Browse Source

small changes

pull/742/head
rejoe2 2 years ago
committed by GitHub
parent
commit
319a69dd71
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 689
      hmInverter.h
  2. 291
      miPayload.h

689
hmInverter.h

@ -0,0 +1,689 @@
//-----------------------------------------------------------------------------
// 2023 Ahoy, https://www.mikrocontroller.net/topic/525778
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//-----------------------------------------------------------------------------
#ifndef __HM_INVERTER_H__
#define __HM_INVERTER_H__
#if defined(ESP32) && defined(F)
#undef F
#define F(sl) (sl)
#endif
#include "hmDefines.h"
#include <memory>
#include <queue>
#include "../config/settings.h"
/**
* For values which are of interest and not transmitted by the inverter can be
* calculated automatically.
* A list of functions can be linked to the assignment and will be executed
* automatically. Their result does not differ from original read values.
*/
// forward declaration of class
template <class REC_TYP=float>
class Inverter;
// prototypes
template<class T=float>
static T calcYieldTotalCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcYieldDayCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcUdcCh(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcPowerDcCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcEffiencyCh0(Inverter<> *iv, uint8_t arg0);
template<class T=float>
static T calcIrradiation(Inverter<> *iv, uint8_t arg0);
template<class T=float>
using func_t = T (Inverter<> *, uint8_t);
template<class T=float>
struct calcFunc_t {
uint8_t funcId; // unique id
func_t<T>* func; // function pointer
};
template<class T=float>
struct record_t {
byteAssign_t* assign; // assigment of bytes in payload
uint8_t length; // length of the assignment list
T *record; // data pointer
uint32_t ts; // timestamp of last received payload
uint8_t pyldLen; // expected payload length for plausibility check
};
class CommandAbstract {
public:
CommandAbstract(uint8_t txType = 0, uint8_t cmd = 0) {
_TxType = txType;
_Cmd = cmd;
};
virtual ~CommandAbstract() {};
const uint8_t getCmd() {
return _Cmd;
}
protected:
uint8_t _TxType;
uint8_t _Cmd;
};
class InfoCommand : public CommandAbstract {
public:
InfoCommand(uint8_t cmd){
_TxType = 0x15;
_Cmd = cmd;
}
};
class MiInfoCommand : public CommandAbstract {
public:
MiInfoCommand(uint8_t cmd){
_TxType = cmd;
_Cmd = cmd;
}
};
// list of all available functions, mapped in hmDefines.h
template<class T=float>
const calcFunc_t<T> calcFunctions[] = {
{ CALC_YT_CH0, &calcYieldTotalCh0 },
{ CALC_YD_CH0, &calcYieldDayCh0 },
{ CALC_UDC_CH, &calcUdcCh },
{ CALC_PDC_CH0, &calcPowerDcCh0 },
{ CALC_EFF_CH0, &calcEffiencyCh0 },
{ CALC_IRR_CH, &calcIrradiation }
};
template <class REC_TYP>
class Inverter {
public:
uint8_t ivGen; // generation of inverter (HM / MI)
cfgIv_t *config; // stored settings
uint8_t id; // unique id
uint8_t type; // integer which refers to inverter type
uint16_t alarmMesIndex; // Last recorded Alarm Message Index
uint16_t powerLimit[2]; // limit power output
float actPowerLimit; // actual power limit
uint8_t devControlCmd; // carries the requested cmd
serial_u radioId; // id converted to modbus
uint8_t channels; // number of PV channels (1-4)
record_t<REC_TYP> recordMeas; // structure for measured values
record_t<REC_TYP> recordInfo; // structure for info values
record_t<REC_TYP> recordConfig; // structure for system config values
record_t<REC_TYP> recordAlarm; // structure for alarm values
//String lastAlarmMsg;
bool initialized; // needed to check if the inverter was correctly added (ESP32 specific - union types are never null)
bool isConnected; // shows if inverter was successfully identified (fw version and hardware info)
Inverter() {
ivGen = IV_HM;
powerLimit[0] = 0xffff; // 65535 W Limit -> unlimited
powerLimit[1] = AbsolutNonPersistent; // default power limit setting
actPowerLimit = 0xffff; // init feedback from inverter to -1
mDevControlRequest = false;
devControlCmd = InitDataState;
initialized = false;
//lastAlarmMsg = "nothing";
alarmMesIndex = 0;
isConnected = false;
}
~Inverter() {
// TODO: cleanup
}
template <typename T>
void enqueCommand(uint8_t cmd) {
_commandQueue.push(std::make_shared<T>(cmd));
DPRINTLN(DBG_INFO, F("(#") + String(id) + F(") enqueuedCmd: 0x") + String(cmd, HEX));
}
void setQueuedCmdFinished() {
if (!_commandQueue.empty()) {
// Will destroy CommandAbstract Class Object (?)
_commandQueue.pop();
}
}
void clearCmdQueue() {
DPRINTLN(DBG_INFO, F("clearCmdQueue"));
while (!_commandQueue.empty()) {
// Will destroy CommandAbstract Class Object (?)
