Browse Source

Delete hmInverter.h

...wrong place
pull/742/head
rejoe2 2 years ago
committed by GitHub
parent
commit
0026b2e5b3
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 689
      hmInverter.h

689
hmInverter.h

@ -1,689 +0,0 @@
//-----------------------------------------------------------------------------
// 2023 Ahoy, https://www.mikrocontroller.net/topic/525778
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
#ifndef __HM_INVERTER_H__
#define __HM_INVERTER_H__
#if defined(ESP32) && defined(F)
#undef F
#define F(sl) (sl)
#endif
#include "hmDefines.h"
#include <memory>
#include <queue>
#include "../config/settings.h"
/**
* For values which are of interest and not transmitted by the inverter can be
* calculated automatically.
* A list of functions can be linked to the assignment and will be executed
* automatically. Their result does not differ from original read values.
*/
// forward declaration of class
template <class REC_TYP=float>
class Inverter;
// prototypes
template<class T=float>
static T calcYieldTotalCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcYieldDayCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcUdcCh(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcPowerDcCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcEffiencyCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcIrradiation(Inverter<> *iv, uint8_t arg0);
template<class T=float>
using func_t = T (Inverter<> *, uint8_t);
template<class T=float>
struct calcFunc_t {
uint8_t funcId; // unique id
func_t<T>* func; // function pointer
};
template<class T=float>
struct record_t {
byteAssign_t* assign; // assigment of bytes in payload
uint8_t length; // length of the assignment list
T *record; // data pointer
uint32_t ts; // timestamp of last received payload
uint8_t pyldLen; // expected payload length for plausibility check
};
class CommandAbstract {
public:
CommandAbstract(uint8_t txType = 0, uint8_t cmd = 0) {
_TxType = txType;
_Cmd = cmd;
};
virtual ~CommandAbstract() {};
const uint8_t getCmd() {
return _Cmd;
}
protected:
uint8_t _TxType;
uint8_t _Cmd;
};
class InfoCommand : public CommandAbstract {
public:
InfoCommand(uint8_t cmd){
_TxType = 0x15;
_Cmd = cmd;
}
};
class MiInfoCommand : public CommandAbstract {
public:
MiInfoCommand(uint8_t cmd){
_TxType = cmd;
_Cmd = cmd;
}
};
// list of all available functions, mapped in hmDefines.h
template<class T=float>
const calcFunc_t<T> calcFunctions[] = {
{ CALC_YT_CH0, &calcYieldTotalCh0 },
{ CALC_YD_CH0, &calcYieldDayCh0 },
{ CALC_UDC_CH, &calcUdcCh },
{ CALC_PDC_CH0, &calcPowerDcCh0 },
{ CALC_EFF_CH0, &calcEffiencyCh0 },
{ CALC_IRR_CH, &calcIrradiation }
};
template <class REC_TYP>
class Inverter {
public:
uint8_t ivGen; // generation of inverter (HM / MI)
cfgIv_t *config; // stored settings
uint8_t id; // unique id
uint8_t type; // integer which refers to inverter type
uint16_t alarmMesIndex; // Last recorded Alarm Message Index
uint16_t powerLimit[2]; // limit power output
float actPowerLimit; // actual power limit
uint8_t devControlCmd; // carries the requested cmd
serial_u radioId; // id converted to modbus
uint8_t channels; // number of PV channels (1-4)
record_t<REC_TYP> recordMeas; // structure for measured values
record_t<REC_TYP> recordInfo; // structure for info values
record_t<REC_TYP> recordConfig; // structure for system config values
record_t<REC_TYP> recordAlarm; // structure for alarm values
//String lastAlarmMsg;
bool initialized; // needed to check if the inverter was correctly added (ESP32 specific - union types are never null)
bool isConnected; // shows if inverter was successfully identified (fw version and hardware info)
Inverter() {
ivGen = IV_HM;
powerLimit[0] = 0xffff; // 65535 W Limit -> unlimited
powerLimit[1] = AbsolutNonPersistent; // default power limit setting
actPowerLimit = 0xffff; // init feedback from inverter to -1
mDevControlRequest = false;
devControlCmd = InitDataState;
initialized = false;
//lastAlarmMsg = "nothing";
alarmMesIndex = 0;
isConnected = false;
}
~Inverter() {
// TODO: cleanup
}
template <typename T>
void enqueCommand(uint8_t cmd) {
_commandQueue.push(std::make_shared<T>(cmd));
DPRINTLN(DBG_INFO, F("(#") + String(id) + F(") enqueuedCmd: 0x") + String(cmd, HEX));
}
void setQueuedCmdFinished() {
if (!_commandQueue.empty()) {
// Will destroy CommandAbstract Class Object (?)
