Browse Source

checked in Hubis code (version from 2022-04-13)

https://www.mikrocontroller.net/topic/525778?page=3#7033371
pull/12/head
Marcus 3 years ago
parent
commit
1f6fe84f08
  1. 158
      tools/NRF24_SendRcv/CircularBuffer.h
  2. 23
      tools/NRF24_SendRcv/Debug.h
  3. 129
      tools/NRF24_SendRcv/ModWebserver.h
  4. 597
      tools/NRF24_SendRcv/NRF24_SendRcv.ino
  5. 55
      tools/NRF24_SendRcv/NRF24_sniff_types.h
  6. 82
      tools/NRF24_SendRcv/Settings.h
  7. 55
      tools/NRF24_SendRcv/Sonne.h
  8. 142
      tools/NRF24_SendRcv/hm_crc.cpp
  9. 8
      tools/NRF24_SendRcv/hm_crc.h
  10. 74
      tools/NRF24_SendRcv/hm_packets.cpp
  11. 18
      tools/NRF24_SendRcv/hm_packets.h
  12. 345
      tools/NRF24_SendRcv/wifi.h

158
tools/NRF24_SendRcv/CircularBuffer.h

@ -0,0 +1,158 @@
/*
CircularBuffer - An Arduino circular buffering library for arbitrary types.
Created by Ivo Pullens, Emmission, 2014 -- www.emmission.nl
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef CircularBuffer_h
#define CircularBuffer_h
#ifdef ESP8266
#define DISABLE_IRQ noInterrupts()
#define RESTORE_IRQ interrupts()
#else
#define DISABLE_IRQ \
uint8_t sreg = SREG; \
cli();
#define RESTORE_IRQ \
SREG = sreg;
#endif
template <class T> class CircularBuffer
{
public:
/** Constructor
* @param buffer Preallocated buffer of at least size records.
* @param size Number of records available in the buffer.
*/
CircularBuffer(T* buffer, const uint8_t size )
: m_size(size), m_buff(buffer)
{
clear();
}
/** Clear all entries in the circular buffer. */
void clear(void)
{
m_front = 0;
m_fill = 0;
}
/** Test if the circular buffer is empty */
inline bool empty(void) const
{
return !m_fill;
}
/** Return the number of records stored in the buffer */
inline uint8_t available(void) const
{
return m_fill;
}
/** Test if the circular buffer is full */
inline bool full(void) const
{
return m_fill == m_size;
}
/** Aquire record on front of the buffer, for writing.
* After filling the record, it has to be pushed to actually
* add it to the buffer.
* @return Pointer to record, or NULL when buffer is full.
*/
T* getFront(void) const
{
DISABLE_IRQ;
T* f = NULL;
if (!full())
f = get(m_front);
RESTORE_IRQ;
return f;
}
/** Push record to front of the buffer
* @param record Record to push. If record was aquired previously (using getFront) its
* data will not be copied as it is already present in the buffer.
* @return True, when record was pushed successfully.
*/
bool pushFront(T* record)
{
bool ok = false;
DISABLE_IRQ;
if (!full())
{
T* f = get(m_front);
if (f != record)
*f = *record;
m_front = (m_front+1) % m_size;
m_fill++;
ok = true;
}
RESTORE_IRQ;
return ok;
}
/** Aquire record on back of the buffer, for reading.
* After reading the record, it has to be pop'ed to actually
* remove it from the buffer.
* @return Pointer to record, or NULL when buffer is empty.
*/
T* getBack(void) const
{
T* b = NULL;
DISABLE_IRQ;
if (!empty())
b = get(back());
RESTORE_IRQ;
return b;
}
/** Remove record from back of the buffer.
* @return True, when record was pop'ed successfully.
*/
bool popBack(void)
{
bool ok = false;
DISABLE_IRQ;
if (!empty())
{
m_fill--;
ok = true;
}
RESTORE_IRQ;
return ok;
}
protected:
inline T * get(const uint8_t idx) const
{
return &(m_buff[idx]);
}
inline uint8_t back(void) const
{
return (m_front - m_fill + m_size) % m_size;
}
const uint8_t m_size; // Total number of records that can be stored in the buffer.
T* const m_buff; // Ptr to buffer holding all records.
volatile uint8_t m_front; // Index of front element (not pushed yet).
volatile uint8_t m_fill; // Amount of records currently pushed.
};
#endif // CircularBuffer_h

23
tools/NRF24_SendRcv/Debug.h

@ -0,0 +1,23 @@
#ifndef __DEBUG_H
#define __DEBUG_H
#ifdef DEBUG
#define DEBUG_OUT Serial
#else
//---
// disable Serial DEBUG output
#define DEBUG_OUT DummySerial
static class {
public:
void begin(...) {}
void print(...) {}
void println(...) {}
void flush() {}
bool available() { return false;}
int readBytes(...) { return 0;}
int printf (...) {return 0;}
} DummySerial;
#endif
#endif

129
tools/NRF24_SendRcv/ModWebserver.h

@ -0,0 +1,129 @@
// ################# WebServer #################
#ifndef __MODWEBSERVER_H
#define __MODWEBSERVER_H
#define MODWEBSERVER
#include <ESP8266WebServer.h>
#include "Debug.h"
#include "Settings.h"
ESP8266WebServer server (WEBSERVER_PORT);
void returnOK () {
//--------------
server.send(200, F("text/plain"), "");
}
void returnFail(String msg) {
//-------------------------
server.send(500, F("text/plain"), msg + "\r\n");
}
void handleHelp () {
//-----------------
String out = "<html>";
out += "<body><h2>Hilfe</h2>";
out += "<br><br><table>";
out += "<tr><td>/</td><td>zeigt alle Messwerte in einer Tabelle; refresh alle 10 Sekunden</td></tr>";
out += "<tr><td>/data</td><td>zum Abruf der Messwerte in der Form Name=wert</td></tr>";
out += "<tr><td>:{port+1}/update</td><td>OTA</td></tr>";
out += "<tr><td>/reboot</td><td>startet neu</td></tr>";
out += "</table></body></html>";
server.send (200, "text/html", out);
}
void handleReboot () {
//-------------------
returnOK ();
ESP.reset();
}
void handleRoot() {
//----------------
String out = "<html><head><meta http-equiv=\"refresh\" content=\"10\":URL=\"" + server.uri() + "\"></head>";
out += "<body>";
out += "<h2>Hoymiles Micro-Inverter HM-600</h2>";
out += "<br><br><table border='1'>";
out += "<tr><th>Kanal</th><th>Wert</th></tr>";
for (byte i = 0; i < ANZAHL_VALUES; i++) {
out += "<tr><td>" + String(getChannelName(i)) + "</td>";
out += "<td>" + String(VALUES[i]) + "</td></tr>";
}
out += "</table>";
out += "</body></html>";
server.send (200, "text/html", out);
//DEBUG_OUT.println (out);
}
void handleData () {
//-----------------
String out = "";
for (int i = 0; i < ANZAHL_VALUES; i++) {
out += String(getChannelName(i)) + '=' + String (VALUES[i]) + '\n';
}
server.send(200, "text/plain", out);
}
void handleNotFound() {
//--------------------
String message = "URI: ";
message += server.uri();
message += "\nMethod: ";
message += (server.method() == HTTP_GET) ? "GET" : "POST";
message += "\nArguments: ";
message += server.args();
message += "\n";
for (uint8_t i = 0; i < server.args(); i++) {
message += " NAME:" + server.argName(i) + "\n VALUE:" + server.arg(i) + "\n";
}
server.send(404, "text/plain", message);
}
void setupWebServer (void) {
//-------------------------
server.on("/", handleRoot);
server.on("/reboot", handleReboot);
server.on("/data", handleData);
server.on("/help", handleHelp);
//server.onNotFound(handleNotFound); wegen Spiffs-Dateimanager
server.begin();
DEBUG_OUT.println ("[HTTP] installed");
}
void webserverHandle() {
//====================
server.handleClient();
}
// ################# OTA #################
#ifdef WITH_OTA
#include <ESP8266HTTPUpdateServer.h>
ESP8266WebServer httpUpdateServer (UPDATESERVER_PORT);
ESP8266HTTPUpdateServer httpUpdater;
void setupUpdateByOTA () {
//------------------------
httpUpdater.setup (&httpUpdateServer, UPDATESERVER_DIR, UPDATESERVER_USER, UPDATESERVER_PW);
httpUpdateServer.begin();
DEBUG_OUT.println (F("[OTA] installed"));
}
void checkUpdateByOTA() {
//---------------------
httpUpdateServer.handleClient();
}
#endif
#endif

