You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

348 lines
11 KiB

"""
First attempt at providing basic 'master' ('DTU') functionality
for Hoymiles micro inverters.
Based in particular on demostrated first contact by 'of22'.
"""
import sys
import argparse
import time
import struct
import crcmod
import json
from datetime import datetime
from RF24 import RF24, RF24_PA_LOW, RF24_PA_MAX, RF24_250KBPS
import paho.mqtt.client
from configparser import ConfigParser
cfg = ConfigParser()
cfg.read('ahoy.conf')
mqtt_host = cfg.get('mqtt', 'host', fallback='192.168.1.1')
mqtt_port = cfg.getint('mqtt', 'port', fallback=1883)
mqtt_user = cfg.get('mqtt', 'user', fallback='')
mqtt_password = cfg.get('mqtt', 'password', fallback='')
radio = RF24(22, 0, 1000000)
mqtt_client = paho.mqtt.client.Client()
mqtt_client.username_pw_set(mqtt_user, mqtt_password)
mqtt_client.connect(mqtt_host, mqtt_port)
mqtt_client.loop_start()
# Master Address ('DTU')
dtu_ser = cfg.get('dtu', 'serial', fallback='99978563412') # identical to fc22's
# inverter serial numbers
inv_ser = cfg.get('inverter', 'serial', fallback='444473104619') # my inverter
# all inverters
#...
f_crc_m = crcmod.predefined.mkPredefinedCrcFun('modbus')
f_crc8 = crcmod.mkCrcFun(0x101, initCrc=0, xorOut=0)
def ser_to_hm_addr(s):
"""
Calculate the 4 bytes that the HM devices use in their internal messages to
address each other.
"""
bcd = int(str(s)[-8:], base=16)
return struct.pack('>L', bcd)
def ser_to_esb_addr(s):
"""
Convert a Hoymiles inverter/DTU serial number into its
corresponding NRF24 'enhanced shockburst' address byte sequence (5 bytes).
The NRF library expects these in LSB to MSB order, even though the transceiver
itself will then output them in MSB-to-LSB order over the air.
The inverters use a BCD representation of the last 8
digits of their serial number, in reverse byte order,
followed by \x01.
"""
air_order = ser_to_hm_addr(s)[::-1] + b'\x01'
return air_order[::-1]
def compose_0x80_msg(dst_ser_no=72220200, src_ser_no=72220200, ts=None, subtype=b'\x0b'):
"""
Create a valid 0x80 request with the given parameters, and containing the
current system time.
"""
if not ts:
ts = 0x623C8ECF # identical to fc22's for testing # doc: 1644758171
# "framing"
p = b''
p = p + b'\x15'
p = p + ser_to_hm_addr(dst_ser_no)
p = p + ser_to_hm_addr(src_ser_no)
p = p + b'\x80'
# encapsulated payload
pp = subtype + b'\x00'
pp = pp + struct.pack('>L', ts) # big-endian: msb at low address
#pp = pp + b'\x00' * 8 # of22 adds a \x05 at position 19
pp = pp + b'\x00\x00\x00\x05\x00\x00\x00\x00'
# CRC_M
crc_m = f_crc_m(pp)
p = p + pp
p = p + struct.pack('>H', crc_m)
crc8 = f_crc8(p)
p = p + struct.pack('B', crc8)
return p
def print_addr(a):
print(f"ser# {a} ", end='')
print(f" -> HM {' '.join([f'{x:02x}' for x in ser_to_hm_addr(a)])}", end='')
print(f" -> ESB {' '.join([f'{x:02x}' for x in ser_to_esb_addr(a)])}")
# time of last transmission - to calculcate response time
t_last_tx = 0
def on_receive(p, ch_rx=None, ch_tx=None):
"""
Callback: get's invoked whenever a packet has been received.
:param p: Payload of the received packet.