_commandQueue.pop();
}
}
void clearCmdQueue() {
DPRINTLN(DBG_INFO, F("clearCmdQueue"));
while (!_commandQueue.empty()) {
// Will destroy CommandAbstract Class Object (?)
_commandQueue.pop();
}
}
uint8_t getQueuedCmd() {
if (_commandQueue.empty()) {
if (ivGen != IV_MI) {
if (getFwVersion() == 0)
enqueCommand<InfoCommand>(InverterDevInform_All); // firmware version
enqueCommand<InfoCommand>(RealTimeRunData_Debug); // live data
} else if (ivGen == IV_MI){
if (type == INV_TYPE_4CH) {
enqueCommand<InfoCommand>(0x36);
/*for(uint8_t i = 0x36; i <= 0x39; i++) {
enqueCommand<MiInfoCommand>(i); // live data
}*/
} else if (type == INV_TYPE_2CH) {
enqueCommand<InfoCommand>(0x09);
//enqueCommand<MiInfoCommand>(0x11);
} else if (type == INV_TYPE_1CH) {
enqueCommand<InfoCommand>(0x09);
}
//if (getFwVersion() == 0)
// enqueCommand<MiInfoCommand>(InverterDevInform_All); // firmware version, might not work, esp. for 1/2 ch hardware
}
if ((actPowerLimit == 0xffff) && isConnected)
enqueCommand<InfoCommand>(SystemConfigPara); // power limit info
}
return _commandQueue.front().get()->getCmd();
}
void init(void) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:init"));
initAssignment(&recordMeas, RealTimeRunData_Debug);
initAssignment(&recordInfo, InverterDevInform_All);
initAssignment(&recordConfig, SystemConfigPara);
initAssignment(&recordAlarm, AlarmData);
toRadioId();
initialized = true;
}
uint8_t getPosByChFld(uint8_t channel, uint8_t fieldId, record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getPosByChFld"));
uint8_t pos = 0;
if(NULL != rec) {
for(; pos < rec->length; pos++) {
if((rec->assign[pos].ch == channel) && (rec->assign[pos].fieldId == fieldId))
break;
}
return (pos >= rec->length) ? 0xff : pos;
}
else
return 0xff;
}
byteAssign_t *getByteAssign(uint8_t pos, record_t<> *rec) {
return &rec->assign[pos];
}
const char *getFieldName(uint8_t pos, record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getFieldName"));
if(NULL != rec)
return fields[rec->assign[pos].fieldId];
return notAvail;
}
const char *getUnit(uint8_t pos, record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getUnit"));
if(NULL != rec)
return units[rec->assign[pos].unitId];
return notAvail;
}
uint8_t getChannel(uint8_t pos, record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getChannel"));
if(NULL != rec)
return rec->assign[pos].ch;
return 0;
}
bool setDevControlRequest(uint8_t cmd) {
if(isConnected) {
mDevControlRequest = true;
devControlCmd = cmd;
}
return isConnected;
}
void clearDevControlRequest() {
mDevControlRequest = false;
}
inline bool getDevControlRequest() {
return mDevControlRequest;
}
void addValue(uint8_t pos, uint8_t buf[], record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:addValue"));
if(NULL != rec) {
uint8_t ptr = rec->assign[pos].start;
uint8_t end = ptr + rec->assign[pos].num;
uint16_t div = rec->assign[pos].div;
if(NULL != rec) {
if(CMD_CALC != div) {
uint32_t val = 0;
do {
val <<= 8;
val |= buf[ptr];
} while(++ptr != end);
if (FLD_T == rec->assign[pos].fieldId) {
// temperature is a signed value!