597
tools/NRF24_SendRcv/NRF24_SendRcv.ino

@ -0,0 +1,597 @@
#include <Arduino.h>
#include <SPI.h>
#include "CircularBuffer.h"
#include <RF24.h>
#include <RF24_config.h>
#include "hm_crc.h"
#include "hm_packets.h"
#include "Settings.h" // Header für Einstellungen
#include "Debug.h"
#ifdef ESP8266
#define DISABLE_EINT noInterrupts()
#define ENABLE_EINT interrupts()
#else // für AVR z.B. ProMini oder Nano
#define DISABLE_EINT EIMSK = 0x00
#define ENABLE_EINT EIMSK = 0x01
#endif
#define RF_MAX_ADDR_WIDTH (5)
#define MAX_RF_PAYLOAD_SIZE (32)
#ifdef ESP8266
#define PACKET_BUFFER_SIZE (30)
#else
#define PACKET_BUFFER_SIZE (20)
#endif
// Startup defaults until user reconfigures it
#define DEFAULT_RECV_CHANNEL (3) // 3 = Default channel for Hoymiles
//#define DEFAULT_SEND_CHANNEL (75) // 40 = Default channel for Hoymiles, 61
#define DEFAULT_RF_DATARATE (RF24_250KBPS) // Datarate
#include "NRF24_sniff_types.h"
static HM_Packets hmPackets;
static uint32_t tickMillis;
// Set up nRF24L01 radio on SPI bus plus CE/CS pins
// If more than one RF24 unit is used the another CS pin than 10 must be used
// This pin is used hard coded in SPI library
static RF24 radio1 (RF1_CE_PIN, RF1_CS_PIN);
static NRF24_packet_t bufferData[PACKET_BUFFER_SIZE];
static CircularBuffer<NRF24_packet_t> packetBuffer(bufferData, sizeof(bufferData) / sizeof(bufferData[0]));
static Serial_header_t SerialHdr;
#define CHECKCRC 1
static uint16_t lastCRC;
static uint16_t crc;
uint8_t channels[] = {/*3,*/ 23, 40, 61, 75}; //{1, 3, 6, 9, 11, 23, 40, 61, 75}
uint8_t channelIdx = 1; // fange mit 40 an
uint8_t DEFAULT_SEND_CHANNEL = channels[channelIdx]; // = 40
static unsigned long timeLastPacket = millis();
// Function forward declaration
static void SendPacket(uint64_t dest, uint8_t *buf, uint8_t len);
char * getChannelName (uint8_t i);
static const int ANZAHL_VALUES = 16;
static float VALUES[ANZAHL_VALUES] = {};
static const char *CHANNEL_NAMES[ANZAHL_VALUES]
= {"P1.Udc", "P1.Idc", "P1.Pdc", "P2.Udc", "P2.Idc", "P2.Pdc",
"E-Woche", "E-Total", "E1-Tag", "E2-Tag", "Uac", "Freq.ac", "Pac", "E-heute", "Ipv", "WR-Temp"};
static const uint8_t DIVISOR[ANZAHL_VALUES] = {10,100,10,10,100,10,1,1,1,1,10,100,10,0,0,10};
static const char BLANK = ' ';
static boolean istTag = true;
char CHANNELNAME_BUFFER[15];
#ifdef ESP8266
#include "wifi.h"
#include "ModWebserver.h"
#include "Sonne.h"
#endif
char * getChannelName (uint8_t i) {
//-------------------------------
memset (CHANNELNAME_BUFFER, 0, sizeof(CHANNELNAME_BUFFER));
strcpy (CHANNELNAME_BUFFER, CHANNEL_NAMES[i]);
//itoa (i, CHANNELNAME_BUFFER, 10);
return CHANNELNAME_BUFFER;
}
inline static void dumpData(uint8_t *p, int len) {
//-----------------------------------------------
while (len--){
if (*p < 16)
DEBUG_OUT.print(F("0"));
DEBUG_OUT.print(*p++, HEX);
}
DEBUG_OUT.print(BLANK);
}
float extractValue2 (uint8_t *p, int divisor) {
//-------------------------------------------
uint16_t b1 = *p++;
return ((float) (b1 << 8) + *p) / (float) divisor;
}
float extractValue4 (uint8_t *p, int divisor) {
//-------------------------------------------
uint32_t ret = *p++;
for (uint8_t i = 1; i <= 3; i++)
ret = (ret << 8) + *p++;
return (ret / divisor);
}
void outChannel (uint8_t i) {
//-------------------------
DEBUG_OUT.print(getChannelName(i)); DEBUG_OUT.print(F("\t:")); DEBUG_OUT.print(VALUES[i]); DEBUG_OUT.println(BLANK);
}
void analyse01 (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
//DEBUG_OUT.print (F("analyse 01: "));
p += 3;
// PV1.U PV1.I PV1.P PV2.U PV2.I PV2.P
// [0.1V] [0.01A] [.1W] [0.1V] [0.01A] [.1W]
for (int i = 0; i < 6; i++) {
VALUES[i] = extractValue2 (p,DIVISOR[i]); p += 2;
outChannel(i);
}
/*
DEBUG_OUT.print(F("PV1.U:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" PV1.I:")); DEBUG_OUT.print(extractValue2(p,100));
p += 2;
DEBUG_OUT.print(F(" PV1.Pac:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" PV2.U:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" PV2.I:")); DEBUG_OUT.print(extractValue2(p,100));
p += 2;
DEBUG_OUT.print(F(" PV2.Pac:")); DEBUG_OUT.print(extractValue2(p,10));
*/
DEBUG_OUT.println();
}
void analyse02 (uint8_t *p) { // p zeigt auf 02 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
//DEBUG_OUT.print (F("analyse 02: "));
// +11 = Spannung, +13 = Frequenz, +15 = Leistung
//p += 11;
p++;
for (int i = 6; i < 13; i++) {
if (i == 7) {
VALUES[i] = extractValue4 (p,DIVISOR[i]);
p += 4;
}
else {
VALUES[i] = extractValue2 (p,DIVISOR[i]);
p += 2;
}
outChannel(i);
}
VALUES[13] = VALUES[8] + VALUES[9]; // E-heute = P1+P2
if (VALUES[10] > 0)
VALUES[14] = VALUES[12] / VALUES[10]; // Ipv = Pac / Spannung
/*
DEBUG_OUT.print(F("P Woche:")); DEBUG_OUT.print(extractValue2(p,1));
p += 2;
DEBUG_OUT.print(F(" P Total:")); DEBUG_OUT.print(extractValue4(p,1));
p += 4;
DEBUG_OUT.print(F(" P1 Tag:")); DEBUG_OUT.print(extractValue2(p,1));
p += 2;
DEBUG_OUT.print(F(" P2 Tag:")); DEBUG_OUT.print(extractValue2(p,1));
p += 2;
