMosi, mConfig->nrf.pinMiso);
mNrfRadio.enableDebug();
}
#if defined(ESP32)
if(mConfig->cmt.enabled) {
mCmtRadio.setup(mConfig->cmt.pinCsb, mConfig->cmt.pinFcsb, false);
mCmtRadio.enableDebug();
}
#endif
#ifdef ETHERNET
delay(1000);
DPRINT(DBG_INFO, F("mEth setup..."));
DSERIAL.flush();
mEth.setup(mConfig, &mTimestamp, [this](bool gotIp) { this->onNetwork(gotIp); }, [this](bool gotTime) { this->onNtpUpdate(gotTime); });
DBGPRINTLN(F("done..."));
DSERIAL.flush();
#endif // ETHERNET
#if !defined(ETHERNET)
#if defined(AP_ONLY)
mInnerLoopCb = std::bind(&app::loopStandard, this);
#else
mInnerLoopCb = std::bind(&app::loopWifi, this);
#endif
#endif /* !defined(ETHERNET) */
#if !defined(ETHERNET)
mWifi.setup(mConfig, &mTimestamp, std::bind(&app::onNetwork, this, std::placeholders::_1));
#if !defined(AP_ONLY)
everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL");
#endif
#endif /* defined(ETHERNET) */
mSys.setup(&mTimestamp);
mSys.addInverters(&mConfig->inst);
if (mConfig->nrf.enabled) {
mPayload.setup(this, &mSys, &mNrfRadio, &mStat, mConfig->nrf.maxRetransPerPyld, &mTimestamp);
mPayload.enableSerialDebug(mConfig->serial.debug);
mPayload.addPayloadListener(std::bind(&app::payloadEventListener, this, std::placeholders::_1, std::placeholders::_2));
mMiPayload.setup(this, &mSys, &mNrfRadio, &mStat, mConfig->nrf.maxRetransPerPyld, &mTimestamp);
mMiPayload.enableSerialDebug(mConfig->serial.debug);
mMiPayload.addPayloadListener(std::bind(&app::payloadEventListener, this, std::placeholders::_1, std::placeholders::_2));
}
#if defined(ESP32)
mHmsPayload.setup(this, &mSys, &mCmtRadio, &mStat, 5, &mTimestamp);
mHmsPayload.enableSerialDebug(mConfig->serial.debug);
mHmsPayload.addPayloadListener(std::bind(&app::payloadEventListener, this, std::placeholders::_1, std::placeholders::_2));
#endif
if(mConfig->nrf.enabled) {
if (!mNrfRadio.isChipConnected())
DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
}
// when WiFi is in client mode, then enable mqtt broker
#if !defined(AP_ONLY)
mMqttEnabled = (mConfig->mqtt.broker[0] > 0);
if (mMqttEnabled) {
mMqtt.setup(&mConfig->mqtt, mConfig->sys.deviceName, mVersion, &mSys, &mTimestamp, &mUptime);
mMqtt.setSubscriptionCb(std::bind(&app::mqttSubRxCb, this, std::placeholders::_1));
mPayload.addAlarmListener([this](Inverter<> *iv) { mMqtt.alarmEvent(iv); });
mMiPayload.addAlarmListener([this](Inverter<> *iv) { mMqtt.alarmEvent(iv); });
#if defined(ESP32)
mHmsPayload.addAlarmListener([this](Inverter<> *iv) { mMqtt.alarmEvent(iv); });
#endif
}
#endif
setupLed();
mWeb.setup(this, &mSys, mConfig);
mWeb.setProtection(strlen(mConfig->sys.adminPwd) != 0);
