You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

333 lines
14 KiB

//-----------------------------------------------------------------------------
// 2023 Ahoy, https://github.com/lumpapu/ahoy
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/4.0/deed
//-----------------------------------------------------------------------------
#ifndef __HM_RADIO_H__
#define __HM_RADIO_H__
#include <RF24.h>
#include "SPI.h"
#include "radio.h"
#define SPI_SPEED 1000000
#define RF_CHANNELS 5
const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"};
#define TX_REQ_DREDCONTROL 0x50
#define DRED_A5 0xa5
#define DRED_5A 0x5a
#define DRED_AA 0xaa
#define DRED_55 0x55
//-----------------------------------------------------------------------------
// HM Radio class
//-----------------------------------------------------------------------------
template <uint8_t IRQ_PIN = DEF_NRF_IRQ_PIN, uint8_t CE_PIN = DEF_NRF_CE_PIN, uint8_t CS_PIN = DEF_NRF_CS_PIN, uint8_t AMP_PWR = RF24_PA_LOW, uint8_t SCLK_PIN = DEF_NRF_SCLK_PIN, uint8_t MOSI_PIN = DEF_NRF_MOSI_PIN, uint8_t MISO_PIN = DEF_NRF_MISO_PIN, uint32_t DTU_SN = 0x81001765>
class HmRadio : public Radio {
public:
HmRadio() : mNrf24(CE_PIN, CS_PIN, SPI_SPEED) {
if(mSerialDebug) {
DPRINT(DBG_VERBOSE, F("hmRadio.h : HmRadio():mNrf24(CE_PIN: "));
DBGPRINT(String(CE_PIN));
DBGPRINT(F(", CS_PIN: "));
DBGPRINT(String(CS_PIN));
DBGPRINT(F(", SPI_SPEED: "));
DBGPRINT(String(SPI_SPEED));
DBGPRINTLN(F(")"));
}
mDtuSn = DTU_SN;
mSerialDebug = false;
mIrqRcvd = false;
}
~HmRadio() {}
void setup(uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN, uint8_t sclk = SCLK_PIN, uint8_t mosi = MOSI_PIN, uint8_t miso = MISO_PIN) {
DPRINTLN(DBG_VERBOSE, F("hmRadio.h:setup"));
pinMode(irq, INPUT_PULLUP);
generateDtuSn();
DTU_RADIO_ID = ((uint64_t)(((mDtuSn >> 24) & 0xFF) | ((mDtuSn >> 8) & 0xFF00) | ((mDtuSn << 8) & 0xFF0000) | ((mDtuSn << 24) & 0xFF000000)) << 8) | 0x01;
#ifdef ESP32
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
mSpi = new SPIClass(HSPI);
#else
mSpi = new SPIClass(VSPI);
#endif
mSpi->begin(sclk, miso, mosi, cs);
#else
//the old ESP82xx cannot freely place their SPI pins
mSpi = new SPIClass();
mSpi->begin();
#endif
mNrf24.begin(mSpi, ce, cs);
mNrf24.setRetries(3, 15); // 3*250us + 250us and 15 loops -> 15ms
mNrf24.setChannel(mRfChLst[mRxChIdx]);
mNrf24.startListening();
mNrf24.setDataRate(RF24_250KBPS);
mNrf24.setAutoAck(true);
mNrf24.enableDynamicAck();
mNrf24.enableDynamicPayloads();
mNrf24.setCRCLength(RF24_CRC_16);
mNrf24.setAddressWidth(5);
mNrf24.openReadingPipe(1, reinterpret_cast<uint8_t*>(&DTU_RADIO_ID));
// enable all receiving interrupts
mNrf24.maskIRQ(false, false, false);
mNrf24.setPALevel(1); // low is default
if(mNrf24.isChipConnected()) {
DPRINTLN(DBG_INFO, F("Radio Config:"));
mNrf24.printPrettyDetails();
DPRINT(DBG_INFO, F("DTU_SN: 0x"));
DBGPRINTLN(String(mDtuSn, HEX));
} else
DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
}
void loop(void) {
if (!mIrqRcvd)
return; // nothing to do
mIrqRcvd = false;
bool tx_ok, tx_fail, rx_ready;
mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
mNrf24.flush_tx(); // empty TX FIFO
// start listening
//mNrf24.setChannel(23);
//mRxChIdx = 0;
mNrf24.setChannel(mRfChLst[mRxChIdx]);
mNrf24.startListening();
if(NULL == mLastIv) // prevent reading on NULL object!