rec->record[pos] = (REC_TYP)((int16_t)val) / (REC_TYP)(div);
} else if (FLD_YT == rec->assign[pos].fieldId) {
rec->record[pos] = ((REC_TYP)(val) / (REC_TYP)(div)) + ((REC_TYP)config->yieldCor[rec->assign[pos].ch-1]);
} else {
if ((REC_TYP)(div) > 1)
rec->record[pos] = (REC_TYP)(val) / (REC_TYP)(div);
else
rec->record[pos] = (REC_TYP)(val);
}
}
}
if(rec == &recordMeas) {
DPRINTLN(DBG_VERBOSE, "add real time");
// get last alarm message index and save it in the inverter object
if (getPosByChFld(0, FLD_EVT, rec) == pos){
if (alarmMesIndex < rec->record[pos]){
alarmMesIndex = rec->record[pos];
//enqueCommand<InfoCommand>(AlarmUpdate); // What is the function of AlarmUpdate?
DPRINTLN(DBG_INFO, "alarm ID incremented to " + String(alarmMesIndex));
enqueCommand<InfoCommand>(AlarmData);
}
}
}
else if (rec->assign == InfoAssignment) {
DPRINTLN(DBG_DEBUG, "add info");
// eg. fw version ...
isConnected = true;
}
else if (rec->assign == SystemConfigParaAssignment) {
DPRINTLN(DBG_DEBUG, "add config");
if (getPosByChFld(0, FLD_ACT_ACTIVE_PWR_LIMIT, rec) == pos){
actPowerLimit = rec->record[pos];
DPRINT(DBG_DEBUG, F("Inverter actual power limit: ") + String(actPowerLimit, 1));
}
}
else if (rec->assign == AlarmDataAssignment) {
DPRINTLN(DBG_DEBUG, "add alarm");
//if (getPosByChFld(0, FLD_LAST_ALARM_CODE, rec) == pos){
// lastAlarmMsg = getAlarmStr(rec->record[pos]);
//}
}
else
DPRINTLN(DBG_WARN, F("add with unknown assginment"));
}
else
DPRINTLN(DBG_ERROR, F("addValue: assignment not found with cmd 0x"));
}
/*inline REC_TYP getPowerLimit(void) {
record_t<> *rec = getRecordStruct(SystemConfigPara);
return getChannelFieldValue(CH0, FLD_ACT_ACTIVE_PWR_LIMIT, rec);
}*/
bool setValue(uint8_t pos, record_t<> *rec, REC_TYP val) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:setValue"));
if(NULL == rec)
return false;
if(pos > rec->length)
return false;
rec->record[pos] = val;
return true;
}
REC_TYP getChannelFieldValue(uint8_t channel, uint8_t fieldId, record_t<> *rec) {
uint8_t pos = 0;
if(NULL != rec) {
for(; pos < rec->length; pos++) {
if((rec->assign[pos].ch == channel) && (rec->assign[pos].fieldId == fieldId))
break;
}
if(pos >= rec->length)
return 0;
return rec->record[pos];
}
else
return 0;
}
REC_TYP getValue(uint8_t pos, record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getValue"));
if(NULL == rec)
return 0;
if(pos > rec->length)
return 0;
return rec->record[pos];
}
void doCalculations() {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:doCalculations"));
record_t<> *rec = getRecordStruct(RealTimeRunData_Debug);
for(uint8_t i = 0; i < rec->length; i++) {
if(CMD_CALC == rec->assign[i].div) {
rec->record[i] = calcFunctions<REC_TYP>[rec->assign[i].start].func(this, rec->assign[i].num);
}
yield();
}
}
bool isAvailable(uint32_t timestamp) {
if((timestamp - recordMeas.ts) < INACT_THRES_SEC)
return true;
if((timestamp - recordInfo.ts) < INACT_THRES_SEC)
return true;
if((timestamp - recordConfig.ts) < INACT_THRES_SEC)
return true;
if((timestamp - recordAlarm.ts) < INACT_THRES_SEC)
return true;
return false;
}
bool isProducing(uint32_t timestamp) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:isProducing"));
if(isAvailable(timestamp)) {
uint8_t pos = getPosByChFld(CH0, FLD_PAC, &recordMeas);