mApi.setup(this, &mSys, &mNrfRadio, mWeb.getWebSrvPtr(), mConfig);
// Plugins
if (mConfig->plugin.display.type != 0)
mDisplay.setup(&mConfig->plugin.display, &mSys, &mTimestamp, mVersion);
mPubSerial.setup(mConfig, &mSys, &mTimestamp);
#if !defined(ETHERNET)
//mImprov.setup(this, mConfig->sys.deviceName, mVersion);
#endif
regularTickers();
}
//-----------------------------------------------------------------------------
void app::loop(void) {
if (mInnerLoopCb)
mInnerLoopCb();
#if !defined(ETHERNET)
#endif
}
//-----------------------------------------------------------------------------
void app::loopStandard(void) {
ah::Scheduler::loop();
if (mNrfRadio.loop() && mConfig->nrf.enabled) {
while (!mNrfRadio.mBufCtrl.empty()) {
packet_t *p = &mNrfRadio.mBufCtrl.front();
if (mConfig->serial.debug) {
DPRINT(DBG_INFO, F("RX "));
DBGPRINT(String(p->len));
DBGPRINT(F("B Ch"));
DBGPRINT(String(p->ch));
DBGPRINT(F(" | "));
ah::dumpBuf(p->packet, p->len);
}
mStat.frmCnt++;
Inverter<> *iv = mSys.findInverter(&p->packet[1]);
if (NULL != iv) {
if (IV_HM == iv->ivGen)
mPayload.add(iv, p);
else
mMiPayload.add(iv, p);
}
mNrfRadio.mBufCtrl.pop();
yield();
}
mPayload.process(true);
mMiPayload.process(true);
}
#if defined(ESP32)
if (mCmtRadio.loop() && mConfig->cmt.enabled) {
while (!mCmtRadio.mBufCtrl.empty()) {
hmsPacket_t *p = &mCmtRadio.mBufCtrl.front();
if (mConfig->serial.debug) {
DPRINT(DBG_INFO, F("RX "));
DBGPRINT(String(p->data[0]));
DBGPRINT(F(" RSSI "));
DBGPRINT(String(p->rssi));
DBGPRINT(F("dBm | "));
ah::dumpBuf(&p->data[1], p->data[0]);
}
mStat.frmCnt++;
Inverter<> *iv = mSys.findInverter(&p->data[2]);
if(NULL != iv) {
if((iv->ivGen == IV_HMS) || (iv->ivGen == IV_HMT))
mHmsPayload.add(iv, p);
}
mCmtRadio.mBufCtrl.pop();
yield();
}
mHmsPayload.process(false); //true
}
#endif
mPayload.loop();
mMiPayload.loop();
#if defined(ESP32)
mHmsPayload.loop();
#endif
if (mMqttEnabled)
mMqtt.loop();
}
#if !defined(ETHERNET)
//-----------------------------------------------------------------------------
void app::loopWifi(void) {
ah::Scheduler::loop();
yield();
}
#endif /* !defined(ETHERNET) */
//-----------------------------------------------------------------------------
void app::onNetwork(bool gotIp) {
DPRINTLN(DBG_DEBUG, F("onNetwork"));
ah::Scheduler::resetTicker();
regularTickers(); // reinstall regular tickers
if (gotIp) {
every(std::bind(&app::tickSend, this), mConfig->nrf.sendInterval, "tSend");
#if defined(ESP32)
if(mConfig->cmt.enabled)
everySec(std::bind(&CmtRadioType::tickSecond, &mCmtRadio), "tsCmt");
#endif
mMqttReconnect = true;
mSunrise = 0; // needs to be set to 0, to reinstall sunrise and ivComm tickers!