DEBUG_OUT.print(F(" Spannung:")); DEBUG_OUT.print(extractValue2(p,10));
p += 2;
DEBUG_OUT.print(F(" Freq.:")); DEBUG_OUT.print(extractValue2(p,100));
p += 2;
DEBUG_OUT.print(F(" Leist.:")); DEBUG_OUT.print(extractValue2(p,10));
*/
DEBUG_OUT.println();
}
void analyse83 (uint8_t *p) { // p zeigt auf 83 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
//DEBUG_OUT.print (F("++++++analyse 83:"));
p += 7;
VALUES[15] = extractValue2 (p,DIVISOR[15]);
outChannel(15);
DEBUG_OUT.println();
}
void analyseWords (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
DEBUG_OUT.print (F("analyse words:"));
p++;
for (int i = 0; i <12;i++) {
DEBUG_OUT.print(extractValue2(p,1));
DEBUG_OUT.print(BLANK);
p++;
}
DEBUG_OUT.println();
}
void analyseLongs (uint8_t *p) { // p zeigt auf 01 hinter 2. WR-Adr
//----------------------------------
//uint16_t val;
DEBUG_OUT.print (F("analyse words:"));
p++;
for (int i = 0; i <12;i++) {
DEBUG_OUT.print(extractValue4(p,1));
DEBUG_OUT.print(BLANK);
p++;
}
DEBUG_OUT.println();
}
#ifdef ESP8266
IRAM_ATTR
#endif
void handleNrf1Irq() {
//-------------------------
static uint8_t lostPacketCount = 0;
uint8_t pipe;
DISABLE_EINT;
// Loop until RX buffer(s) contain no more packets.
while (radio1.available(&pipe)) {
if (!packetBuffer.full()) {
NRF24_packet_t *p = packetBuffer.getFront();
p->timestamp = micros(); // Micros does not increase in interrupt, but it can be used.
p->packetsLost = lostPacketCount;
uint8_t packetLen = radio1.getPayloadSize();
if (packetLen > MAX_RF_PAYLOAD_SIZE)
packetLen = MAX_RF_PAYLOAD_SIZE;
radio1.read(p->packet, packetLen);
packetBuffer.pushFront(p);
lostPacketCount = 0;
}
else {
// Buffer full. Increase lost packet counter.
bool tx_ok, tx_fail, rx_ready;
if (lostPacketCount < 255)
lostPacketCount++;
// Call 'whatHappened' to reset interrupt status.
radio1.whatHappened(tx_ok, tx_fail, rx_ready);
// Flush buffer to drop the packet.
radio1.flush_rx();
}
}
ENABLE_EINT;
}
static void activateConf(void) {
//-----------------------------
radio1.setChannel(DEFAULT_RECV_CHANNEL);
radio1.setDataRate(DEFAULT_RF_DATARATE);
radio1.disableCRC();
radio1.setAutoAck(0x00);
radio1.setPayloadSize(MAX_RF_PAYLOAD_SIZE);
radio1.setAddressWidth(5);
radio1.openReadingPipe(1, DTU_RADIO_ID);
// We want only RX irqs
radio1.maskIRQ(true, true, false);
// Use lo PA level, as a higher level will disturb CH340 DEBUG_OUT usb adapter
radio1.setPALevel(RF24_PA_MAX);
radio1.startListening();
// Attach interrupt handler to NRF IRQ output. Overwrites any earlier handler.
attachInterrupt(digitalPinToInterrupt(RF1_IRQ_PIN), handleNrf1Irq, FALLING); // NRF24 Irq pin is active low.
// Initialize SerialHdr header's address member to promiscuous address.
uint64_t addr = DTU_RADIO_ID;
for (int8_t i = sizeof(SerialHdr.address) - 1; i >= 0; --i) {
SerialHdr.address[i] = addr;
addr >>= 8;
}
#ifndef ESP8266
DEBUG_OUT.println(F("\nRadio Config:"));
radio1.printPrettyDetails();
DEBUG_OUT.println();
#endif
tickMillis = millis() + 200;
}
void setup(void) {
//--------------
//Serial.begin(SER_BAUDRATE);
DEBUG_OUT.begin(SER_BAUDRATE);
DEBUG_OUT.flush();
DEBUG_OUT.println(F("-- Hoymiles DTU Simulation --"));
radio1.begin();
// Disable shockburst for receiving and decode payload manually
radio1.setAutoAck(false);
radio1.setRetries(0, 0);
// Configure nRF IRQ input
pinMode(RF1_IRQ_PIN, INPUT);
activateConf();
#ifdef ESP8266
setupWifi();
setupClock();
setupWebServer();
setupUpdateByOTA();
calcSunUpDown (getNow());
istTag = isDayTime();
DEBUG_OUT.print ("Es ist "); DEBUG_OUT.println (istTag?"Tag":"Nacht");
hmPackets.SetUnixTimeStamp (getNow());
#else
hmPackets.SetUnixTimeStamp(0x62456430);
#endif
}
uint8_t sendBuf[MAX_RF_PAYLOAD_SIZE];
void isTime2Send () {
//-----------------
// Second timer
if (millis() >= tickMillis) {
static uint8_t tel = 0;
tickMillis += 1000; //200;
//tickSec++;
hmPackets.UnixTimeStampTick();
/* if (++tickSec >= 5) { // 5
hmPackets.UnixTimeStampTick();
tickSec = 0;
} */
int32_t size = 0;
uint64_t dest = WR1_RADIO_ID;
if (tel > 5)
tel = 0;
if (tel == 0) {
#ifdef ESP8266
hmPackets.SetUnixTimeStamp (getNow());
#endif
size = hmPackets.GetTimePacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8);
}
else if (tel == 1)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x81);
else if (tel == 2)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x80);
else if (tel == 3) {
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x83);
//tel = 0;
}
else if (tel == 4)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x82);
else if (tel == 5)
size = hmPackets.GetCmdPacket((uint8_t *)&sendBuf, dest >> 8, DTU_RADIO_ID >> 8, 0x15, 0x84);
SendPacket(dest, (uint8_t *)&sendBuf, size);
tel++;
/* for (uint8_t warte = 0; warte < 2; warte++) {
delay(1000);
hmPackets.UnixTimeStampTick();
}*/
}
}
void outputPacket(NRF24_packet_t *p, uint8_t payloadLen) {
//-----------------------------------------------------
// Write timestamp, packets lost, address and payload length