_commandQueue.pop();
}
}
uint8_t getQueuedCmd() {
if (_commandQueue.empty()) {
if (ivGen != IV_MI) {
if (getFwVersion() == 0)
enqueCommand<InfoCommand>(InverterDevInform_All); // firmware version
enqueCommand<InfoCommand>(RealTimeRunData_Debug); // live data
} else if (ivGen == IV_MI){
if (type == INV_TYPE_4CH) {
enqueCommand<InfoCommand>(0x36);
/*for(uint8_t i = 0x36; i <= 0x39; i++) {
enqueCommand<MiInfoCommand>(i); // live data
}*/
} else if (type == INV_TYPE_2CH) {
enqueCommand<InfoCommand>(0x09);
//enqueCommand<MiInfoCommand>(0x11);
} else if (type == INV_TYPE_1CH) {
enqueCommand<InfoCommand>(0x09);
}
//if (getFwVersion() == 0)
// enqueCommand<MiInfoCommand>(InverterDevInform_All); // firmware version, might not work, esp. for 1/2 ch hardware
}
if ((actPowerLimit == 0xffff) && isConnected)
enqueCommand<InfoCommand>(SystemConfigPara); // power limit info
}
return _commandQueue.front().get()->getCmd();
}
void init(void) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:init"));
initAssignment(&recordMeas, RealTimeRunData_Debug);
initAssignment(&recordInfo, InverterDevInform_All);
initAssignment(&recordConfig, SystemConfigPara);
initAssignment(&recordAlarm, AlarmData);
toRadioId();
initialized = true;
}
uint8_t getPosByChFld(uint8_t channel, uint8_t fieldId, record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getPosByChFld"));
uint8_t pos = 0;
if(NULL != rec) {
for(; pos < rec->length; pos++) {
if((rec->assign[pos].ch == channel) && (rec->assign[pos].fieldId == fieldId))
break;
}
return (pos >= rec->length) ? 0xff : pos;
}
else
return 0xff;
}
byteAssign_t *getByteAssign(uint8_t pos, record_t<> *rec) {
return &rec->assign[pos];
}
const char *getFieldName(uint8_t pos, record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getFieldName"));
if(NULL != rec)
return fields[rec->assign[pos].fieldId];
return notAvail;
}
const char *getUnit(uint8_t pos, record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getUnit"));
if(NULL != rec)
return units[rec->assign[pos].unitId];
return notAvail;
}
uint8_t getChannel(uint8_t pos, record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getChannel"));
if(NULL != rec)
return rec->assign[pos].ch;
return 0;
}
bool setDevControlRequest(uint8_t cmd) {
if(isConnected) {
mDevControlRequest = true;
devControlCmd = cmd;
}
return isConnected;
}
void clearDevControlRequest() {
mDevControlRequest = false;
}
inline bool getDevControlRequest() {
return mDevControlRequest;
}
void addValue(uint8_t pos, uint8_t buf[], record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:addValue"));
if(NULL != rec) {
uint8_t ptr = rec->assign[pos].start;
uint8_t end = ptr + rec->assign[pos].num;
uint16_t div = rec->assign[pos].div;
if(NULL != rec) {
if(CMD_CALC != div) {
uint32_t val = 0;
do {
val <<= 8;
val |= buf[ptr];
} while(++ptr != end);
if (FLD_T == rec->assign[pos].fieldId) {
// temperature is a signed value!
rec->record[pos] = (REC_TYP)((int16_t)val) / (REC_TYP)(div);
} else if (FLD_YT == rec->assign[pos].fieldId) {
rec->record[pos] = ((REC_TYP)(val) / (REC_TYP)(div)) + ((REC_TYP)config->yieldCor[rec->assign[pos].ch-1]);
} else {
if ((REC_TYP)(div) > 1)
rec->record[pos] = (REC_TYP)(val) / (REC_TYP)(div);
else
rec->record[pos] = (REC_TYP)(val);
}
}
}
if(rec == &recordMeas) {
DPRINTLN(DBG_VERBOSE, "add real time");
// get last alarm message index and save it in the inverter object
if (getPosByChFld(0, FLD_EVT, rec) == pos){
if (alarmMesIndex < rec->record[pos]){
alarmMesIndex = rec->record[pos];
//enqueCommand<InfoCommand>(AlarmUpdate); // What is the function of AlarmUpdate?
DPRINTLN(DBG_INFO, "alarm ID incremented to " + String(alarmMesIndex));
enqueCommand<InfoCommand>(AlarmData);
}
}
}
else if (rec->assign == InfoAssignment) {
DPRINTLN(DBG_DEBUG, "add info");
// eg. fw version ...
isConnected = true;
}
else if (rec->assign == SystemConfigParaAssignment) {
DPRINTLN(DBG_DEBUG, "add config");
if (getPosByChFld(0, FLD_ACT_ACTIVE_PWR_LIMIT, rec) == pos){
actPowerLimit = rec->record[pos];
DPRINT(DBG_DEBUG, F("Inverter actual power limit: ") + String(actPowerLimit, 1));
}
}
else if (rec->assign == AlarmDataAssignment) {
DPRINTLN(DBG_DEBUG, "add alarm");
//if (getPosByChFld(0, FLD_LAST_ALARM_CODE, rec) == pos){
// lastAlarmMsg = getAlarmStr(rec->record[pos]);
//}
}
else
DPRINTLN(DBG_WARN, F("add with unknown assginment"));
}
else
DPRINTLN(DBG_ERROR, F("addValue: assignment not found with cmd 0x"));
}
/*inline REC_TYP getPowerLimit(void) {
record_t<> *rec = getRecordStruct(SystemConfigPara);
return getChannelFieldValue(CH0, FLD_ACT_ACTIVE_PWR_LIMIT, rec);
}*/
bool setValue(uint8_t pos, record_t<> *rec, REC_TYP val) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:setValue"));
if(NULL == rec)
return false;
if(pos > rec->length)
return false;
rec->record[pos] = val;
return true;
}
REC_TYP getChannelFieldValue(uint8_t channel, uint8_t fieldId, record_t<> *rec) {
uint8_t pos = 0;
if(NULL != rec) {
for(; pos < rec->length; pos++) {
if((rec->assign[pos].ch == channel) && (rec->assign[pos].fieldId == fieldId))
break;
}
if(pos >= rec->length)
return 0;
return rec->record[pos];
}
else
return 0;
}
REC_TYP getValue(uint8_t pos, record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getValue"));
if(NULL == rec)
return 0;
if(pos > rec->length)
return 0;
return rec->record[pos];
}
void doCalculations() {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:doCalculations"));
record_t<> *rec = getRecordStruct(RealTimeRunData_Debug);
for(uint8_t i = 0; i < rec->length; i++) {
if(CMD_CALC == rec->assign[i].div) {
rec->record[i] = calcFunctions<REC_TYP>[rec->assign[i].start].func(this, rec->assign[i].num);
}
yield();
}
}
bool isAvailable(uint32_t timestamp) {
if((timestamp - recordMeas.ts) < INACT_THRES_SEC)
return true;
if((timestamp - recordInfo.ts) < INACT_THRES_SEC)
return true;
if((timestamp - recordConfig.ts) < INACT_THRES_SEC)
return true;
if((timestamp - recordAlarm.ts) < INACT_THRES_SEC)
return true;
return false;
}
bool isProducing(uint32_t timestamp) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:isProducing"));
if(isAvailable(timestamp)) {
uint8_t pos = getPosByChFld(CH0, FLD_PAC, &recordMeas);
return (getValue(pos, &recordMeas) > INACT_PWR_THRESH);
}
return false;
}
uint16_t getFwVersion() {
record_t<> *rec = getRecordStruct(InverterDevInform_All);
uint8_t pos = getPosByChFld(CH0, FLD_FW_VERSION, rec);
return getValue(pos, rec);
}
uint32_t getLastTs(record_t<> *rec) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:getLastTs"));
return rec->ts;
}
record_t<> *getRecordStruct(uint8_t cmd) {
switch (cmd) {
case RealTimeRunData_Debug: return &recordMeas; // 11 = 0x0b
case InverterDevInform_All: return &recordInfo; // 1 = 0x01
case SystemConfigPara: return &recordConfig; // 5 = 0x05
case AlarmData: return &recordAlarm; // 17 = 0x11
default: break;
}