once(std::bind(&app::tickNtpUpdate, this), 2, "ntp2");
#if !defined(ETHERNET)
if (WIFI_AP == WiFi.getMode()) {
mMqttEnabled = false;
everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL");
}
#endif /* !defined(ETHERNET) */
mInnerLoopCb = [this]() { this->loopStandard(); };
} else {
#if defined(ETHERNET)
mInnerLoopCb = nullptr;
#else /* defined(ETHERNET) */
mInnerLoopCb = [this]() { this->loopWifi(); };
everySec(std::bind(&ahoywifi::tickWifiLoop, &mWifi), "wifiL");
#endif /* defined(ETHERNET) */
}
}
//-----------------------------------------------------------------------------
void app::regularTickers(void) {
DPRINTLN(DBG_DEBUG, F("regularTickers"));
everySec(std::bind(&WebType::tickSecond, &mWeb), "webSc");
// Plugins
if (mConfig->plugin.display.type != 0)
everySec(std::bind(&DisplayType::tickerSecond, &mDisplay), "disp");
every(std::bind(&PubSerialType::tick, &mPubSerial), mConfig->serial.interval, "uart");
#if !defined(ETHERNET)
//everySec([this]() { mImprov.tickSerial(); }, "impro");
#endif
// every([this]() { mPayload.simulation();}, 15, "simul");
}
#if defined(ETHERNET)
void app::onNtpUpdate(bool gotTime) {
uint32_t nxtTrig = 5; // default: check again in 5 sec
if (gotTime || mTimestamp != 0) {
this->updateNtp();
nxtTrig = gotTime ? 43200 : 60; // depending on NTP update success check again in 12 h or in 1 min
}
once(std::bind(&app::tickNtpUpdate, this), nxtTrig, "ntp");
}
#endif /* defined(ETHERNET) */
//-----------------------------------------------------------------------------
void app::updateNtp(void) {
if (mMqttReconnect && mMqttEnabled) {
mMqtt.tickerSecond();
everySec(std::bind(&PubMqttType::tickerSecond, &mMqtt), "mqttS");
everyMin(std::bind(&PubMqttType::tickerMinute, &mMqtt), "mqttM");
}
// only install schedulers once even if NTP wasn't successful in first loop
if (mMqttReconnect) { // @TODO: mMqttReconnect is variable which scope has changed
if (mConfig->inst.rstValsNotAvail)
everyMin(std::bind(&app::tickMinute, this), "tMin");
uint32_t localTime = gTimezone.toLocal(mTimestamp);
uint32_t midTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time
onceAt(std::bind(&app::tickMidnight, this), midTrig, "midNi");
if (mConfig->sys.schedReboot) {
uint32_t localTime = gTimezone.toLocal(mTimestamp);
uint32_t rebootTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86410); // reboot 10 secs after midnght
if (rebootTrig <= mTimestamp) { //necessary for times other than midnight to prevent reboot loop
rebootTrig += 86400;
}
onceAt(std::bind(&app::tickReboot, this), rebootTrig, "midRe");
}
}
if ((mSunrise == 0) && (mConfig->sun.lat) && (mConfig->sun.lon)) {
mCalculatedTimezoneOffset = (int8_t)((mConfig->sun.lon >= 0 ? mConfig->sun.lon + 7.5 : mConfig->sun.lon - 7.5) / 15) * 3600;
tickCalcSunrise();
}
mMqttReconnect = false;
}
//-----------------------------------------------------------------------------
void app::tickNtpUpdate(void) {
uint32_t nxtTrig = 5; // default: check again in 5 sec
#if defined(ETHERNET)
bool isOK = mEth.updateNtpTime();
#else
bool isOK = mWifi.getNtpTime();
#endif
if (isOK || mTimestamp != 0) {
this->updateNtp();
nxtTrig = isOK ? (mConfig->ntp.interval * 60) : 60; // depending on NTP update success check again in 12h (depends on setting) or in 1 min
// immediately start communicating
if (isOK && mSendFirst) {
mSendFirst = false;
once(std::bind(&app::tickSend, this), 2, "senOn");
}
mMqttReconnect = false;
}
once(std::bind(&app::tickNtpUpdate, this), nxtTrig, "ntp");
}
//-----------------------------------------------------------------------------
void app::tickCalcSunrise(void) {
if (mSunrise == 0) // on boot/reboot calc sun values for current time
ah::calculateSunriseSunset(mTimestamp, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset);