return (getValue(pos, &recordMeas) > INACT_PWR_THRESH);
}
return false;
}
uint16_t getFwVersion() {
record_t<> *rec = getRecordStruct(InverterDevInform_All);
uint8_t pos = getPosByChFld(CH0, FLD_FW_VERSION, rec);
return getValue(pos, rec);
}
uint32_t getLastTs(record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getLastTs"));
return rec->ts;
}
record_t<> *getRecordStruct(uint8_t cmd) {
switch (cmd) {
case RealTimeRunData_Debug: return &recordMeas; // 11 = 0x0b
case InverterDevInform_All: return &recordInfo; // 1 = 0x01
case SystemConfigPara: return &recordConfig; // 5 = 0x05
case AlarmData: return &recordAlarm; // 17 = 0x11
default: break;
}
return NULL;
}
void initAssignment(record_t<> *rec, uint8_t cmd) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:initAssignment"));
rec->ts = 0;
rec->length = 0;
switch (cmd) {
case RealTimeRunData_Debug:
if (INV_TYPE_1CH == type) {
rec->length = (uint8_t)(HM1CH_LIST_LEN);
rec->assign = (byteAssign_t *)hm1chAssignment;
rec->pyldLen = HM1CH_PAYLOAD_LEN;
channels = 1;
}
else if (INV_TYPE_2CH == type) {
rec->length = (uint8_t)(HM2CH_LIST_LEN);
rec->assign = (byteAssign_t *)hm2chAssignment;
rec->pyldLen = HM2CH_PAYLOAD_LEN;
channels = 2;
}
else if (INV_TYPE_4CH == type) {
rec->length = (uint8_t)(HM4CH_LIST_LEN);
rec->assign = (byteAssign_t *)hm4chAssignment;
rec->pyldLen = HM4CH_PAYLOAD_LEN;
channels = 4;
}
else {
rec->length = 0;
rec->assign = NULL;
rec->pyldLen = 0;
channels = 0;
}
break;
case InverterDevInform_All:
rec->length = (uint8_t)(HMINFO_LIST_LEN);
rec->assign = (byteAssign_t *)InfoAssignment;
rec->pyldLen = HMINFO_PAYLOAD_LEN;
break;
case SystemConfigPara:
rec->length = (uint8_t)(HMSYSTEM_LIST_LEN);
rec->assign = (byteAssign_t *)SystemConfigParaAssignment;
rec->pyldLen = HMSYSTEM_PAYLOAD_LEN;
break;
case AlarmData:
rec->length = (uint8_t)(HMALARMDATA_LIST_LEN);
rec->assign = (byteAssign_t *)AlarmDataAssignment;
rec->pyldLen = HMALARMDATA_PAYLOAD_LEN;
break;
default:
DPRINTLN(DBG_INFO, F("initAssignment: Parser not implemented"));
break;
}
if(0 != rec->length) {
rec->record = new REC_TYP[rec->length];
memset(rec->record, 0, sizeof(REC_TYP) * rec->length);
}
}
uint16_t parseAlarmLog(uint8_t id, uint8_t pyld[], uint8_t len, uint32_t *start, uint32_t *endTime) {
uint8_t startOff = 2 + id * ALARM_LOG_ENTRY_SIZE;
if((startOff + ALARM_LOG_ENTRY_SIZE) > len)
return 0;
uint16_t wCode = ((uint16_t)pyld[startOff]) << 8 | pyld[startOff+1];
uint32_t startTimeOffset = 0, endTimeOffset = 0;
if (((wCode >> 13) & 0x01) == 1) // check if is AM or PM
startTimeOffset = 12 * 60 * 60;
if (((wCode >> 12) & 0x01) == 1) // check if is AM or PM
endTimeOffset = 12 * 60 * 60;
*start = (((uint16_t)pyld[startOff + 4] << 8) | ((uint16_t)pyld[startOff + 5])) + startTimeOffset;
*endTime = (((uint16_t)pyld[startOff + 6] << 8) | ((uint16_t)pyld[startOff + 7])) + endTimeOffset;
DPRINTLN(DBG_INFO, "Alarm #" + String(pyld[startOff+1]) + " '" + String(getAlarmStr(pyld[startOff+1])) + "' start: " + ah::getTimeStr(*start) + ", end: " + ah::getTimeStr(*endTime));
return pyld[startOff+1];
}
String getAlarmStr(uint16_t alarmCode) {
switch (alarmCode) { // breaks are intentionally missing!
case 1: return String(F("Inverter start"));
case 2: return String(F("DTU command failed"));
case 121: return String(F("Over temperature protection"));