return NULL;
}
void initAssignment(record_t<> *rec, uint8_t cmd) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:initAssignment"));
rec->ts = 0;
rec->length = 0;
switch (cmd) {
case RealTimeRunData_Debug:
if (INV_TYPE_1CH == type) {
rec->length = (uint8_t)(HM1CH_LIST_LEN);
rec->assign = (byteAssign_t *)hm1chAssignment;
rec->pyldLen = HM1CH_PAYLOAD_LEN;
channels = 1;
}
else if (INV_TYPE_2CH == type) {
rec->length = (uint8_t)(HM2CH_LIST_LEN);
rec->assign = (byteAssign_t *)hm2chAssignment;
rec->pyldLen = HM2CH_PAYLOAD_LEN;
channels = 2;
}
else if (INV_TYPE_4CH == type) {
rec->length = (uint8_t)(HM4CH_LIST_LEN);
rec->assign = (byteAssign_t *)hm4chAssignment;
rec->pyldLen = HM4CH_PAYLOAD_LEN;
channels = 4;
}
else {
rec->length = 0;
rec->assign = NULL;
rec->pyldLen = 0;
channels = 0;
}
break;
case InverterDevInform_All:
rec->length = (uint8_t)(HMINFO_LIST_LEN);
rec->assign = (byteAssign_t *)InfoAssignment;
rec->pyldLen = HMINFO_PAYLOAD_LEN;
break;
case SystemConfigPara:
rec->length = (uint8_t)(HMSYSTEM_LIST_LEN);
rec->assign = (byteAssign_t *)SystemConfigParaAssignment;
rec->pyldLen = HMSYSTEM_PAYLOAD_LEN;
break;
case AlarmData:
rec->length = (uint8_t)(HMALARMDATA_LIST_LEN);
rec->assign = (byteAssign_t *)AlarmDataAssignment;
rec->pyldLen = HMALARMDATA_PAYLOAD_LEN;
break;
default:
DPRINTLN(DBG_INFO, F("initAssignment: Parser not implemented"));
break;
}
if(0 != rec->length) {
rec->record = new REC_TYP[rec->length];
memset(rec->record, 0, sizeof(REC_TYP) * rec->length);
}
}
uint16_t parseAlarmLog(uint8_t id, uint8_t pyld[], uint8_t len, uint32_t *start, uint32_t *endTime) {
uint8_t startOff = 2 + id * ALARM_LOG_ENTRY_SIZE;
if((startOff + ALARM_LOG_ENTRY_SIZE) > len)
return 0;
uint16_t wCode = ((uint16_t)pyld[startOff]) << 8 | pyld[startOff+1];
uint32_t startTimeOffset = 0, endTimeOffset = 0;
if (((wCode >> 13) & 0x01) == 1) // check if is AM or PM
startTimeOffset = 12 * 60 * 60;
if (((wCode >> 12) & 0x01) == 1) // check if is AM or PM
endTimeOffset = 12 * 60 * 60;
*start = (((uint16_t)pyld[startOff + 4] << 8) | ((uint16_t)pyld[startOff + 5])) + startTimeOffset;
*endTime = (((uint16_t)pyld[startOff + 6] << 8) | ((uint16_t)pyld[startOff + 7])) + endTimeOffset;
DPRINTLN(DBG_INFO, "Alarm #" + String(pyld[startOff+1]) + " '" + String(getAlarmStr(pyld[startOff+1])) + "' start: " + ah::getTimeStr(*start) + ", end: " + ah::getTimeStr(*endTime));
return pyld[startOff+1];
}
String getAlarmStr(uint16_t alarmCode) {
switch (alarmCode) { // breaks are intentionally missing!
case 1: return String(F("Inverter start"));
case 2: return String(F("DTU command failed"));
case 121: return String(F("Over temperature protection"));
case 125: return String(F("Grid configuration parameter error"));
case 126: return String(F("Software error code 126"));
case 127: return String(F("Firmware error"));
case 128: return String(F("Software error code 128"));
case 129: return String(F("Software error code 129"));
case 130: return String(F("Offline"));
case 141: return String(F("Grid overvoltage"));
case 142: return String(F("Average grid overvoltage"));
case 143: return String(F("Grid undervoltage"));
case 144: return String(F("Grid overfrequency"));
case 145: return String(F("Grid underfrequency"));
case 146: return String(F("Rapid grid frequency change"));
case 147: return String(F("Power grid outage"));
case 148: return String(F("Grid disconnection"));
case 149: return String(F("Island detected"));
case 205: return String(F("Input port 1 & 2 overvoltage"));
case 206: return String(F("Input port 3 & 4 overvoltage"));
case 207: return String(F("Input port 1 & 2 undervoltage"));
case 208: return String(F("Input port 3 & 4 undervoltage"));
case 209: return String(F("Port 1 no input"));
case 210: return String(F("Port 2 no input"));
case 211: return String(F("Port 3 no input"));
case 212: return String(F("Port 4 no input"));
case 213: return String(F("PV-1 & PV-2 abnormal wiring"));
case 214: return String(F("PV-3 & PV-4 abnormal wiring"));
case 215: return String(F("PV-1 Input overvoltage"));
case 216: return String(F("PV-1 Input undervoltage"));
case 217: return String(F("PV-2 Input overvoltage"));
case 218: return String(F("PV-2 Input undervoltage"));
case 219: return String(F("PV-3 Input overvoltage"));
case 220: return String(F("PV-3 Input undervoltage"));
case 221: return String(F("PV-4 Input overvoltage"));
case 222: return String(F("PV-4 Input undervoltage"));
case 301: return String(F("Hardware error code 301"));
case 302: return String(F("Hardware error code 302"));
case 303: return String(F("Hardware error code 303"));
case 304: return String(F("Hardware error code 304"));
case 305: return String(F("Hardware error code 305"));
case 306: return String(F("Hardware error code 306"));
case 307: return String(F("Hardware error code 307"));
case 308: return String(F("Hardware error code 308"));
case 309: return String(F("Hardware error code 309"));
case 310: return String(F("Hardware error code 310"));
case 311: return String(F("Hardware error code 311"));
case 312: return String(F("Hardware error code 312"));
case 313: return String(F("Hardware error code 313"));
case 314: return String(F("Hardware error code 314"));
case 5041: return String(F("Error code-04 Port 1"));
case 5042: return String(F("Error code-04 Port 2"));
case 5043: return String(F("Error code-04 Port 3"));
case 5044: return String(F("Error code-04 Port 4"));
case 5051: return String(F("PV Input 1 Overvoltage/Undervoltage"));
case 5052: return String(F("PV Input 2 Overvoltage/Undervoltage"));
case 5053: return String(F("PV Input 3 Overvoltage/Undervoltage"));
case 5054: return String(F("PV Input 4 Overvoltage/Undervoltage"));
case 5060: return String(F("Abnormal bias"));
case 5070: return String(F("Over temperature protection"));
case 5080: return String(F("Grid Overvoltage/Undervoltage"));
case 5090: return String(F("Grid Overfrequency/Underfrequency"));
case 5100: return String(F("Island detected"));
case 5120: return String(F("EEPROM reading and writing error"));
case 5150: return String(F("10 min value grid overvoltage"));
case 5200: return String(F("Firmware error"));
case 8310: return String(F("Shut down"));
case 9000: return String(F("Microinverter is suspected of being stolen"));
default: return String(F("Unknown"));
}
}
private:
void toRadioId(void) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:toRadioId"));
radioId.u64 = 0ULL;
radioId.b[4] = config->serial.b[0];
radioId.b[3] = config->serial.b[1];
radioId.b[2] = config->serial.b[2];
radioId.b[1] = config->serial.b[3];
radioId.b[0] = 0x01;
}
std::queue<std::shared_ptr<CommandAbstract>> _commandQueue;
bool mDevControlRequest; // true if change needed
};
/**
* To calculate values which are not transmitted by the unit there is a generic
* list of functions which can be linked to the assignment.