if (mTimestamp > (mSunset + mConfig->sun.offsetSec)) // current time is past communication stop, calc sun values for next day
ah::calculateSunriseSunset(mTimestamp + 86400, mCalculatedTimezoneOffset, mConfig->sun.lat, mConfig->sun.lon, &mSunrise, &mSunset);
tickIVCommunication();
uint32_t nxtTrig = mSunset + mConfig->sun.offsetSec + 60; // set next trigger to communication stop, +60 for safety that it is certain past communication stop
onceAt(std::bind(&app::tickCalcSunrise, this), nxtTrig, "Sunri");
if (mMqttEnabled)
tickSun();
}
//-----------------------------------------------------------------------------
void app::tickIVCommunication(void) {
mIVCommunicationOn = !mConfig->sun.disNightCom; // if sun.disNightCom is false, communication is always on
if (!mIVCommunicationOn) { // inverter communication only during the day
uint32_t nxtTrig;
if (mTimestamp < (mSunrise - mConfig->sun.offsetSec)) { // current time is before communication start, set next trigger to communication start
nxtTrig = mSunrise - mConfig->sun.offsetSec;
} else {
if (mTimestamp >= (mSunset + mConfig->sun.offsetSec)) { // current time is past communication stop, nothing to do. Next update will be done at midnight by tickCalcSunrise
nxtTrig = 0;
} else { // current time lies within communication start/stop time, set next trigger to communication stop
mIVCommunicationOn = true;
nxtTrig = mSunset + mConfig->sun.offsetSec;
}
}
if (nxtTrig != 0)
onceAt(std::bind(&app::tickIVCommunication, this), nxtTrig, "ivCom");
}
tickComm();
}
//-----------------------------------------------------------------------------
void app::tickSun(void) {
// only used and enabled by MQTT (see setup())
if (!mMqtt.tickerSun(mSunrise, mSunset, mConfig->sun.offsetSec, mConfig->sun.disNightCom))
once(std::bind(&app::tickSun, this), 1, "mqSun"); // MQTT not connected, retry
}
//-----------------------------------------------------------------------------
void app::tickComm(void) {
if ((!mIVCommunicationOn) && (mConfig->inst.rstValsCommStop))
once(std::bind(&app::tickZeroValues, this), mConfig->nrf.sendInterval, "tZero");
if (mMqttEnabled) {
if (!mMqtt.tickerComm(!mIVCommunicationOn))
once(std::bind(&app::tickComm, this), 5, "mqCom"); // MQTT not connected, retry after 5s
}
}
//-----------------------------------------------------------------------------
void app::tickZeroValues(void) {
zeroIvValues(!CHECK_AVAIL, SKIP_YIELD_DAY);
}
//-----------------------------------------------------------------------------
void app::tickMinute(void) {
// only triggered if 'reset values on no avail is enabled'
zeroIvValues(CHECK_AVAIL, SKIP_YIELD_DAY);
}
//-----------------------------------------------------------------------------
void app::tickMidnight(void) {
uint32_t localTime = gTimezone.toLocal(mTimestamp);
uint32_t nxtTrig = gTimezone.toUTC(localTime - (localTime % 86400) + 86400); // next midnight local time
onceAt(std::bind(&app::tickMidnight, this), nxtTrig, "mid2");
Inverter<> *iv;
for (uint8_t id = 0; id < mSys.getNumInverters(); id++) {
iv = mSys.getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
// reset alarms
if(InverterStatus::OFF == iv->status)
iv->resetAlarms();
// clear max values
if(mConfig->inst.rstMaxValsMidNight) {
uint8_t pos;
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
for(uint8_t i = 0; i <= iv->channels; i++) {
pos = iv->getPosByChFld(i, FLD_MP, rec);
iv->setValue(pos, rec, 0.0f);
}
}
}
if (mConfig->inst.rstYieldMidNight) {
zeroIvValues(!CHECK_AVAIL, !SKIP_YIELD_DAY);
if (mMqttEnabled)
mMqtt.tickerMidnight();
}
}
//-----------------------------------------------------------------------------
void app::tickSend(void) {
if(mConfig->nrf.enabled) {
if(!mNrfRadio.isChipConnected()) {
DPRINTLN(DBG_WARN, F("NRF24 not connected!"));
return;
}
}
if (mIVCommunicationOn) {