//printf(" %09lu ", SerialHdr.timestamp);
dumpData((uint8_t *)&SerialHdr.packetsLost, sizeof(SerialHdr.packetsLost));
dumpData((uint8_t *)&SerialHdr.address, sizeof(SerialHdr.address));
// Trailing bit?!?
dumpData(&p->packet[0], 2);
// Payload length from PCF
dumpData(&payloadLen, sizeof(payloadLen));
// Packet control field - PID Packet identification
uint8_t val = (p->packet[1] >> 1) & 0x03;
DEBUG_OUT.print(val);
DEBUG_OUT.print(F(" "));
if (payloadLen > 9) {
dumpData(&p->packet[2], 1);
dumpData(&p->packet[3], 4);
dumpData(&p->packet[7], 4);
uint16_t remain = payloadLen - 2 - 1 - 4 - 4 + 4;
if (remain < 32) {
dumpData(&p->packet[11], remain);
printf_P(PSTR("%04X "), crc);
if (((crc >> 8) != p->packet[payloadLen + 2]) || ((crc & 0xFF) != p->packet[payloadLen + 3]))
DEBUG_OUT.print(0);
else
DEBUG_OUT.print(1);
}
else {
DEBUG_OUT.print(F("Ill remain "));
DEBUG_OUT.print(remain);
}
}
else {
dumpData(&p->packet[2], payloadLen + 2);
printf_P(PSTR("%04X "), crc);
}
DEBUG_OUT.println();
}
void loop(void) {
//=============
while (!packetBuffer.empty()) {
timeLastPacket = millis();
// One or more records present
NRF24_packet_t *p = packetBuffer.getBack();
// Shift payload data due to 9-bit packet control field
for (int16_t j = sizeof(p->packet) - 1; j >= 0; j--) {
if (j > 0)
p->packet[j] = (byte)(p->packet[j] >> 7) | (byte)(p->packet[j - 1] << 1);
else
p->packet[j] = (byte)(p->packet[j] >> 7);
}
SerialHdr.timestamp = p->timestamp;
SerialHdr.packetsLost = p->packetsLost;
// Check CRC
crc = 0xFFFF;
crc = crc16((uint8_t *)&SerialHdr.address, sizeof(SerialHdr.address), crc, 0, BYTES_TO_BITS(sizeof(SerialHdr.address)));
// Payload length
uint8_t payloadLen = ((p->packet[0] & 0x01) << 5) | (p->packet[1] >> 3);
// Add one byte and one bit for 9-bit packet control field
crc = crc16((uint8_t *)&p->packet[0], sizeof(p->packet), crc, 7, BYTES_TO_BITS(payloadLen + 1) + 1);
if (CHECKCRC) {
// If CRC is invalid only show lost packets
if (((crc >> 8) != p->packet[payloadLen + 2]) || ((crc & 0xFF) != p->packet[payloadLen + 3])) {
if (p->packetsLost > 0) {
DEBUG_OUT.print(F(" Lost: "));
DEBUG_OUT.println(p->packetsLost);
}
packetBuffer.popBack();
continue;
}
// Dump a decoded packet only once
if (lastCRC == crc) {
packetBuffer.popBack();
continue;
}
lastCRC = crc;
}
// Don't dump mysterious ack packages
if (payloadLen == 0) {
packetBuffer.popBack();
continue;
}
#ifdef DEBUG
outputPacket (p, payloadLen);
#endif
uint8_t cmd = p->packet[11];
if (cmd == 0x02)
analyse02 (&p->packet[11]);
else if (cmd == 0x01)
analyse01 (&p->packet[11]);
//if (p->packet[11] == 0x83 || p->packet[11] == 0x82) analyse83 (&p->packet[11], payloadLen);
else if (cmd == 0x03) {
analyseWords (&p->packet[11]);
analyseLongs (&p->packet[11]);
}
else if (cmd == 0x81) // ???
;
else if (cmd == 0x83)
analyse83 (&p->packet[11]);
else {
DEBUG_OUT.print (F("---- neues cmd=")); DEBUG_OUT.println(cmd, HEX);
analyseWords (&p->packet[11]);
analyseLongs (&p->packet[11]);
}
if (p->packetsLost > 0) {
DEBUG_OUT.print(F(" Lost: "));
DEBUG_OUT.print(p->packetsLost);
}
DEBUG_OUT.println();
#ifndef ESP8266
for (uint8_t i = 0; i < ANZAHL_VALUES; i++) {
//outChannel(i);
Serial.print(getChannelName(i)); Serial.print(':'); Serial.print(VALUES[i]); Serial.println(BLANK); // Schnittstelle bei Arduino
}
DEBUG_OUT.println();
#endif
// Remove record as we're done with it.
packetBuffer.popBack();
}
if (istTag)
isTime2Send();
#ifdef ESP8266
checkWifi();
webserverHandle();
checkUpdateByOTA();
if (hour() == 0 && minute() == 0) {
calcSunUpDown(getNow());
}
if (minute() % 15 == 0 && second () == 0) { // alle 15 Minuten neu berechnen ob noch hell
istTag = isDayTime();
DEBUG_OUT.print ("Es ist "); DEBUG_OUT.println (istTag?"Tag":"Nacht");
}
#endif
/*
if (millis() > timeLastPacket + 60UL*SECOND) { // 60 Sekunden
channelIdx++;
if (channelIdx >= sizeof(channels)) channelIdx = 0;
DEFAULT_SEND_CHANNEL = channels[channelIdx];
DEBUG_OUT.print (F("\nneuer DEFAULT_SEND_CHANNEL: ")); DEBUG_OUT.println(DEFAULT_SEND_CHANNEL);
timeLastPacket = millis();
}
*/
}
static void SendPacket(uint64_t dest, uint8_t *buf, uint8_t len) {
//--------------------------------------------------------------
DISABLE_EINT;
radio1.stopListening();
#ifdef CHANNEL_HOP
static uint8_t hop = 0;
#if DEBUG_SEND
DEBUG_OUT.print(F("Send... CH"));
DEBUG_OUT.println(channels[hop]);
#endif
radio1.setChannel(channels[hop++]);
if (hop >= sizeof(channels) / sizeof(channels[0]))
hop = 0;
#else
radio1.setChannel(DEFAULT_SEND_CHANNEL);
#endif
radio1.openWritingPipe(dest);
radio1.setCRCLength(RF24_CRC_16);
radio1.enableDynamicPayloads();
radio1.setAutoAck(true);
radio1.setRetries(3, 15);
radio1.write(buf, len);
// Try to avoid zero payload acks (has no effect)
radio1.openWritingPipe(DUMMY_RADIO_ID);
radio1.setAutoAck(false);
radio1.setRetries(0, 0);
radio1.disableDynamicPayloads();
radio1.setCRCLength(RF24_CRC_DISABLED);
radio1.setChannel(DEFAULT_RECV_CHANNEL);
radio1.startListening();
ENABLE_EINT;
}