* The special command 0xff (CMDFF) must be used.
*/
template<class T=float>
static T calcYieldTotalCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcYieldTotalCh0"));
if(NULL != iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
T yield = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t pos = iv->getPosByChFld(i, FLD_YT, rec);
yield += iv->getValue(pos, rec);
}
return yield;
}
return 0.0;
}
template<class T=float>
static T calcYieldDayCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcYieldDayCh0"));
if(NULL != iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
T yield = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t pos = iv->getPosByChFld(i, FLD_YD, rec);
yield += iv->getValue(pos, rec);
}
return yield;
}
return 0.0;
}
template<class T=float>
static T calcUdcCh(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcUdcCh"));
// arg0 = channel of source
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
for(uint8_t i = 0; i < rec->length; i++) {
if((FLD_UDC == rec->assign[i].fieldId) && (arg0 == rec->assign[i].ch)) {
return iv->getValue(i, rec);
}
}
return 0.0;
}
template<class T=float>
static T calcPowerDcCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcPowerDcCh0"));
if(NULL != iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
T dcPower = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t pos = iv->getPosByChFld(i, FLD_PDC, rec);
dcPower += iv->getValue(pos, rec);
}
return dcPower;
}
return 0.0;
}
template<class T=float>
static T calcEffiencyCh0(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcEfficiencyCh0"));
if(NULL != iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
uint8_t pos = iv->getPosByChFld(CH0, FLD_PAC, rec);
T acPower = iv->getValue(pos, rec);
T dcPower = 0;
for(uint8_t i = 1; i <= iv->channels; i++) {
pos = iv->getPosByChFld(i, FLD_PDC, rec);
dcPower += iv->getValue(pos, rec);
}
if(dcPower > 0)
return acPower / dcPower * 100.0f;
}
return 0.0;
}
template<class T=float>
static T calcIrradiation(Inverter<> *iv, uint8_t arg0) {
DPRINTLN(DBG_VERBOSE, F("hmInverter.h:calcIrradiation"));
// arg0 = channel
if(NULL != iv) {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug);
uint8_t pos = iv->getPosByChFld(arg0, FLD_PDC, rec);
if(iv->config->chMaxPwr[arg0-1] > 0)
return iv->getValue(pos, rec) / iv->config->chMaxPwr[arg0-1] * 100.0f;
}
return 0.0;
}
#endif /*__HM_INVERTER_H__*/

291
miPayload.h

@ -18,7 +18,8 @@ typedef struct {
uint8_t txCmd; uint8_t txCmd;
uint8_t len[MAX_PAYLOAD_ENTRIES]; uint8_t len[MAX_PAYLOAD_ENTRIES];
bool complete; bool complete;
uint8_t sts[iv->channels]; bool dataAB[2];
uint8_t sts[5];
uint8_t txId; uint8_t txId;
uint8_t invId; uint8_t invId;
uint8_t retransmits; uint8_t retransmits;
@ -64,6 +65,7 @@ class MiPayload {
void addAlarmListener(alarmListenerType cb) { void addAlarmListener(alarmListenerType cb) {
mCbMiAlarm = cb; mCbMiAlarm = cb;
} }
void loop() { void loop() {
/*if(NULL != mHighPrioIv) { /*if(NULL != mHighPrioIv) {
iv->ivSend(mHighPrioIv, true); // should request firmware version etc.? iv->ivSend(mHighPrioIv, true); // should request firmware version etc.?