return;
uint32_t startMicros = micros() + 5110;
uint32_t loopMillis = millis() + 400;
while (millis() < loopMillis) {
while (micros() < startMicros) { // listen (4088us or?) 5110us to each channel
if (mIrqRcvd) {
mIrqRcvd = false;
if (getReceived()) { // everything received
return;
}
}
yield();
}
// switch to next RX channel
if(++mRxChIdx >= RF_CHANNELS)
mRxChIdx = 0;
mNrf24.setChannel(mRfChLst[mRxChIdx]);
startMicros = micros() + 5110;
}
// not finished but time is over
if(++mRxChIdx >= RF_CHANNELS)
mRxChIdx = 0;
return;
}
bool isChipConnected(void) {
//DPRINTLN(DBG_VERBOSE, F("hmRadio.h:isChipConnected"));
return mNrf24.isChipConnected();
}
void sendControlPacket(Inverter<> *iv, uint8_t cmd, uint16_t *data, bool isRetransmit) {
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("sendControlPacket cmd: 0x"));
DBGHEXLN(cmd);
initPacket(iv->radioId.u64, TX_REQ_DEVCONTROL, SINGLE_FRAME);
uint8_t cnt = 10;
if (IV_MI != iv->ivGen) {
mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor
mTxBuf[cnt++] = 0x00;
if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet
mTxBuf[cnt++] = ((data[0] * 10) >> 8) & 0xff; // power limit
mTxBuf[cnt++] = ((data[0] * 10) ) & 0xff; // power limit
mTxBuf[cnt++] = ((data[1] ) >> 8) & 0xff; // setting for persistens handlings
mTxBuf[cnt++] = ((data[1] ) ) & 0xff; // setting for persistens handling
}
} else { //MI 2nd gen. specific
uint16_t powerMax = ((iv->powerLimit[1] == RelativNonPersistent) ? 0 : iv->getMaxPower());
switch (cmd) {
case Restart:
case TurnOn:
mTxBuf[9] = DRED_55;
mTxBuf[10] = DRED_AA;
break;
case TurnOff:
mTxBuf[9] = DRED_AA;
mTxBuf[10] = DRED_55;
break;
case ActivePowerContr:
if (data[1]<256) { // non persistent
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_5A;
//Testing only! Original NRF24_DTUMIesp.ino code #L612-L613:
//UsrData[0]=0x5A;UsrData[1]=0x5A;UsrData[2]=100;//0x0a;// 10% limit
//UsrData[3]=((Limit*10) >> 8) & 0xFF; UsrData[4]= (Limit*10) & 0xFF; //WR needs 1 dec= zB 100.1 W
if (!data[1]) { // AbsolutNonPersistent
mTxBuf[++cnt] = 100; //10% limit, seems to be necessary to send sth. at all, but for MI-1500 this has no effect
//works (if ever!) only for absulute power limits!
mTxBuf[++cnt] = ((data[0] * 10) >> 8) & 0xff; // power limit in W
mTxBuf[++cnt] = ((data[0] * 10) ) & 0xff; // power limit in W
} else if (powerMax) { //relative, but 4ch-MI (if ever) only accepts absolute values
mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10?
mTxBuf[++cnt] = ((data[0] * 10 * powerMax) >> 8) & 0xff; // power limit
mTxBuf[++cnt] = ((data[0] * 10 * powerMax) ) & 0xff; // power limit
} else { // might work for 1/2ch MI (if ever)
mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10?
}
} else { // persistent power limit needs to be translated in DRED command (?)