"""
d = {}
t_now_ns = time.monotonic_ns()
ts = datetime.utcnow()
ts_unixtime = ts.timestamp()
d['ts_unixtime'] = ts_unixtime
d['isodate'] = ts.isoformat()
d['rawdata'] = " ".join([f"{b:02x}" for b in p])
print(ts.isoformat(), end='Z ')
# check crc8
crc8 = f_crc8(p[:-1])
d['crc8_valid'] = True if crc8==p[-1] else False
# interpret content
mid = p[0]
d['mid'] = mid
name = 'unknowndata'
d['response_time_ns'] = t_now_ns-t_last_tx
d['ch_rx'] = ch_rx
d['ch_tx'] = ch_tx
if mid == 0x95:
src, dst, cmd = struct.unpack('>LLB', p[1:10])
src_s = f'{src:08x}'
dst_s = f'{dst:08x}'
d['src'] = src_s
d['dst'] = dst_s
d['cmd'] = cmd
print(f'MSG src={src_s}, dst={dst_s}, cmd={cmd}, ', end=' ')
if cmd==1:
name = 'dcdata'
unknown1, u1, i1, p1, u2, i2, p2, unknown2 = struct.unpack(
'>HHHHHHHH', p[10:26])
print(f'u1={u1/10}V, i1={i1/100}A, p1={p1/10}W, ', end='')
print(f'u2={u2/10}V, i2={i2/100}A, p2={p2/10}W, ', end='')
print(f'unknown1={unknown1}, unknown2={unknown2}')
d['u1_V'] = u1/10
d['i1_A'] = i1/100
d['p1_W'] = p1/10
d['u2_V'] = u2/10
d['i2_A'] = i2/100
d['p2_W'] = p2/10
d['unknown1'] = unknown1
d['unknown2'] = unknown2
elif cmd==2:
name = 'acdata'
uk1, uk2, uk3, uk4, uk5, u, f, p = struct.unpack(
'>HHHHHHHH', p[10:26])
print(f'u={u/10:.1f}V, f={f/100:.2f}Hz, p={p/10:.1f}W, ', end='')
print(f'uk1={uk1}, ', end='')
print(f'uk2={uk2}, ', end='')
print(f'uk3={uk3}, ', end='')
print(f'uk4={uk4}, ', end='')
print(f'uk5={uk5}')
d['u_V'] = u/10
d['f_Hz'] = f/100
d['p_W'] = p/10
d['wtot1_Wh'] = uk1
d['wtot2_Wh'] = uk3
d['wday1_Wh'] = uk4
d['wday2_Wh'] = uk5
d['uk2'] = uk2
elif cmd==129:
name = 'error'
print('Command error')
elif cmd==131: # 0x83
name = 'statedata'
uk1, l, uk3, t, uk5, uk6 = struct.unpack('>HHHHHH', p[10:22])
print(f'l={l}%, t={t/10:.2f}C, ', end='')
print(f'uk1={uk1}, ', end='')
print(f'uk3={uk3}, ', end='')
print(f'uk5={uk5}, ', end='')
print(f'uk6={uk6}')
d['l_Pct'] = l
d['t_C'] = t/10
d['uk1'] = uk1
d['uk3'] = uk3
d['uk5'] = uk5
d['uk6'] = uk6
elif cmd==132: # 0x84
name = 'unknown0x84'
uk1, uk2, uk3, uk4, uk5, uk6, uk7, uk8 = struct.unpack(
'>HHHHHHHH', p[10:26])
print(f'uk1={uk1}, ', end='')
print(f'uk2={uk2}, ', end='')
print(f'uk3={uk3}, ', end='')
print(f'uk4={uk4}, ', end='')
print(f'uk5={uk5}, ', end='')
print(f'uk6={uk6}, ', end='')
print(f'uk7={uk7}, ', end='')
print(f'uk8={uk8}')
else:
print(f'unknown cmd {cmd}')
else:
print(f'unknown frame id {p[0]}')
# output to stdout
if d:
print(json.dumps(d))
# output to MQTT
if d:
j = json.dumps(d)
mqtt_client.publish(f'ahoy/{src}/{name}', j)
if d['cmd']==2:
mqtt_client.publish(f'ahoy/{src}/emeter/0/voltage', d['u_V'])
mqtt_client.publish(f'ahoy/{src}/emeter/0/power', d['p_W'])
mqtt_client.publish(f'ahoy/{src}/emeter/0/total', d['wtot1_Wh'])
mqtt_client.publish(f'ahoy/{src}/frequency', d['f_Hz'])
if d['cmd']==1:
mqtt_client.publish(f'ahoy/{src}/emeter-dc/0/power', d['p1_W'])
mqtt_client.publish(f'ahoy/{src}/emeter-dc/0/voltage', d['u1_V'])
mqtt_client.publish(f'ahoy/{src}/emeter-dc/0/current', d['i1_A'])
mqtt_client.publish(f'ahoy/{src}/emeter-dc/1/power', d['p2_W'])
mqtt_client.publish(f'ahoy/{src}/emeter-dc/1/voltage', d['u2_V'])
mqtt_client.publish(f'ahoy/{src}/emeter-dc/1/current', d['i2_A'])
if d['cmd']==131:
mqtt_client.publish(f'ahoy/{src}/temperature', d['t_C'])
def main_loop():
"""
Keep receiving on channel 3. Every once in a while, transmit a request
to one of our inverters on channel 40.