case 125: return String(F("Grid configuration parameter error"));
case 126: return String(F("Software error code 126"));
case 127: return String(F("Firmware error"));
case 128: return String(F("Software error code 128"));
case 129: return String(F("Software error code 129"));
case 130: return String(F("Offline"));
case 141: return String(F("Grid overvoltage"));
case 142: return String(F("Average grid overvoltage"));
case 143: return String(F("Grid undervoltage"));
case 144: return String(F("Grid overfrequency"));
case 145: return String(F("Grid underfrequency"));
case 146: return String(F("Rapid grid frequency change"));
case 147: return String(F("Power grid outage"));
case 148: return String(F("Grid disconnection"));
case 149: return String(F("Island detected"));
case 205: return String(F("Input port 1 & 2 overvoltage"));
case 206: return String(F("Input port 3 & 4 overvoltage"));
case 207: return String(F("Input port 1 & 2 undervoltage"));
case 208: return String(F("Input port 3 & 4 undervoltage"));
case 209: return String(F("Port 1 no input"));
case 210: return String(F("Port 2 no input"));
case 211: return String(F("Port 3 no input"));
case 212: return String(F("Port 4 no input"));
case 213: return String(F("PV-1 & PV-2 abnormal wiring"));
case 214: return String(F("PV-3 & PV-4 abnormal wiring"));
case 215: return String(F("PV-1 Input overvoltage"));
case 216: return String(F("PV-1 Input undervoltage"));
case 217: return String(F("PV-2 Input overvoltage"));
case 218: return String(F("PV-2 Input undervoltage"));
case 219: return String(F("PV-3 Input overvoltage"));
case 220: return String(F("PV-3 Input undervoltage"));
case 221: return String(F("PV-4 Input overvoltage"));
case 222: return String(F("PV-4 Input undervoltage"));
case 301: return String(F("Hardware error code 301"));
case 302: return String(F("Hardware error code 302"));
case 303: return String(F("Hardware error code 303"));
case 304: return String(F("Hardware error code 304"));
case 305: return String(F("Hardware error code 305"));
case 306: return String(F("Hardware error code 306"));
case 307: return String(F("Hardware error code 307"));
case 308: return String(F("Hardware error code 308"));
case 309: return String(F("Hardware error code 309"));
case 310: return String(F("Hardware error code 310"));
case 311: return String(F("Hardware error code 311"));
case 312: return String(F("Hardware error code 312"));
case 313: return String(F("Hardware error code 313"));
case 314: return String(F("Hardware error code 314"));
case 5041: return String(F("Error code-04 Port 1"));
case 5042: return String(F("Error code-04 Port 2"));
case 5043: return String(F("Error code-04 Port 3"));
case 5044: return String(F("Error code-04 Port 4"));
case 5051: return String(F("PV Input 1 Overvoltage/Undervoltage"));
case 5052: return String(F("PV Input 2 Overvoltage/Undervoltage"));
case 5053: return String(F("PV Input 3 Overvoltage/Undervoltage"));
case 5054: return String(F("PV Input 4 Overvoltage/Undervoltage"));
case 5060: return String(F("Abnormal bias"));
case 5070: return String(F("Over temperature protection"));
case 5080: return String(F("Grid Overvoltage/Undervoltage"));
case 5090: return String(F("Grid Overfrequency/Underfrequency"));