55
tools/NRF24_SendRcv/NRF24_sniff_types.h

@ -0,0 +1,55 @@
/*
This file is part of NRF24_Sniff.
Created by Ivo Pullens, Emmission, 2014 -- www.emmission.nl
NRF24_Sniff is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
NRF24_Sniff is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with NRF24_Sniff. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef NRF24_sniff_types_h
#define NRF24_sniff_types_h
typedef struct _NRF24_packet_t
{
uint32_t timestamp;
uint8_t packetsLost;
uint8_t packet[MAX_RF_PAYLOAD_SIZE];
} NRF24_packet_t;
typedef struct _Serial_header_t
{
unsigned long timestamp;
uint8_t packetsLost;
uint8_t address[RF_MAX_ADDR_WIDTH]; // MSB first, always RF_MAX_ADDR_WIDTH bytes.
} Serial_header_t;
typedef struct _Serial_config_t
{
uint8_t channel;
uint8_t rate; // rf24_datarate_e: 0 = 1Mb/s, 1 = 2Mb/s, 2 = 250Kb/s
uint8_t addressLen; // Number of bytes used in address, range [2..5]
uint8_t addressPromiscLen; // Number of bytes used in promiscuous address, range [2..5]. E.g. addressLen=5, addressPromiscLen=4 => 1 byte unique identifier.
uint64_t address; // Base address, LSB first.
uint8_t crcLength; // Length of active CRC, range [0..2]
uint8_t maxPayloadSize; // Maximum size of payload for nRF (including nRF header), range[4?..32]
} Serial_config_t;
#define MSG_TYPE_PACKET (0)
#define MSG_TYPE_CONFIG (1)
#define SET_MSG_TYPE(var,type) (((var) & 0x3F) | ((type) << 6))
#define GET_MSG_TYPE(var) ((var) >> 6)
#define GET_MSG_LEN(var) ((var) & 0x3F)
#endif // NRF24_sniff_types_h

82
tools/NRF24_SendRcv/Settings.h

@ -0,0 +1,82 @@
#ifndef __SETTINGS_H
#define __SETTINGS_H
// Ausgabe von Debug Infos auf der seriellen Console
#define DEBUG
#define SER_BAUDRATE (115200)
// Ausgabe was gesendet wird; 0 oder 1
#define DEBUG_SEND 0
// soll zwichen den Sendekanälen 23, 40, 61, 75 ständig gewechselt werden
#define CHANNEL_HOP
// mit OTA Support, also update der Firmware über WLan mittels IP/update
#define WITH_OTA
// Hardware configuration
#ifdef ESP8266
#define RF1_CE_PIN (D4)
#define RF1_CS_PIN (D8)
#define RF1_IRQ_PIN (D3)
#else
#define RF1_CE_PIN (9)
#define RF1_CS_PIN (10)
#define RF1_IRQ_PIN (2)
#endif
union longlongasbytes {
uint64_t ull;
uint8_t bytes[8];
};
uint64_t Serial2RadioID (uint64_t sn) {
//----------------------------------
longlongasbytes llsn;
longlongasbytes res;
llsn.ull = sn;
res.ull = 0;
res.bytes[4] = llsn.bytes[0];
res.bytes[3] = llsn.bytes[1];
res.bytes[2] = llsn.bytes[2];
res.bytes[1] = llsn.bytes[3];
res.bytes[0] = 0x01;
return res.ull;
}
// WR und DTU
#define DUMMY_RADIO_ID ((uint64_t)0xDEADBEEF01ULL)
#define SerialWR 0x114172607952ULL // <<<<<<<<<<<<<<<<<<<<<<< anpassen
uint64_t WR1_RADIO_ID = Serial2RadioID (SerialWR); // ((uint64_t)0x5279607201ULL);
#define DTU_RADIO_ID ((uint64_t)0x1234567801ULL)
// Webserver
#define WEBSERVER_PORT 80
// Time Server
//#define TIMESERVER_NAME "pool.ntp.org"
#define TIMESERVER_NAME "fritz.box"
#ifdef WITH_OTA
// OTA Einstellungen
#define UPDATESERVER_PORT WEBSERVER_PORT+1
#define UPDATESERVER_DIR "/update" // mittels IP:81/update kommt man dann auf die OTA-Seite
#define UPDATESERVER_USER "username_für_OTA" // <<<<<<<<<<<<<<<<<<<<<<< anpassen
#define UPDATESERVER_PW "passwort_für_OTA" // <<<<<<<<<<<<<<<<<<<<<<< anpassen
#endif
// internes WLan
// PREFIXE dienen dazu, die eigenen WLans (wenn mehrere) vonfremden zu unterscheiden
// gehe hier davon aus, dass alle WLans das gleiche Passwort haben. Wenn nicht, dann mehre Passwörter hinterlegen
#define SSID_PREFIX1 "wlan1-Prefix" // <<<<<<<<<<<<<<<<<<<<<<< anpassen
#define SSID_PREFIX2 "wlan2-Prefix" // <<<<<<<<<<<<<<<<<<<<<<< anpassen
#define SSID_PASSWORD "wlan-passwort" // <<<<<<<<<<<<<<<<<<<<<<< anpassen
// zur Berechnung von Sonnenauf- und -untergang
#define geoBreite 49.2866
#define geoLaenge 7.3416
#endif