"""
global t_last_tx
print_addr(inv_ser)
print_addr(dtu_ser)
ctr = 1
last_tx_message = ''
ts = int(time.time()) # see what happens if we always send one and the same (constant) time!
rx_channels = [3,23,61,75]
rx_channel_id = 0
rx_channel = rx_channels[rx_channel_id]
tx_channels = [40]
tx_channel_id = 0
tx_channel = tx_channels[tx_channel_id]
while True:
# Sweep receive start channel
rx_channel_id = ctr % len(rx_channels)
rx_channel = rx_channels[rx_channel_id]
radio.setChannel(rx_channel)
radio.enableDynamicPayloads()
radio.setAutoAck(True)
radio.setPALevel(RF24_PA_MAX)
radio.setDataRate(RF24_250KBPS)
radio.openWritingPipe(ser_to_esb_addr(inv_ser))
radio.flush_rx()
radio.flush_tx()
radio.openReadingPipe(1,ser_to_esb_addr(dtu_ser))
radio.startListening()
t_end = time.monotonic_ns()+1e9
while time.monotonic_ns() < t_end:
has_payload, pipe_number = radio.available_pipe()
if has_payload:
size = radio.getDynamicPayloadSize()
payload = radio.read(size)
print(last_tx_message, end='')
last_tx_message = ''
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
print(f"{dt} Received {size} bytes on channel {rx_channel} pipe {pipe_number}: " +
" ".join([f"{b:02x}" for b in payload]))
on_receive(payload, ch_rx=rx_channel, ch_tx=tx_channel)
else:
# pass
# time.sleep(0.01)
radio.stopListening()
radio.setChannel(rx_channel)
radio.startListening()
rx_channel_id = rx_channel_id + 1
if rx_channel_id >= len(rx_channels):
rx_channel_id = 0
rx_channel = rx_channels[rx_channel_id]
time.sleep(0.01)
tx_channel_id = tx_channel_id + 1
if tx_channel_id >= len(tx_channels):
tx_channel_id = 0
tx_channel = tx_channels[tx_channel_id]
radio.stopListening() # put radio in TX mode
radio.setChannel(tx_channel)
radio.openWritingPipe(ser_to_esb_addr(inv_ser))
ts = int(time.time())
payload = compose_0x80_msg(src_ser_no=dtu_ser, dst_ser_no=inv_ser, ts=ts)
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
last_tx_message = f"{dt} Transmit {ctr:5d}: channel={tx_channel} len={len(payload)} | " + \
" ".join([f"{b:02x}" for b in payload]) + "\n"
radio.write(payload) # will always yield 'True' because auto-ack is disabled
t_last_tx = time.monotonic_ns()
ctr = ctr + 1
print(flush=True, end='')
if __name__ == "__main__":
if not radio.begin():
raise RuntimeError("radio hardware is not responding")
radio.setPALevel(RF24_PA_LOW) # RF24_PA_MAX is default
# radio.printDetails(); # (smaller) function that prints raw register values
# radio.printPrettyDetails(); # (larger) function that prints human readable data
try:
main_loop()
except KeyboardInterrupt:
print(" Keyboard Interrupt detected. Exiting...")
radio.powerDown()
sys.exit()