case 5100: return String(F("Island detected"));
case 5120: return String(F("EEPROM reading and writing error"));
case 5150: return String(F("10 min value grid overvoltage"));
case 5200: return String(F("Firmware error"));
case 8310: return String(F("Shut down"));
case 9000: return String(F("Microinverter is suspected of being stolen"));
default: return String(F("Unknown"));
}
}
private:
void toRadioId(void) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:toRadioId"));
radioId.u64 = 0ULL;
radioId.b[4] = config->serial.b[0];
radioId.b[3] = config->serial.b[1];
radioId.b[2] = config->serial.b[2];
radioId.b[1] = config->serial.b[3];
radioId.b[0] = 0x01;
}
std::queue<std::shared_ptr<CommandAbstract>> _commandQueue;
bool mDevControlRequest; // true if change needed
};
/**
* To calculate values which are not transmitted by the unit there is a generic
* list of functions which can be linked to the assignment.
* The special command 0xff (CMDFF) must be used.
*/
template<class T=float>
static T calcYieldTotalCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcYieldTotalCh0"));
if(NULL != iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
T yield = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t pos = iv->getPosByChFld(i, FLD_YT, rec);
yield += iv->getValue(pos, rec);
}
return yield;
}
return 0.0;
}
template<class T=float>
static T calcYieldDayCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcYieldDayCh0"));
if(NULL != iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
T yield = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t pos = iv->getPosByChFld(i, FLD_YD, rec);
yield += iv->getValue(pos, rec);
}
return yield;
}
return 0.0;
}
template<class T=float>
static T calcUdcCh(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcUdcCh"));
// arg0 = channel of source
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
for(uint8_t i = 0; i < rec->length; i++) {
if((FLD_UDC == rec->assign[i].fieldId) && (arg0 == rec->assign[i].ch)) {
return iv->getValue(i, rec);
}
}
return 0.0;
}
template<class T=float>
static T calcPowerDcCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcPowerDcCh0"));
if(NULL != iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
T dcPower = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t pos = iv->getPosByChFld(i, FLD_PDC, rec);
dcPower += iv->getValue(pos, rec);
}
return dcPower;
}
return 0.0;
}
template<class T=float>
static T calcEffiencyCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcEfficiencyCh0"));
if(NULL != iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
uint8_t pos = iv->getPosByChFld(CH0, FLD_PAC, rec);
T acPower = iv->getValue(pos, rec);
T dcPower = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
pos = iv->getPosByChFld(i, FLD_PDC, rec);
dcPower += iv->getValue(pos, rec);
}
if(dcPower > 0)
return acPower / dcPower * 100.0f;
}
return 0.0;
}
template<class T=float>
static T calcIrradiation(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcIrradiation"));
// arg0 = channel
if(NULL != iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
uint8_t pos = iv->getPosByChFld(arg0, FLD_PDC, rec);
if(iv->config->chMaxPwr[arg0-1] > 0)
return iv->getValue(pos, rec) / iv->config->chMaxPwr[arg0-1] * 100.0f;
}
return 0.0;
}
#endif /*__HM_INVERTER_H__*/
Loading…
Cancel
Save