@ -83,10 +85,35 @@ class MiPayload {
if (mSerialDebug) if (mSerialDebug)
DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") Requesting Inv SN ") + String(iv->config->serial.u64, HEX)); DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") Requesting Inv SN ") + String(iv->config->serial.u64, HEX));
uint8_t cmd = iv->type == INV_TYPE_4CH ? 0x36 : 0x09; //iv->getQueuedCmd(); //first channel request
DPRINTLN(DBG_INFO, F("(#") + String(iv->id) + F(") prepareDevInformCmd")); /*uint8_t cmd = iv->type == INV_TYPE_4CH ? 0x36 : 0x09;
DPRINT(DBG_INFO, F("(#"));
DBGPRINT(String(iv->id));
DBGPRINT(F(") prepareDevInformCmd 0x"));
DBGPRINTLN(String(cmd, HEX));
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false, cmd);
mPayload[iv->id].txCmd = cmd;*/
uint8_t cmd = iv->getQueuedCmd();
DPRINT(DBG_INFO, F("(#"));
DBGPRINT(String(iv->id));
DBGPRINT(F(") prepareDevInformCmd 0x"));
DBGPRINTLN(String(cmd, HEX));
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false, cmd); mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false, cmd);
mPayload[iv->id].txCmd = cmd; mPayload[iv->id].txCmd = cmd;
//other channel requests
/*if (iv->type == INV_TYPE_4CH) {
for(uint8_t i = 1; i < iv->channels; i++) {
iv->enqueCommand<CommandAbstract>(cmd + i, cmd + i);
//mSys->Radio.prepareDevInformCmd(iv->radioId.u64, 0x11, mPayload[iv->id].ts, iv->alarmMesIndex, false, cmd + i);
}
} else */
if (iv->type == INV_TYPE_2CH) {
mPayload[iv->id].dataAB[0] = false;
mPayload[iv->id].dataAB[1] = false;
//iv->enqueCommand(0x11);
//mSys->Radio.prepareDevInformCmd(iv->radioId.u64, 0x11, mPayload[iv->id].ts, iv->alarmMesIndex, false, 0x11);
}
} }
void add(Inverter<> *iv, packet_t *p) { void add(Inverter<> *iv, packet_t *p) {
@ -98,40 +125,43 @@ class MiPayload {
} else if (p->packet[0] == (0x11 + SINGLE_FRAME)) { // 0x92; MI status response to 0x11 } else if (p->packet[0] == (0x11 + SINGLE_FRAME)) { // 0x92; MI status response to 0x11
//mPayload[iv->id].sts[1] = true; //mPayload[iv->id].sts[1] = true;
miStsDecode(iv, p, CH2); miStsDecode(iv, p, CH2);
} else if (p->packet[0] == (0x09 + ALL_FRAMES)) { // MI data response to 0x09 /*} else if (p->packet[0] == (0x09 + ALL_FRAMES)) { // MI data response to 0x09
mPayload[iv->id].txId = p->packet[0]; mPayload[iv->id].txId = p->packet[0];
miDataDecode(iv,p); miDataDecode(iv,p);
iv->setQueuedCmdFinished(); //iv->setQueuedCmdFinished();
if (INV_TYPE_2CH == iv->type) { if (INV_TYPE_2CH == iv->type) {
//mSys->Radio.prepareDevInformCmd(iv->radioId.u64, iv->getQueuedCmd(), mPayload[iv->id].ts, iv->alarmMesIndex, false, 0x11); //mSys->Radio.prepareDevInformCmd(iv->radioId.u64, iv->getQueuedCmd(), mPayload[iv->id].ts, iv->alarmMesIndex, false, 0x11);
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, 0x11, mPayload[iv->id].ts, iv->alarmMesIndex, false, 0x11); //mSys->Radio.prepareDevInformCmd(iv->radioId.u64, 0x11, mPayload[iv->id].ts, iv->alarmMesIndex, false, 0x11);
} else { // additional check for mPayload[iv->id].stsa == true might be a good idea (request retransmit?) } else { // additional check for mPayload[iv->id].stsa == true might be a good idea (request retransmit?)
mPayload[iv->id].complete = true; mPayload[iv->id].complete = true;
//iv->setQueuedCmdFinished(); //iv->setQueuedCmdFinished();
} }
} else if (p->packet[0] == (0x11 + ALL_FRAMES)) { // MI data response to 0x11 } else if (p->packet[0] == ()) { // MI data response to 0x11
mPayload[iv->id].txId = p->packet[0]; mPayload[iv->id].txId = p->packet[0];
mPayload[iv->id].complete = true;
miDataDecode(iv,p); miDataDecode(iv,p);
iv->setQueuedCmdFinished(); mStat->rxSuccess++;
//iv->setQueuedCmdFinished();*/
} else if (p->packet[0] >= (0x36 + ALL_FRAMES) && p->packet[0] < (0x39 + SINGLE_FRAME)) { // MI 1500 data response to 0x36, 0x37, 0x38 and 0x39 } else if ( p->packet[0] == 0x09 + ALL_FRAMES ||
p->packet[0] == 0x11 + ALL_FRAMES ||
( p->packet[0] >= (0x36 + ALL_FRAMES) && p->packet[0] < (0x39 + SINGLE_FRAME) ) ) { // small MI or MI 1500 data responses to 0x09, 0x11, 0x36, 0x37, 0x38 and 0x39
mPayload[iv->id].txId = p->packet[0]; mPayload[iv->id].txId = p->packet[0];
miDataDecode(iv,p); miDataDecode(iv,p);
iv->setQueuedCmdFinished(); //mStat->rxSuccess++;
if (p->packet[0] < (0x39 + ALL_FRAMES)) { //iv->setQueuedCmdFinished();
/*if (p->packet[0] < (0x39 + ALL_FRAMES)) {
//mSys->Radio.prepareDevInformCmd(iv->radioId.u64, iv->getQueuedCmd(), mPayload[iv->id].ts, iv->alarmMesIndex, false, p->packet[0] + 1 - ALL_FRAMES); //mSys->Radio.prepareDevInformCmd(iv->radioId.u64, iv->getQueuedCmd(), mPayload[iv->id].ts, iv->alarmMesIndex, false, p->packet[0] + 1 - ALL_FRAMES);
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, p->packet[0] + 1 - ALL_FRAMES, mPayload[iv->id].ts, iv->alarmMesIndex, false, p->packet[0] + 1 - ALL_FRAMES); //mSys->Radio.prepareDevInformCmd(iv->radioId.u64, p->packet[0] + 1 - ALL_FRAMES, mPayload[iv->id].ts, iv->alarmMesIndex, false, p->packet[0] + 1 - ALL_FRAMES);
} else { } else {
mPayload[iv->id].complete = true; mPayload[iv->id].complete = true;
//iv->setValue(iv->getPosByChFld(0, FLD_YD, rec), rec, CALC_YD_CH0); //iv->setValue(iv->getPosByChFld(0, FLD_YD, rec), rec, CALC_YD_CH0);
//iv->setQueuedCmdFinished(); //iv->setQueuedCmdFinished();
} }*/
/*} //}
if (p->packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command /*if (p->packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command
mPayload[iv->id].txId = p->packet[0]; mPayload[iv->id].txId = p->packet[0];
DPRINTLN(DBG_DEBUG, F("Response from info request received")); DPRINTLN(DBG_DEBUG, F("Response from info request received"));
uint8_t *pid = &p->packet[9]; uint8_t *pid = &p->packet[9];
@ -169,7 +199,7 @@ class MiPayload {
msg = "NOT "; msg = "NOT ";
DPRINTLN(DBG_INFO, F("Inverter ") + String(iv->id) + F(" has ") + msg + F("accepted power limit set point ") + String(iv->powerLimit[0]) + F(" with PowerLimitControl ") + String(iv->powerLimit[1])); DPRINTLN(DBG_INFO, F("Inverter ") + String(iv->id) + F(" has ") + msg + F("accepted power limit set point ") + String(iv->powerLimit[0]) + F(" with PowerLimitControl ") + String(iv->powerLimit[1]));
iv->clearCmdQueue(); iv->clearCmdQueue();
iv->enqueCommand<InfoCommand>(SystemConfigPara); // read back power limit iv->enqueCommand<MiInfoCommand>(SystemConfigPara); // read back power limit
} }
iv->devControlCmd = Init; iv->devControlCmd = Init;
} else { // some other response; copied from hmPayload:process; might not be correct to do that here!!! } else { // some other response; copied from hmPayload:process; might not be correct to do that here!!!