55
tools/NRF24_SendRcv/Sonne.h

@ -0,0 +1,55 @@
#ifndef __SONNE_H
#define __SONNE_H
#include "Settings.h"
#include "Debug.h"
long SunDown, SunUp;
void calcSunUpDown (time_t date) {
//SunUpDown res = new SunUpDown();
boolean isSummerTime = false; // TODO TimeZone.getDefault().inDaylightTime(new Date(date));
//- Bogenma�
double brad = geoBreite / 180.0 * PI;
// - H�he Sonne -50 Bogenmin.
double h0 = -50.0 / 60.0 / 180.0 * PI;
//- Deklination dek, Tag des Jahres d0
int tage = 30 * month(date) - 30 + day(date);
double dek = 0.40954 * sin (0.0172 * (tage - 79.35));
double zh1 = sin (h0) - sin (brad) * sin(dek);
double zh2 = cos(brad) * cos(dek);
double zd = 12*acos (zh1/zh2) / PI;
double zgl = -0.1752 * sin (0.03343 * tage + 0.5474) - 0.134 * sin (0.018234 * tage - 0.1939);
//-Sonnenuntergang
double tsu = 12 + zd - zgl;
double su = (tsu + (15.0 - geoLaenge) / 15.0);
int std = (int)su;
int minute = (int) ((su - std)*60);
if (isSummerTime) std++;
SunDown = (100*std + minute) * 100;
//- Sonnenaufgang
double tsa = 12 - zd - zgl;
double sa = (tsa + (15.0 - geoLaenge) /15.0);
std = (int) sa;
minute = (int) ((sa - std)*60);
if (isSummerTime) std++;
SunUp = (100*std + minute) * 100;
DEBUG_OUT.print("Sonnenaufgang :"); DEBUG_OUT.println(SunUp);
DEBUG_OUT.print("Sonnenuntergang:"); DEBUG_OUT.println(SunDown);
}
boolean isDayTime() {
//-----------------
// 900 = 15 Minuten, vor Sonnenaufgang und nach -untergang
const int offset=60*15;
time_t no = getNow();
long jetztMinuteU = (100 * hour(no+offset) + minute(no+offset)) * 100;
long jetztMinuteO = (100 * hour(no-offset) + minute(no-offset)) * 100;
return ((jetztMinuteU >= SunUp) &&(jetztMinuteO <= SunDown));
}
#endif

142
tools/NRF24_SendRcv/hm_crc.cpp

@ -0,0 +1,142 @@
#include <stdio.h>
#include <stdint.h>
#include "hm_crc.h"
//#define OUTPUT_DEBUG_INFO
/* Table of CRC values for high-order byte */
static const uint8_t auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40};
/* Table of CRC values for low-order byte */
static const uint8_t auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40};
uint16_t crc16_modbus(uint8_t *puchMsg, uint16_t usDataLen)
{
uint8_t uchCRCHi = 0xFF; /* high byte of CRC initialized */
uint8_t uchCRCLo = 0xFF; /* low byte of CRC initialized */
uint16_t uIndex; /* will index into CRC lookup table */
while (usDataLen--) /* pass through message buffer */
{
uIndex = uchCRCLo ^ *puchMsg++; /* calculate the CRC */
uchCRCLo = uchCRCHi ^ auchCRCHi[uIndex];
uchCRCHi = auchCRCLo[uIndex];
}
return (uchCRCHi << 8 | uchCRCLo);
}
// Hoymiles CRC8 calculation with poly 0x01, Initial value 0x00 and final XOR 0x00
uint8_t crc8(uint8_t *buf, const uint16_t bufLen)
{
uint32_t crc;
uint16_t i, bit;
crc = 0x00;
for (i = 0; i < bufLen; i++)
{
crc ^= buf[i];
for (bit = 0; bit < 8; bit++)
{
if ((crc & 0x80) != 0)
{
crc <<= 1;
crc ^= 0x01;
}
else
{
crc <<= 1;
}
}
}
return (crc & 0xFF);
}
// NRF24 CRC16 calculation with poly 0x1021 = (1) 0001 0000 0010 0001 = x^16+x^12+x^5+1
uint16_t crc16(uint8_t *buf, const uint16_t bufLen, const uint16_t startCRC, const uint16_t startBit, const uint16_t len_bits)
{
uint16_t crc = startCRC;
if ((len_bits > 0) && (len_bits <= BYTES_TO_BITS(bufLen)))
{
// The length of the data might not be a multiple of full bytes.
// Therefore we proceed over the data bit-by-bit (like the NRF24 does) to
// calculate the CRC.
uint16_t data;
uint8_t byte, shift;
uint16_t bitoffs = startBit;
// Get a new byte for the next 8 bits.
byte = buf[bitoffs >> 3];
#ifdef OUTPUT_DEBUG_INFO
printf("\nStart CRC %04X, %u bits:", startCRC, len_bits);
printf("\nbyte %02X:", byte);
#endif
while (bitoffs < len_bits + startBit)
{
shift = bitoffs & 7;
// Shift the active bit to the position of bit 15
data = ((uint16_t)byte) << (8 + shift);
#ifdef OUTPUT_DEBUG_INFO
printf(" bit %u %u,", shift, data & 0x8000 ? 1 : 0);
#endif
// Assure all other bits are 0
data &= 0x8000;
crc ^= data;
if (crc & 0x8000)
{
crc = (crc << 1) ^ 0x1021; // 0x1021 = (1) 0001 0000 0010 0001 = x^16+x^12+x^5+1
}
else
{
crc = (crc << 1);
}
++bitoffs;
if (0 == (bitoffs & 7))
{
// Get a new byte for the next 8 bits.
byte = buf[bitoffs >> 3];
#ifdef OUTPUT_DEBUG_INFO
printf("crc %04X:", crc);
if (bitoffs < len_bits + startBit)
printf("\nbyte %02X:", byte);
#endif
}
}
}
return crc;
}

8
tools/NRF24_SendRcv/hm_crc.h

@ -0,0 +1,8 @@
#define BITS_TO_BYTES(x) (((x)+7)>>3)
#define BYTES_TO_BITS(x) ((x)<<3)
extern uint16_t crc16_modbus(uint8_t *puchMsg, uint16_t usDataLen);
extern uint8_t crc8(uint8_t *buf, const uint16_t bufLen);
extern uint16_t crc16(uint8_t* buf, const uint16_t bufLen, const uint16_t startCRC, const uint16_t startBit, const uint16_t len_bits);