/* DRED instruction
Order Function
0x55AA Boot without DRM restrictions
0xA5A5 DRM0 shutdown
0x5A5A DRM5 power limit 0%
0xAA55 DRM6 power limit 50%
0x5A55 DRM8 unlimited power operation
*/
mTxBuf[0] = TX_REQ_DREDCONTROL;
if (data[1] == 256UL) { // AbsolutPersistent
if (data[0] == 0 && !powerMax) {
mTxBuf[9] = DRED_A5;
mTxBuf[10] = DRED_A5;
} else if (data[0] == 0 || !powerMax || data[0] < powerMax/4 ) {
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_5A;
} else if (data[0] <= powerMax/4*3) {
mTxBuf[9] = DRED_AA;
mTxBuf[10] = DRED_55;
} else if (data[0] <= powerMax) {
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_55;
} else if (data[0] > powerMax*2) {
mTxBuf[9] = DRED_55;
mTxBuf[10] = DRED_AA;
}
}
}
break;
default:
return;
}
cnt++;
}
sendPacket(iv, cnt, isRetransmit, (IV_MI != iv->ivGen));
}
uint8_t getDataRate(void) {
if(!mNrf24.isChipConnected())
return 3; // unknown
return mNrf24.getDataRate();
}
bool isPVariant(void) {
return mNrf24.isPVariant();
}
private:
inline bool getReceived(void) {
bool tx_ok, tx_fail, rx_ready;
mNrf24.whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
bool isLastPackage = false;
while(mNrf24.available()) {
uint8_t len;
len = mNrf24.getDynamicPayloadSize(); // if payload size > 32, corrupt payload has been flushed
if (len > 0) {
packet_t p;
p.ch = mRfChLst[mRxChIdx];
p.len = (len > MAX_RF_PAYLOAD_SIZE) ? MAX_RF_PAYLOAD_SIZE : len;
p.rssi = mNrf24.testRPD() ? -64 : -75;
p.millis = millis() - mMillis;
mNrf24.read(p.packet, p.len);
if (p.packet[0] != 0x00) {
if(!checkIvSerial(&p.packet[1], mLastIv)) {
DPRINT(DBG_WARN, "RX other inverter: ");
ah::dumpBuf(p.packet, p.len);
return false;
}
mLastIv->mGotFragment = true;
mBufCtrl.push(p);
if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES)) // response from get information command
isLastPackage = (p.packet[9] > ALL_FRAMES); // > ALL_FRAMES indicates last packet received
else if (p.packet[0] == ( 0x0f + ALL_FRAMES) ) // response from MI get information command
isLastPackage = (p.packet[9] > 0x10); // > 0x10 indicates last packet received
else if ((p.packet[0] != 0x88) && (p.packet[0] != 0x92)) // ignore MI status messages //#0 was p.packet[0] != 0x00 &&
isLastPackage = true; // response from dev control command
}
}
yield();
}
if(isLastPackage)
mLastIv->mGotLastMsg = true;
return isLastPackage;
}
void sendPacket(Inverter<> *iv, uint8_t len, bool isRetransmit, bool appendCrc16=true) {
mNrf24.setPALevel(iv->config->powerLevel & 0x03);
updateCrcs(&len, appendCrc16);
// set TX and RX channels
mTxChIdx = mRfChLst[iv->txRfChId];
if(mSerialDebug) {
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("TX "));
DBGPRINT(String(len));
DBGPRINT(" CH");
DBGPRINT(String(mTxChIdx));
DBGPRINT(F(" | "));
ah::dumpBuf(mTxBuf, len, 1, 4, "#"+String(iv->id));
}
mNrf24.stopListening();
mNrf24.setChannel(mTxChIdx);
mNrf24.openWritingPipe(reinterpret_cast<uint8_t*>(&iv->radioId.u64));
mNrf24.startWrite(mTxBuf, len, false); // false = request ACK response
mMillis = millis();
mLastIv = iv;
}
uint64_t getIvId(Inverter<> *iv) {
return iv->radioId.u64;
}
uint8_t getIvGen(Inverter<> *iv) {
return iv->ivGen;
}
inline bool checkIvSerial(uint8_t buf[], Inverter<> *iv) {
uint8_t tmp[4];
CP_U32_BigEndian(tmp, iv->radioId.u64 >> 8);
for(uint8_t i = 0; i < 4; i++) {
if(tmp[i] != buf[i])
return false;
}
return true;
}
uint64_t DTU_RADIO_ID;
uint8_t mRfChLst[RF_CHANNELS] = {03, 23, 40, 61, 75}; // channel List:2403, 2423, 2440, 2461, 2475MHz
uint8_t mTxChIdx = 0;
uint8_t mRxChIdx = 0;
bool mGotLastMsg = false;
uint32_t mMillis;
SPIClass* mSpi;
RF24 mNrf24;
Inverter<> *mLastIv = NULL;
};
#endif /*__HM_RADIO_H__*/