@ -263,6 +293,7 @@ class MiPayload {
if (mPayload[iv->id].retransmits < mMaxRetrans) { if (mPayload[iv->id].retransmits < mMaxRetrans) {
mPayload[iv->id].retransmits++; mPayload[iv->id].retransmits++;
//mSys->Radio.prepareDevInformCmd(iv->radioId.u64, iv->getQueuedCmd(), mPayload[iv->id].ts, iv->alarmMesIndex, false, 0x11); //mSys->Radio.prepareDevInformCmd(iv->radioId.u64, iv->getQueuedCmd(), mPayload[iv->id].ts, iv->alarmMesIndex, false, 0x11);
DPRINTLN(DBG_WARN, F("missing answer to 0x") + String(iv->getQueuedCmd(), HEX) + F("Request Retransmit"));
mSys->Radio.sendCmdPacket(iv->radioId.u64, iv->getQueuedCmd(), 24, true); mSys->Radio.sendCmdPacket(iv->radioId.u64, iv->getQueuedCmd(), 24, true);
/*if(false == mPayload[iv->id].gotFragment) { /*if(false == mPayload[iv->id].gotFragment) {
DPRINTLN(DBG_WARN, F("(#") + String(iv->id) + F(") nothing received")); DPRINTLN(DBG_WARN, F("(#") + String(iv->id) + F(") nothing received"));
@ -362,42 +393,28 @@ class MiPayload {
record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); // choose the record structure record_t<> *rec = iv->getRecordStruct(RealTimeRunData_Debug); // choose the record structure
rec->ts = mPayload[iv->id].ts; rec->ts = mPayload[iv->id].ts;
//iv->setValue(iv->getPosByChFld(chan, FLD_YD, rec), rec, (int)((p->packet[11+6] << 8) + p->packet[12+6])); // was 11/12, might be wrong!
//if (INV_TYPE_1CH == iv->type)
//iv->setValue(iv->getPosByChFld(0, FLD_YD, rec), rec, (int)((p->packet[11+6] << 8) + p->packet[12+6]));
//iv->setValue(iv->getPosByChFld(chan, FLD_EVT, rec), rec, (int)((p->packet[13] << 8) + p->packet[14]));
uint8_t status = (p->packet[11] << 8) + p->packet[12]; uint8_t status = (p->packet[11] << 8) + p->packet[12];
uint8_t stschan = p->packet[0] == 0x88 ? CH1 : CH2; uint8_t stschan = p->packet[0] == 0x88 ? CH1 : CH2;
mPayload[iv->id].dataAB[stschan-1] = true;
mPayload[iv->id].sts[stschan] = status; mPayload[iv->id].sts[stschan] = status;
iv->setValue(iv->getPosByChFld(0, FLD_EVT, rec), rec, calcMiSts(iv)); if ( !mPayload[iv->id].sts[0] || status < mPayload[iv->id].sts[0]) {
//iv->setValue(iv->getPosByChFld(0, FLD_EVT, rec), rec, (int)((p->packet[14] << 8) + p->packet[16])); mPayload[iv->id].sts[0] = status;
if (iv->alarmMesIndex < rec->record[iv->getPosByChFld(0, FLD_EVT, rec)]){ iv->setValue(iv->getPosByChFld(0, FLD_EVT, rec), rec, status);
iv->alarmMesIndex = rec->record[iv->getPosByChFld(0, FLD_EVT, rec)]; // seems there's no status per channel in 3rd gen. models?!?
DPRINTLN(DBG_INFO, "alarm ID incremented to " + String(iv->alarmMesIndex));
iv->enqueCommand<InfoCommand>(AlarmData);
} }
/* Unclear how in HM inverters Info and alarm data is handled...
*/
if ( !mPayload[iv->id].dataAB[0] || !mPayload[iv->id].dataAB[1] ) {
uint8_t cmd = mPayload[iv->id].dataAB[0] ? 0x11 : 0x09;
DPRINTLN(DBG_INFO, F("request missing status 0x") + String(cmd, HEX));
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false, cmd);
mPayload[iv->id].txCmd = cmd;
}
/* int8_t offset = -2; if (iv->alarmMesIndex < rec->record[iv->getPosByChFld(0, FLD_EVT, rec)]){
iv->alarmMesIndex = rec->record[iv->getPosByChFld(0, FLD_EVT, rec)]; // seems there's no status per channel in 3rd gen. models?!?
for decoding see DPRINTLN(DBG_INFO, "alarm ID incremented to " + String(iv->alarmMesIndex));
void MI600StsMsg (NRF24_packet_t *p){ iv->enqueCommand<MiInfoCommand>(AlarmData);
STAT = (int)((p->packet[11] << 8) + p->packet[12]);
FCNT = (int)((p->packet[13] << 8) + p->packet[14]);
FCODE = (int)((p->packet[15] << 8) + p->packet[16]);
#ifdef ESP8266
VALUES[PV][5]=STAT;
VALUES[PV][6]=FCNT;
VALUES[PV][7]=FCODE;
#endif
} }
*/
} }
void miDataDecode(Inverter<> *iv, packet_t *p) { void miDataDecode(Inverter<> *iv, packet_t *p) {
@ -408,45 +425,92 @@ class MiPayload {
( p->packet[0] == 0x91 || p->packet[0] == (0x37 + ALL_FRAMES) ) ? CH2 : ( p->packet[0] == 0x91 || p->packet[0] == (0x37 + ALL_FRAMES) ) ? CH2 :
p->packet[0] == (0x38 + ALL_FRAMES) ? CH3 : p->packet[0] == (0x38 + ALL_FRAMES) ? CH3 :
CH4; CH4;
int8_t offset = -2; DPRINTLN(DBG_INFO, F("Inverter ") + String(iv->id) + F(": data msg 0x") + String(p->packet[0], HEX) + F(" channel ") + datachan);
// U_DC = (float) ((p->packet[11] << 8) + p->packet[12])/10; // count in RF_communication_protocol.xlsx is with offset = -1
iv->setValue(iv->getPosByChFld(datachan, FLD_UDC, rec), rec, (float)((p->packet[11+offset] << 8) + p->packet[12+offset])/10); iv->setValue(iv->getPosByChFld(datachan, FLD_UDC, rec), rec, (float)((p->packet[9] << 8) + p->packet[10])/10);