74
tools/NRF24_SendRcv/hm_packets.cpp

@ -0,0 +1,74 @@
#include "Arduino.h"
#include "hm_crc.h"
#include "hm_packets.h"
void HM_Packets::SetUnixTimeStamp(uint32_t ts)
{
unixTimeStamp = ts;
}
void HM_Packets::UnixTimeStampTick()
{
unixTimeStamp++;
}
void HM_Packets::prepareBuffer(uint8_t *buf)
{
// minimal buffer size of 32 bytes is assumed
memset(buf, 0x00, 32);
}
void HM_Packets::copyToBuffer(uint8_t *buf, uint32_t val)
{
buf[0]= (uint8_t)(val >> 24);
buf[1]= (uint8_t)(val >> 16);
buf[2]= (uint8_t)(val >> 8);
buf[3]= (uint8_t)(val & 0xFF);
}
void HM_Packets::copyToBufferBE(uint8_t *buf, uint32_t val)
{
memcpy(buf, &val, sizeof(uint32_t));
}
int32_t HM_Packets::GetTimePacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr)
{
prepareBuffer(buf);
buf[0] = 0x15;
copyToBufferBE(&buf[1], wrAdr);
copyToBufferBE(&buf[5], dtuAdr);
buf[9] = 0x80;
buf[10] = 0x0B; // cid
buf[11] = 0x00;
copyToBuffer(&buf[12], unixTimeStamp);
buf[19] = 0x05;
// CRC16
uint16_t crc16 = crc16_modbus(&buf[10], 14);
buf[24] = crc16 >> 8;
buf[25] = crc16 & 0xFF;
// crc8
buf[26] = crc8(&buf[0], 26);
return 27;
}
int32_t HM_Packets::GetCmdPacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr, uint8_t mid, uint8_t cmd)
{
buf[0] = mid;
copyToBufferBE(&buf[1], wrAdr);
copyToBufferBE(&buf[5], dtuAdr);
buf[9] = cmd;
// crc8
buf[10] = crc8(&buf[0], 10);
return 11;
}

18
tools/NRF24_SendRcv/hm_packets.h

@ -0,0 +1,18 @@
class HM_Packets
{
private:
uint32_t unixTimeStamp;
void prepareBuffer(uint8_t *buf);
void copyToBuffer(uint8_t *buf, uint32_t val);
void copyToBufferBE(uint8_t *buf, uint32_t val);
public:
void SetUnixTimeStamp(uint32_t ts);
void UnixTimeStampTick();
int32_t GetTimePacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr);
int32_t GetCmdPacket(uint8_t *buf, uint32_t wrAdr, uint32_t dtuAdr, uint8_t mid, uint8_t cmd);
};