if (!mNrfRadio.mBufCtrl.empty()) {
if (mConfig->serial.debug) {
DPRINT(DBG_DEBUG, F("recbuf not empty! #"));
DBGPRINTLN(String(mNrfRadio.mBufCtrl.size()));
}
}
#if defined(ESP32)
if (!mCmtRadio.mBufCtrl.empty()) {
if (mConfig->serial.debug) {
DPRINT(DBG_INFO, F("recbuf not empty! #"));
DBGPRINTLN(String(mCmtRadio.mBufCtrl.size()));
}
}
#endif
int8_t maxLoop = MAX_NUM_INVERTERS;
Inverter<> *iv = mSys.getInverterByPos(mSendLastIvId);
do {
mSendLastIvId = ((MAX_NUM_INVERTERS - 1) == mSendLastIvId) ? 0 : mSendLastIvId + 1;
iv = mSys.getInverterByPos(mSendLastIvId);
} while ((NULL == iv) && ((maxLoop--) > 0));
if (NULL != iv) {
if (iv->config->enabled) {
if(mConfig->nrf.enabled) {
if (iv->ivGen == IV_HM)
mPayload.ivSend(iv);
else if(iv->ivGen == IV_MI)
mMiPayload.ivSend(iv);
}
#if defined(ESP32)
if(mConfig->cmt.enabled) {
if((iv->ivGen == IV_HMS) || (iv->ivGen == IV_HMT))
mHmsPayload.ivSend(iv);
}
#endif
}
}
} else {
if (mConfig->serial.debug)
DPRINTLN(DBG_WARN, F("Time not set or it is night time, therefore no communication to the inverter!"));
}
yield();
updateLed();
}
//-----------------------------------------------------------------------------
void app:: zeroIvValues(bool checkAvail, bool skipYieldDay) {
Inverter<> *iv;
bool changed = false;
// set values to zero, except yields
for (uint8_t id = 0; id < mSys.getNumInverters(); id++) {
iv = mSys.getInverterByPos(id);
if (NULL == iv)
continue; // skip to next inverter
if (!iv->config->enabled)
continue; // skip to next inverter
if (checkAvail) {
if (!iv->isAvailable())
continue;
}
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
for(uint8_t ch = 0; ch <= iv->channels; ch++) {
uint8_t pos = 0;
for(uint8_t fld = 0; fld < FLD_EVT; fld++) {
switch(fld) {
case FLD_YD:
if(skipYieldDay)
continue;
else
break;
case FLD_YT:
continue;
}
pos = iv->getPosByChFld(ch, fld, rec);
iv->setValue(pos, rec, 0.0f);
}
// zero max power
if(!skipYieldDay) {
pos = iv->getPosByChFld(ch, FLD_MP, rec);
iv->setValue(pos, rec, 0.0f);
}
iv->doCalculations();
}
changed = true;
}
if(changed) {
if(mMqttEnabled && !skipYieldDay)
mMqtt.setZeroValuesEnable();
payloadEventListener(RealTimeRunData_Debug, NULL);
}
}
//-----------------------------------------------------------------------------
void app::resetSystem(void) {
snprintf(mVersion, 12, "%d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH);
#ifdef AP_ONLY
mTimestamp = 1;
#endif
mSendFirst = true;
mSunrise = 0;
mSunset = 0;
mMqttEnabled = false;
mSendLastIvId = 0;
mShowRebootRequest = false;
mIVCommunicationOn = true;
mSavePending = false;
mSaveReboot = false;
memset(&mStat, 0, sizeof(statistics_t));
}
//-----------------------------------------------------------------------------
void app::mqttSubRxCb(JsonObject obj) {
mApi.ctrlRequest(obj);
}
//-----------------------------------------------------------------------------
void app::setupLed(void) {
uint8_t led_off = (mConfig->led.led_high_active) ? LOW : HIGH;
if (mConfig->led.led0 != 0xff) {
pinMode(mConfig->led.led0, OUTPUT);
digitalWrite(mConfig->led.led0, led_off);
}
if (mConfig->led.led1 != 0xff) {
pinMode(mConfig->led.led1, OUTPUT);
digitalWrite(mConfig->led.led1, led_off);
}
}
//-----------------------------------------------------------------------------
void app::updateLed(void) {
uint8_t led_off = (mConfig->led.led_high_active) ? LOW : HIGH;
uint8_t led_on = (mConfig->led.led_high_active) ? HIGH : LOW;
if (mConfig->led.led0 != 0xff) {
Inverter<> *iv = mSys.getInverterByPos(0);
if (NULL != iv) {
if (iv->isProducing())
digitalWrite(mConfig->led.led0, led_on);
else
digitalWrite(mConfig->led.led0, led_off);
}
}
if (mConfig->led.led1 != 0xff) {
if (getMqttIsConnected()) {
digitalWrite(mConfig->led.led1, led_on);
} else {
digitalWrite(mConfig->led.led1, led_off);
}
}
}