yield(); yield();
// I_DC = (float) ((p->packet[13] << 8) + p->packet[14])/10; iv->setValue(iv->getPosByChFld(datachan, FLD_IDC, rec), rec, (float)((p->packet[11] << 8) + p->packet[12])/10);
iv->setValue(iv->getPosByChFld(datachan, FLD_IDC, rec), rec, (float)((p->packet[13+offset] << 8) + p->packet[14+offset])/10);
yield(); yield();
// U_AC = (float) ((p->packet[15] << 8) + p->packet[16])/10; iv->setValue(iv->getPosByChFld(0, FLD_UAC, rec), rec, (float)((p->packet[13] << 8) + p->packet[14])/10);
iv->setValue(iv->getPosByChFld(0, FLD_UAC, rec), rec, (float)((p->packet[15+offset] << 8) + p->packet[16+offset])/10);
yield(); yield();
// F_AC = (float) ((p->packet[17] << 8) + p->packet[18])/100; iv->setValue(iv->getPosByChFld(0, FLD_F, rec), rec, (float) ((p->packet[15] << 8) + p->packet[16])/100);
//iv->setValue(iv->getPosByChFld(0, FLD_IAC, rec), rec, (float)((p->packet[17+offset] << 8) + p->packet[18+offset])/100); iv->setValue(iv->getPosByChFld(datachan, FLD_PDC, rec), rec, (float)((p->packet[17] << 8) + p->packet[18])/10);
//yield();
// P_DC = (float)((p->packet[19] << 8) + p->packet[20])/10;
iv->setValue(iv->getPosByChFld(datachan, FLD_PDC, rec), rec, (float)((p->packet[19+offset] << 8) + p->packet[20+offset])/10);
yield(); yield();
// Q_DC = (float)((p->packet[21] << 8) + p->packet[22])/1; iv->setValue(iv->getPosByChFld(datachan, FLD_YD, rec), rec, (float)((p->packet[19] << 8) + p->packet[20])/1);
iv->setValue(iv->getPosByChFld(datachan, FLD_YD, rec), rec, (float)((p->packet[21+offset] << 8) + p->packet[22+offset])/1);
yield(); yield();
iv->setValue(iv->getPosByChFld(0, FLD_T, rec), rec, (float) ((int16_t)(p->packet[23+offset] << 8) + p->packet[24+offset])/10); //23 is freq or IAC? iv->setValue(iv->getPosByChFld(0, FLD_T, rec), rec, (float) ((int16_t)(p->packet[21] << 8) + p->packet[22])/10);
iv->setValue(iv->getPosByChFld(0, FLD_F, rec), rec, (float) ((p->packet[17+offset] << 8) + p->packet[18+offset])/100);
iv->setValue(iv->getPosByChFld(0, FLD_IRR, rec), rec, (float) (calcIrradiation(iv, datachan))); iv->setValue(iv->getPosByChFld(0, FLD_IRR, rec), rec, (float) (calcIrradiation(iv, datachan)));
yield(); //AC Power is missing; we may have to calculate, as no respective data is in payload
//FLD_YD
if (p->packet[0] >= (0x36 + ALL_FRAMES) ) { if (p->packet[0] >= (0x36 + ALL_FRAMES) ) {
mPayload[iv->id].sts[stschan] = (uint8_t)(p->packet[25+offset]);
iv->setValue(iv->getPosByChFld(0, FLD_EVT, rec), rec, calcMiSts(iv));yield(); /*For MI1500:
if (MI1500) {
STAT = (uint8_t)(p->packet[25] );
FCNT = (uint8_t)(p->packet[26]);
FCODE = (uint8_t)(p->packet[27]);
}*/
uint8_t status = (uint8_t)(p->packet[23]);
mPayload[iv->id].sts[datachan] = status;
if ( !mPayload[iv->id].sts[0] || status < mPayload[iv->id].sts[0]) {
mPayload[iv->id].sts[0] = status;
iv->setValue(iv->getPosByChFld(0, FLD_EVT, rec), rec, status);
}
if (p->packet[0] < (0x39 + ALL_FRAMES) ) {
uint8_t cmd = p->packet[0] - ALL_FRAMES + 1;
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false, cmd);
mPayload[iv->id].txCmd = cmd;
mPayload[iv->id].complete = false;
}
//iv->setValue(iv->getPosByChFld(0, FLD_EVT, rec), rec, calcMiSts(iv));yield();
if (iv->alarmMesIndex < rec->record[iv->getPosByChFld(0, FLD_EVT, rec)]){ if (iv->alarmMesIndex < rec->record[iv->getPosByChFld(0, FLD_EVT, rec)]){
iv->alarmMesIndex = rec->record[iv->getPosByChFld(0, FLD_EVT, rec)]; iv->alarmMesIndex = rec->record[iv->getPosByChFld(0, FLD_EVT, rec)];
DPRINTLN(DBG_INFO, "alarm ID incremented to " + String(iv->alarmMesIndex)); DPRINTLN(DBG_INFO, "alarm ID incremented to " + String(iv->alarmMesIndex));
iv->enqueCommand<InfoCommand>(AlarmData); //iv->enqueCommand<InfoCommand>(AlarmData);
} }
} }
//iv->setValue(iv->getPosByChFld(0, FLD_YD, rec), rec, CALC_YD_CH0); // (getValue(iv->getPosByChFld(1, FLD_YD, rec), rec) + getValue(iv->getPosByChFld(2, FLD_YD, rec), rec)));
iv->setValue(iv->getPosByChFld(0, FLD_YD, rec), rec, calcYieldDayCh0(iv,0)); //datachan)); //preliminary AC calculation...
uint8_t ac_pow = 0;
//if (mPayload[iv->id].sts[0] == 3) {
ac_pow = calcPowerDcCh0(iv, 0)*9.5;
//}
iv->setValue(iv->getPosByChFld(0, FLD_PAC, rec), rec, (float) (ac_pow/10));
if ( mPayload[iv->id].sts[0] ) {
uint8_t cmd = mPayload[iv->id].dataAB[0] ? 0x11 : 0x09;
if ( mPayload[iv->id].dataAB[0] && mPayload[iv->id].dataAB[1] ) {
mPayload[iv->id].complete = true; // For 2 CH devices, this might be too short...