345
tools/NRF24_SendRcv/wifi.h

@ -0,0 +1,345 @@
#ifndef __WIFI_H
#define __WIFI_H
#include "Settings.h"
#include "Debug.h"
#include <ESP8266WiFi.h>
#include <Pinger.h> // von url=https://www.technologytourist.com
String SSID = ""; // bestes WLan
// Prototypes
time_t getNow ();
boolean setupWifi ();
boolean checkWifi();
String findWifi () {
//----------------
String ssid;
int32_t rssi;
uint8_t encryptionType;
uint8_t* bssid;
int32_t channel;
bool hidden;
int scanResult;
String best_ssid = "";
int32_t best_rssi = -100;
DEBUG_OUT.println(F("Starting WiFi scan..."));
scanResult = WiFi.scanNetworks(/*async=*/false, /*hidden=*/true);
if (scanResult == 0) {
DEBUG_OUT.println(F("keine WLans"));
} else if (scanResult > 0) {
DEBUG_OUT.printf(PSTR("%d WLans gefunden:\n"), scanResult);
// Print unsorted scan results
for (int8_t i = 0; i < scanResult; i++) {
WiFi.getNetworkInfo(i, ssid, encryptionType, rssi, bssid, channel, hidden);
DEBUG_OUT.printf(PSTR(" %02d: [CH %02d] [%02X:%02X:%02X:%02X:%02X:%02X] %ddBm %c %c %s\n"),
i,
channel,
bssid[0], bssid[1], bssid[2],
bssid[3], bssid[4], bssid[5],
rssi,
(encryptionType == ENC_TYPE_NONE) ? ' ' : '*',
hidden ? 'H' : 'V',
ssid.c_str());
delay(1);
boolean check;
#ifdef SSID_PREFIX1
check = ssid.substring(0,strlen(SSID_PREFIX1)).equals(SSID_PREFIX1);
#else
check = true;
#endif
#ifdef SSID_PREFIX2
check = check || ssid.substring(0,strlen(SSID_PREFIX2)).equals(SSID_PREFIX2);
#endif
if (check) {
if (rssi > best_rssi) {
best_rssi = rssi;
best_ssid = ssid;
}
}
}
} else {
DEBUG_OUT.printf(PSTR("WiFi scan error %d"), scanResult);
}
if (! best_ssid.equals("")) {
SSID = best_ssid;
DEBUG_OUT.printf ("Bestes Wifi unter: %s\n", SSID.c_str());
return SSID;
}
else
return "";
}
void IP2string (IPAddress IP, char * buf) {
sprintf (buf, "%d.%d.%d.%d", IP[0], IP[1], IP[2], IP[3]);
}
void connectWifi() {
//------------------
// if (SSID.equals(""))
String s = findWifi();
if (!SSID.equals("")) {
DEBUG_OUT.print("versuche zu verbinden mit "); DEBUG_OUT.println(SSID);
//while (WiFi.status() != WL_CONNECTED) {
WiFi.begin (SSID, SSID_PASSWORD);
int versuche = 20;
while (WiFi.status() != WL_CONNECTED && versuche > 0) {
delay(1000);
versuche--;
DEBUG_OUT.print(versuche); DEBUG_OUT.print(' ');
}
//}
if (WiFi.status() == WL_CONNECTED) {
char buffer[30];
IP2string (WiFi.localIP(), buffer);
String out = "\n[WiFi]Verbunden; meine IP:" + String (buffer);
DEBUG_OUT.println (out);
}
else
DEBUG_OUT.print("\nkeine Verbindung mit SSID "); DEBUG_OUT.println(SSID);
}
}
boolean setupWifi () {
//------------------
int count=5;
while (count-- && WiFi.status() != WL_CONNECTED)
connectWifi();
return (WiFi.status() == WL_CONNECTED);
}
Pinger pinger;
IPAddress ROUTER = IPAddress(192,168,1,1);
boolean checkWifi() {
//---------------
boolean NotConnected = (WiFi.status() != WL_CONNECTED) || !pinger.Ping(ROUTER);
if (NotConnected) {
setupWifi();
if (WiFi.status() == WL_CONNECTED)
getNow();
}
return (WiFi.status() == WL_CONNECTED);
}
// ################ Clock #################
#include <WiFiUdp.h>
#include <TimeLib.h>
IPAddress timeServer;
unsigned int localPort = 8888;
const int NTP_PACKET_SIZE= 48; // NTP time stamp is in the first 48 bytes of the message
byte packetBuf[NTP_PACKET_SIZE]; // Buffer to hold incoming and outgoing packets
const int timeZone = 1; // Central European Time = +1
long SYNCINTERVALL = 0;
WiFiUDP Udp; // A UDP instance to let us send and receive packets over UDP
// prototypes
time_t getNtpTime ();
void sendNTPpacket (IPAddress &address);
time_t getNow ();
char* getDateTimeStr (time_t no = getNow());
time_t offsetDayLightSaving (uint32_t local_t);
bool isDayofDaylightChange (time_t local_t);
void _setSyncInterval (long intervall) {
//----------------------------------------
SYNCINTERVALL = intervall;
setSyncInterval (intervall);
}
void setupClock() {
//-----------------
WiFi.hostByName (TIMESERVER_NAME,timeServer); // at this point the function works
Udp.begin(localPort);
getNtpTime();
setSyncProvider (getNtpTime);
while(timeStatus()== timeNotSet)
delay(1); //
_setSyncInterval (SECS_PER_DAY / 2); // Set seconds between re-sync
//lastClock = now();
//Serial.print("[NTP] get time from NTP server ");
getNow();
//char buf[20];
DEBUG_OUT.print ("[NTP] get time from NTP server ");
DEBUG_OUT.print (timeServer);
//sprintf (buf, ": %02d:%02d:%02d", hour(no), minute(no), second(no));
DEBUG_OUT.print (": got ");
DEBUG_OUT.println (getDateTimeStr());
}
//*-------- NTP code ----------*/
time_t getNtpTime() {
//-------------------
sendNTPpacket(timeServer); // send an NTP packet to a time server
//uint32_t beginWait = millis();
//while (millis() - beginWait < 1500) {
int versuch = 0;
while (versuch < 5) {
int wait = 150; // results in max 1500 ms waitTime
while (wait--) {
int size = Udp.parsePacket();
if (size >= NTP_PACKET_SIZE) {
//Serial.println("Receive NTP Response");
Udp.read(packetBuf, NTP_PACKET_SIZE); // read packet into the buffer
unsigned long secsSince1900;
// convert four bytes starting at location 40 to a long integer
secsSince1900 = (unsigned long)packetBuf[40] << 24;
secsSince1900 |= (unsigned long)packetBuf[41] << 16;
secsSince1900 |= (unsigned long)packetBuf[42] << 8;
secsSince1900 |= (unsigned long)packetBuf[43];
// time_t now = secsSince1900 - 2208988800UL + timeZone * SECS_PER_HOUR;
time_t utc = secsSince1900 - 2208988800UL;
time_t now = utc + (timeZone +offsetDayLightSaving(utc)) * SECS_PER_HOUR;
if (isDayofDaylightChange (utc) && hour(utc) <= 4)
_setSyncInterval (SECS_PER_HOUR);
else
_setSyncInterval (SECS_PER_DAY / 2);
return now;
}
else
delay(10);
}
versuch++;
}
return 0;
}
// send an NTP request to the time server at the given address
void sendNTPpacket(IPAddress& address) {
//------------------------------------
memset(packetBuf, 0, NTP_PACKET_SIZE); // set all bytes in the buffer to 0
// Initialize values needed to form NTP request
packetBuf[0] = B11100011; // LI, Version, Mode
packetBuf[1] = 0; // Stratum
packetBuf[2] = 6; // Max Interval between messages in seconds
packetBuf[3] = 0xEC; // Clock Precision
// bytes 4 - 11 are for Root Delay and Dispersion and were set to 0 by memset
packetBuf[12] = 49; // four-byte reference ID identifying
packetBuf[13] = 0x4E;
packetBuf[14] = 49;
packetBuf[15] = 52;
// send the packet requesting a timestamp:
Udp.beginPacket(address, 123); //NTP requests are to port 123
Udp.write(packetBuf,NTP_PACKET_SIZE);
Udp.endPacket();
}
int getTimeTrials = 0;
bool isValidDateTime (time_t no) {
return (year(no) > 2020 && year(no) < 2038);
}
bool isDayofDaylightChange (time_t local_t) {
//-----------------------------------------
int jahr = year (local_t);
int monat = month (local_t);
int tag = day (local_t);
bool ret = ( (monat ==3 && tag == (31 - (5 * jahr /4 + 4) % 7)) ||
(monat==10 && tag == (31 - (5 * jahr /4 + 1) % 7)));
DEBUG_OUT.print ("isDayofDaylightChange="); DEBUG_OUT.println (ret);
return ret;
}
// calculates the daylight saving time for middle Europe. Input: Unixtime in UTC (!)
// übernommen von Jurs, see : https://forum.arduino.cc/index.php?topic=172044.msg1278536#msg1278536
time_t offsetDayLightSaving (uint32_t local_t) {
//--------------------------------------------
int monat = month (local_t);
if (monat < 3 || monat > 10) return 0; // no DSL in Jan, Feb, Nov, Dez
if (monat > 3 && monat < 10) return 1; // DSL in Apr, May, Jun, Jul, Aug, Sep
int jahr = year (local_t);
int std = hour (local_t);
//int tag = day (local_t);
int stundenBisHeute = (std + 24 * day(local_t));
if ( (monat == 3 && stundenBisHeute >= (1 + timeZone + 24 * (31 - (5 * jahr /4 + 4) % 7))) ||
(monat == 10 && stundenBisHeute < (1 + timeZone + 24 * (31 - (5 * jahr /4 + 1) % 7))) )
return 1;
else
return 0;
/*
int stundenBisWechsel = (1 + 24 * (31 - (5 * year(local_t) / 4 + 4) % 7));
if (monat == 3 && stundenBisHeute >= stundenBisWechsel || monat == 10 && stundenBisHeute < stundenBisWechsel)
return 1;
else
return 0;
*/
}
time_t getNow () {
//---------------
time_t jetzt = now();
while (!isValidDateTime(jetzt) && getTimeTrials < 10) { // ungültig, max 10x probieren
if (getTimeTrials) {
//Serial.print (getTimeTrials);
//Serial.println(". Versuch für getNtpTime");
}
jetzt = getNtpTime ();
if (isValidDateTime(jetzt)) {
setTime (jetzt);
getTimeTrials = 0;
}
else
getTimeTrials++;
}
//return jetzt + offsetDayLightSaving(jetzt)*SECS_PER_HOUR;
return jetzt;
}
char _timestr[24];
char* getNowStr (time_t no = getNow()) {
//------------------------------------
sprintf (_timestr, "%02d:%02d:%02d", hour(no), minute(no), second(no));
return _timestr;
}
char* getTimeStr (time_t no = getNow()) {
//------------------------------------
return getNowStr (no);
}
char* getDateTimeStr (time_t no) {
//------------------------------
sprintf (_timestr, "%04d-%02d-%02d+%02d:%02d:%02d", year(no), month(no), day(no), hour(no), minute(no), second(no));
return _timestr;
}
char* getDateStr (time_t no) {
//------------------------------
sprintf (_timestr, "%04d-%02d-%02d", year(no), month(no), day(no));
return _timestr;
}
#endif
Loading…
Cancel
Save