DPRINTLN(DBG_INFO, F("complete tree detected"));
iv->setValue(iv->getPosByChFld(0, FLD_YD, rec), rec, calcYieldDayCh0(iv,0));
iv->doCalculations(); iv->doCalculations();
} else {
//retry to get missing status info for one or two channel devices
DPRINTLN(DBG_INFO, F("request missing data or status 0x") + String(cmd, HEX));
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false, cmd);
mPayload[iv->id].txCmd = cmd;
//iv->enqueCommand(cmd); // mPayload[iv->id].dataAB[1] ? 0x09 : 0x11)
}
} // not yet moved to hmInverter::getQueuedCmd
else if (mPayload[iv->id].txCmd == 0x09 && iv->type == INV_TYPE_2CH) {
uint8_t cmd = 0x11;
DPRINTLN(DBG_INFO, F("request second data channel 0x") + String(cmd, HEX));
mSys->Radio.prepareDevInformCmd(iv->radioId.u64, cmd, mPayload[iv->id].ts, iv->alarmMesIndex, false, cmd);
mPayload[iv->id].txCmd = cmd;
mPayload[iv->id].complete = false;
}
iv->setQueuedCmdFinished();
mStat->rxSuccess++;
yield();
notify(mPayload[iv->id].txCmd); notify(mPayload[iv->id].txCmd);
/* /*
if(AlarmData == mPayload[iv->id].txCmd) { if(AlarmData == mPayload[iv->id].txCmd) {
uint8_t i = 0; uint8_t i = 0;
@ -461,66 +525,26 @@ class MiPayload {
yield(); yield();
} }
}*/ }*/
/*decode here or memcopy payload for later decoding?
void MI600DataMsg(NRF24_packet_t *p){
U_DC = (float) ((p->packet[11] << 8) + p->packet[12])/10;
I_DC = (float) ((p->packet[13] << 8) + p->packet[14])/10;
U_AC = (float) ((p->packet[15] << 8) + p->packet[16])/10;
F_AC = (float) ((p->packet[17] << 8) + p->packet[18])/100;
P_DC = (float)((p->packet[19] << 8) + p->packet[20])/10;
Q_DC = (float)((p->packet[21] << 8) + p->packet[22])/1;
TEMP = (float) ((p->packet[23] << 8) + p->packet[24])/10; //(int16_t)
if ((30<U_DC<50) && (0<I_DC<15) && (200<U_AC<300) && (45<F_AC<55) && (0<P_DC<420) && (0<TEMP<80))
DataOK = 1; //we need to check this, if no crc
else { DEBUG_OUT.printf("Data Wrong!!\r\n");DataOK =0; return;}
if (p->packet[2] == 0x89) {PV= 0; TotalP[1]=P_DC; pvCnt[0]=1;}//port 1
if (p->packet[2] == 0x91) {PV= 1; TotalP[2]=P_DC; pvCnt[1]=1;}//port 2
TotalP[0]=TotalP[1]+TotalP[2]+TotalP[3]+TotalP[4];//in TotalP[0] is the totalPV power
if((P_DC>400) || (P_DC<0) || (TotalP[0]>MAXPOWER)){// cant be!!
TotalP[0]=0;
return;
}
#ifdef ESP8266
VALUES[PV][0]=PV;
VALUES[PV][1]=P_DC;
VALUES[PV][2]=U_DC;
VALUES[PV][3]=I_DC;
VALUES[PV][4]=Q_DC;
#endif
PMI=TotalP[0];
LIM=(uint16_t)Limit;
PrintOutValues();
}*/
/*For MI1500:
if (MI1500) {
STAT = (uint8_t)(p->packet[25] );
FCNT = (uint8_t)(p->packet[26]);
FCODE = (uint8_t)(p->packet[27]);
}
*/
DPRINTLN(DBG_INFO, F("Inverter ") + String(iv->id) + F(": data msg 0x") + String(p->packet[0], HEX) + F(" channel ") + datachan);
} }
bool build(uint8_t id, bool *complete) { bool build(uint8_t id, bool *complete) {
/*DPRINTLN(DBG_VERBOSE, F("build")); DPRINTLN(DBG_VERBOSE, F("build"));
uint16_t crc = 0xffff, crcRcv = 0x0000; /*uint16_t crc = 0xffff, crcRcv = 0x0000;
if (mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES) if (mPayload[id].maxPackId > MAX_PAYLOAD_ENTRIES)
mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES; mPayload[id].maxPackId = MAX_PAYLOAD_ENTRIES;
*/
// check if all messages are there
// check if all fragments are there *complete = mPayload[id].complete;
*complete = true; uint8_t txCmd = mPayload[id].txCmd;
for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) { //uint8_t cmd = getQueuedCmd();
if(mPayload[id].len[i] == 0) if(!*complete) {
*complete = false; //if (txCmd == 0x09 || txCmd == 0x11 || txCmd >= 0x36 && txCmd <= 0x39 )
// return false;
DPRINTLN(DBG_VERBOSE, F("incomlete, txCmd is 0x") + String(txCmd, HEX)); // + F("cmd is 0x") + String(cmd, HEX));
} }
if(!*complete)
return false;
for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) { /*for (uint8_t i = 0; i < mPayload[id].maxPackId; i++) {
if (mPayload[id].len[i] > 0) { if (mPayload[id].len[i] > 0) {
if (i == (mPayload[id].maxPackId - 1)) { if (i == (mPayload[id].maxPackId - 1)) {
crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc); crc = ah::crc16(mPayload[id].data[i], mPayload[id].len[i] - 2, crc);
@ -544,26 +568,41 @@ class MiPayload {
mPayload[id].lastFound = false;*/ mPayload[id].lastFound = false;*/
mPayload[id].retransmits = 0; mPayload[id].retransmits = 0;
mPayload[id].complete = false; mPayload[id].complete = false;
mPayload[id].dataAB[0] = true; //only required for 2CH devices
mPayload[id].dataAB[1] = true;
mPayload[id].txCmd = 0; mPayload[id].txCmd = 0;
mPayload[id].requested = false; mPayload[id].requested = false;
mPayload[id].ts = *mTimestamp; mPayload[id].ts = *mTimestamp;
mPayload[id].sts[] = (0); //mPayload[id].sts[0] = 0;
mPayload[id].sts[1] = 0;
mPayload[id].sts[2] = 0;
mPayload[id].sts[3] = 0;
mPayload[id].sts[4] = 0;
} }
template<class T=uint8_t> /* template<class T=uint8_t>
static T calcMiSts(Inverter<> *iv) { static T calcMiSts(Inverter<> *iv) {
if(NULL != iv) { if(NULL != iv) {
T result = 0; T result = 0;
bool stsComplete = true;
uint8_t stsCh;
for(uint8_t i = 1; i <= iv->channels; i++) { for(uint8_t i = 1; i <= iv->channels; i++) {
uint8_t sChState = mPayload[iv->id].sts[i]; stsCh = mPayload[iv->id].sts[i];
if (!sChState && !result || sChState && sChState < result) { if (!stsCh) {
result = sChState; stsComplete = false;
} else if ( !result || stsCh < result ) {
result = stsCh;
if (stsComplete && stsCh > stsComplete) {
stsComplete = stsCh;
} }
}
}
mPayload[iv->id].sts[0] = stsComplete;
return result; return result;
} }
return 0; return 0;
} } */
IApp *mApp; IApp *mApp;
HMSYSTEM *mSys; HMSYSTEM *mSys;

Loading…
Cancel
Save